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Abstract
In this work, we propose marginalized operators,
a new class of off-policy evaluation operators for
reinforcement learning. Marginalized operators
strictly generalize generic multi-step operators,
such as Retrace, as special cases. Marginalized
operators also suggest a form of sample-based
estimates with potential variance reduction, com-
pared to sample-based estimates of the original
multi-step operators. We show that the estimates
for marginalized operators can be computed in
a scalable way, which also generalizes prior re-
sults on marginalized importance sampling as spe-
cial cases. Finally, we empirically demonstrate
that marginalized operators provide performance
gains to off-policy evaluation problems and down-
stream policy optimization algorithms.

1. Introduction
In many applications of reinforcement learning (RL), it is
useful to be able to learn about one policy using data gener-
ated by a different policy, such as exploratory data (Mnih
et al., 2015), expert data (Hester et al., 2018) or even offline
data (Lange et al., 2012); this is the problem of off-policy
learning. To successully learn in such scenarios, off-policy
algorithms must be able to safely deal with discrepancies
between the data-generating policy and policy of interest.
As a fundamental building block of generic off-policy algo-
rithms, off-policy evaluation studies the problem of estimat-
ing value functions of a target policy π with data collected
under behavior policy µ.

A distinction is often drawn in off-policy learning between
online and offline learning. In the online setting, where RL
agents keep collecting new data, most prior work focuses
on multi-step operator-based methods (e.g., (Precup, 2000;
Harutyunyan et al., 2016; Munos et al., 2016; Rowland et al.,
2020a)). These methods equate policy evaluations to solving
for fixed points of contractive operators. In this case, a cen-
tral idea is bootstrapping, where new estimates build on old
estimates in an iterative fashion. As a result of contractive
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operators, the sequence of output from the algorithm forms
increasingly accurate predictions to the true target values.
This is especially desirable in many practical online setups
where the target policy might slowly change over time (e.g.,
policy optimization), where predictions for the new policy
could extract useful information from predictions for old
policies.

On the other hand, in the offline setting where no further
data collection is possible, much work builds on impor-
tance sampling (IS) (Precup, 2000; Thomas et al., 2015;
Thomas and Brunskill, 2016; Liu et al., 2018; Nachum et al.,
2019a; Uehara and Jiang, 2019; Nachum and Dai, 2020;
Xie et al., 2019; Yang et al., 2020). Popular approaches
for variance reduction in importance sampling are based on
marginalized IS (Liu et al., 2018; Xie et al., 2019) which
has also shown promises even when combined with function
approximations for high-dimensional input spaces (Nachum
et al., 2019a; Nachum and Dai, 2020; Mousavi et al., 2020).
However, since the offline problems only require a single
numerical prediction, most algorithms do not naturally in-
corporate the notion of bootstrapping out-of-the-box. As a
result, despite some recent efforts (Nachum et al., 2019b), it
is in general challenging to directly apply such methods to
online off-policy learning.

Motivated by the disparity between these two lines of work,
we propose marginalized operators, a new family of off-
policy evaluation operators that generalize multi-step oper-
ators as special cases (Section 3). Marginalized operators
suggest new stochastic estimates to the equivalent multi-step
operators, with connections to marginalized IS (Section 4).
Under this framework, we also consider estimated marginal-
ized operators (Section 5), which can be computed with
estimates in a scalable manner, and can be analyzed as es-
timators in their own right. Finally, we show that the new
operators provide performance gains on both policy evalua-
tion and downstream optimization (Section 6).

Our discussions are limited to multi-step operators con-
structed as a weighted mixture of Bellman errors across dif-
ferent time steps. As a result, Qπ is the unique fixed point
of such operators; these exclude operators which explicitly
bias the fixed point in exchange for faster contraction rate,
such as the uncorrected n-step operator. See (Rowland et al.,
2020a) for a comprehensive discussion on such operators.
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2. Background
2.1. Markov decision processes
Consider the setup of a Markov decision process (MDP)
(Puterman, 2014) with an infinite horizon. At any discrete
time t ≥ 0, the agent is in state xt ∈ X , takes an action
at ∈ A. The agent first receives an immediate random
reward rt = r(xt, at) with mean r̄(xt, at), and then tran-
sitions to a next state xt+1 ∼ p(·|xt, at). We assume re-
wards are deterministic, but most results extend naturally
to the stochastic case. Let policy π : X → P(A) be
a mapping from states to distributions over actions. Let
γ ∈ [0, 1) be a discount factor, define the Q-function
Qπ(x, a) := Eπ [

∑∞
t=0 γ

trt | x0 = x, a0 = a] and value
function V π(x) := Eπ [

∑∞
t=0 γ

trt | x0 = x]. Here, Eπ [·]
denotes that the trajectories (xt, at, rt)

∞
t=0 are generated

under policy π.

2.2. Multi-step off-policy evaluation
Consider off-policy evaluation where π is the target pol-
icy and µ is the behavior policy, where we assume
supp (π(·|x)) ⊂ supp (µ(·|x)) ,∀(x, a). Given a trajec-
tory (xt, at, rt)

∞
t=0 generated under µ and a Q-function

Q, we define the TD error at time t as ∆π
t Q := r̄t +

γEx′∼p(·|xt,at) [Q(x′, π(x′))]−Q(xt, at) . Here, we adopt
the notation Q(x, π(x)) := Ea∼π(·|x) [Q(x, a)]. The multi-
step off-policy evaluation operatorsRc (Munos et al., 2016)
define the step-wise trace coefficient ct ∈ R per time step t,
where in general ct = c({xs, as}s≤t) is a function of the of
the past (xs, as)s≤t. The Q-function estimateRcQ(x, a) at
the starting pair (x, a) is computed as

Q(x, a) + Eµ

∑
t≥0

γt(Π1≤s≤tcs)∆
π
t Q

∣∣∣∣∣∣ x0 = x, a0 = a

 ,
(1)

where we define (Π1≤s≤tcs) = 1 when t = 0. When
0 ≤ ct ≤ π(at|xt)

µ(at|xt) , it can be shown that Qπ is the unique
fixed point to RcQ = Q (Munos et al., 2016). As an
important example, let ct = I[t ≤ 0], the operator Rc
reduces to the one-step Bellman operator T πQ(x, a) :=
r0 + γEπ [Q(x1, ·)]. In this case, the traces ct are cut off
beyond the first time step, which prevents the algorithm
from bootstrapping from the rest of the trajectory. In many
cases, the coefficient ct = c(xt, at) is Markovian if it only
depends on (xt, at). Notable examples include importance
sampling ct = π(at|xt)

µ(at|xt) , Retrace ct = λmin{c̄, π(at|xt)µ(at|xt)}
(Munos et al., 2016), tree backup ct = π(at|xt) (Precup,
2000) and Qπ(λ) ct = λ (Harutyunyan et al., 2016).

2.3. Off-policy evaluation via marginalized importance
sampling

We start by introducing the discounted visitation distribution
dπx,a(x′, a′) := (1− γ)

∑
t≥0 γ

tPπ(xt = x′, at = a′|x0 =

x, a0 = a) where (x, a) are the starting state-action pair.
The discounted visitation distribution dπx,a(x′, a′) and value
functions Qπ(x, a) are related as follows (Puterman, 2014),

Qπ(x, a) = (1− γ)−1E(x′,a′)∼dπx,a [r(x′, a′)] . (2)

Assume the off-policy data is sampled under dµx,a(x′, a′).

Let wπ,µx,a (x′, a′) :=
dπx,a(x

′,a′)

dµx,a(x′,a′)
. One could express Qπ(x, a)

via marginalized IS (Xie et al., 2019; Liu et al., 2018),

Qπ(x, a) = (1− γ)−1E(x′,a′)∼dµx,a [w(x′, a′)r(x′, a′)] .

For convenience, let wπ,µ ∈ R(X×A)×(X×A) be a matrix
such that wπ,µx,a (x′, a′) is the entry at (x, a, x′, a′). Since
marginalized IS ratios are generally unknown, it is necessary
to construct estimates wψ ≈ wπ,µ. There are a number of
algorithms which carry out the estimation in a scalable way,
which we will detail in Section 5.

Remarks on notations. Note that Qπ : RX×A 7→ R
(wπ,µ : R(X×A)×(X×A) 7→ R) are by defintion functions.
To facilitate derivations, we abuse notations and also treat
them as vectors (matrices) such that Qπ ∈ R|X ||A|(wπ,µ ∈
R|X ||A|×|X||A|). As such, Qπ(x, a) can be both interpreted
function evaluation and vector indexing at (x, a).

3. Marginalized Off-Policy Evaluation
Operators

The marginalized off-policy evaluation operator Mw :
RX×A → RX×A is defined such that its component at
(x, a) is evaluated as

Q(x, a) + (1− γ)−1E(x′,a′)∼dµx,a [wx,a(x′, a′)∆π(x′, a′)] ,

(3)

where wx,a(x′, a′) are called TD weights. Define
∆π(x, a) := r̄(x, a)+γEx′∼p(·|x,a) [Q(x′, π(a′)]−Q(x, a)
as (x, a)-dependent Bellman errors. Note the difference
between Eµ [·] in Eqn (1), which is an expectation over tra-
jectories (xt, at, rt)

∞
t=0 under µ; and Edµx,a [·] in Eqn (3),

which is an expectation under the discounted distribution.

Below, we will first characterize important properties of the
marginalized operator. Then, we will show that the space
of contractive marginalized operators contains the space of
contractive multi-step operators.

3.1. Properties of the marginalized operator
The following proposition summarizes a few important prop-
erties of the marginalized operators

Proposition 3.1. For any TD weights w, the Q-function
Qπ is a solution to the fixed point equation MwQ = Q.
For any Q1, Q2 ∈ RX×A,

|MwQ1(x, a)−MwQ2(x, a)| ≤ ηwx,a ‖Q1 −Q2‖∞ .
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Let δx,a ∈ RX×A be the one-hot encoding of (x, a)
and let dwx,a ∈ RX×A such that dwx,a(x′, y′) =
wx,a(x′, y′)dµx,a(x′, a′). Then define the residual error

Ewx,a = (1− γ)δx,a + γ(Pπ)T dwx,a − dwx,a,

which characterizes how dwx,a satisfies the balance equations

(1− γ)δx,a + γ(Pπ)T d− d = 0. (4)

The local contraction rate is expressed as

ηwx,a = (1− γ)−1
∥∥Ewx,a∥∥1 , (5)

Proposition 3.1 shows that the local contraction rate ηwx,y
is proportional to the L1 norm of the residual error of dwx,y
when plugged into the balance equation. This means that
in order forMw to be contractive, we seek w such that it
approximately satisfies the balance equation and the residual
error is small.

Similar to the notation ofwπ,µ, we denotew as the matrix of
TD weights. Though it is not straightforward to analytically
characterize the set of for w such thatMw is contractive,
we shed light on properties of such w with some examples.

Marginalized IS ratios as a special case. The dis-
counted visitation distribution dπx,a is the only solution that
satisfies the balance equation. When wx,a = wπ,µx,a , since
balance equations are satisfied exactly, ηwπ,µx,a = 0 and the
contraction is instantMwπ,µQ = Qπ,∀Q. Instead of re-
quiring balance equations to be satisfied exactly, Proposi-
tion 3.1 suggests that there is a larger class of w such that
balance equations are approximately satisfied andMw is
contractive. Indeed, as we will see below, marginalized
operators can recover all contractive multi-step operators as
special cases.

3.2. Multi-step off-policy evaluation operators as
special cases

The following result shows that when w is chosen properly,
the marginalized operators is equivalent to any given multi-
step operator.

Proposition 3.2. Given a multi-step operatorRc with step-
wise trace coefficients ct, define wcx,a(x′, a′) as

1− γ
dµx,a(x′, a′)

Eµ

∑
t≥0

γt (Π1≤s≤tcs) I[xt = x′, at = a′]

 .
(6)

If dµx,a(x′, a′) = 0 for some (x′, a′), we can instead define
wcx,a(x′, a′) = 0. Let wc be the matrix form. When w =

wc, the two operators are equivalent,Mwc = Rc.

Proposition 3.2 implies that the space of all contractive
marginalized operators contains all contractive multi-step
operators. We formally summarize the result as follows.

Corollary 3.3. For any tuple T = (p, r, π, µ, γ), Let C(T )
be the space of all step-wise traces (Markovian or non-
Markovian) such thatRc, c ∈ C(T ) is contractive; letW(T )
be the space of all TD weights such thatMw, w ∈ W(T )
is contractive. Then

{Rc, c ∈ C(T )} ⊂ {Mw, w ∈ W(T )}.

As concrete examples of c ∈ C(T ), consider the Markovian
step-wise traces c(re)

t := min(π(at|xt)µ(at|xt) , 1) ≤ π(at|xt)
µ(at|xt) that

define the Retrace operators (Munos et al., 2016). Let wc
(re)

be the equivalent marginalized trace. We can show that

Ew
c(re)

x,a = γ
∞∑
t=0

γt((Pπ)
T −

(
P π̃
)T

)(
(
P π̃
)T

)tδx,a ≥ 0,

where π̃(a|x) := c(x, a)π(a|x). We can interpret Retrace
as imposing an additional yet implicit constraint on ct, such
that Ew

c

x,a ≥ 0. This is a stronger constraint than requiring
the marginalized operatorMwc to be contractive, which is
equivalent to ηw

c

x,a = (1−γ)−1
∥∥Ewcx,a∥∥1 < 1. Indeed, as we

will see next, by imposing weaker assumptions, marginal-
ized operators contain a larger space of contractive operators
than multi-step operators in general.

3.3. Further characterizations of contractive
marginalized operators

The above discussion motivates the following question: does
the space of contractive marginalized operators contains
strictly more elements than contractive multi-step operators?
We have the following results.

Proposition 3.4. There exists tuples T = (p, r, π, µ, γ)
such that either of the following holds

(i) {Rc, c ∈ C(T )} ( {Mw, w ∈ W(T )},
(ii) {Rc, c ∈ C(T )} = {Mw, w ∈ W(T )}.

Here, we provide some intuitions for case (i). One critical
feature of multi-step operators is that the cumulative traces
are multiplicative Ct = (Π1≤s≤tcs). Assume a trajectory
starting from (x0, a0), if the cumulative trace Ct∗ = 0
at some time step t∗, then Ct = 0,∀t ≥ t∗. However,
by construction, marginalized operators might place TD
weights wx0,a0(xt, at) such that wx0,a0(xt∗ , at∗) = 0 and
wx0,a0(xt′ , at′) 6= 0 for some t′ > t∗. In other words,
marginalized operators could regenerate traces while multi-
step operators cannot. This implies that for such w, there
does not exist c ∈ C(T ) such that Rc = Mw. We pro-
vide specific instances where such phenomenon exist, see
Appendix A for the full derivations.
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The above result bears important implications to Section 5,
where we apply operators Mwψ with parameterized TD
weights wψ. They could be interpreted as directly param-
eterizing the space of contractive marginalized operators,
without necessarily having any multi-step equivalents.

4. Understanding Marginalized Off-Policy
Evaluation Operators

We have seen that by properly selecting w, marginalized
operators recover multi-step operators as special cases. We
provide insights on marginalized operators from a few dif-
ferent perspectives. We start with some background.

4.1. Stochastic estimates of evaluation operators
Since operators are defined in expectations, a naive way to
construct stochastic estimates is to directly draw samples
from the expectations and compute empirical averages. For
example, given a trajectory (xt, at)

∞
t=0 starting from xt =

x, at = a, a stochastic estimate toRcQ(x, a) is

R̂cQ(x, a) = Q(x, a) +

∞∑
t=0

γt (Π1≤s≤tcs) ∆̂t,

where ∆̂t = rt + γQ (xt+1, π(xt+1)) − Q(xt, at) are es-
timates of Bellman errors. We call this trajectory based
estimate as the estimate sums over data over the entire tra-
jectory. We could also define a random time based estimate
with a random time τ such that P (τ = n) = (1− γ)γn for
n ≥ 0.

R̂cτQ(x, a) = Q(x, a) + (1− γ)−1 (Π1≤s≤τ cs) ∆̂τ .

Both estimates are unbiased. Similarly, we define unbi-
ased stochastic estimates for the marginalized evaluation
operators, such that their expectations areMwQ(x, a).

M̂wQ(x, a) = Q(x, a) +

∞∑
t=0

γtwx,a(xt, at)∆̂(xt, at),

M̂w
τ Q(x, a) = Q(x, a) + (1− γ)−1wx,a(xτ , aτ )∆̂(xτ , aτ ).

4.2. Connections to conditional importance sampling
Interestingly, the conversion of the step-wise trace coeffi-
cient ct into equivalent TD weights w(x, a)c as defined in
Eqn (6) is closely related to condition importance sampling
(IS) (Liu et al., 2019; Rowland et al., 2020b).

Proposition 4.1. Let τ be an integer-valued random time,
such that P (τ = n) = (1 − γ)γn,∀n ≥ 0. For any step-
wise trace coefficient ct, its equivalent TD weights w(x′, a′)
is

wcx,a(x′, a′) = Eµ,τ [(Π1≤s≤τ cs) | xτ = x′, aτ = a′] .

In other words, wcx,a(x′, a′) is the conditional expectation
of the random cumulative traces (Π1≤s≤τ cs) conditional on
the event xτ = x′, aτ = a′. In general, conditional IS is a
useful technique for variance reduction (Casella and Berger,
2002), because for any two random variables x, a, V [X] ≥
V [E [X|Y ]]. This implies a variance reduction property of
stochastic estimates to the marginalized operators.

Corollary 4.2. Assume that both state transitions and re-
wards are deterministic. While having the same expecta-
tions, the random-time based estimate for the marginalized
operator has smaller variance compared to that of the multi-
step operator,

V
[
M̂wc

τ Q(x, a)
]
≤ V

[
R̂cτQ(x, a)

]
.

In Appendix B, we graphically present the relations between
the four estimates to different operators introduced above.

Remarks on trajectory based estimates. Trajectory
based estimates usually have smaller variance than the ran-
dom time based counterparts. This is because

M̂wcQ(x0, a0) = E
[
M̂wc

τ Q(x0, a0)
∣∣∣ (xt, at, rt)

∞
t=0

]
,

R̂cQ(x0, a0) = E
[
R̂cτQ(x0, a0)

∣∣∣ (xt, at, rt)
∞
t=0

]
.

Though Collorary 4.2 shows the order of variance between
random time based estimates, the order of variance of the
trajectory based estimates R̂cQ(x, a) vs. M̂wcQ(x, a) are
not clear. Similar results have been observed in (Liu et al.,
2019), where they show that marginalized IS via extended
conditional expectations (Bratley et al., 2011) does not nec-
essarily reduce variance. Nevertheless, in practice, estimates
to marginalized operators usually reduce variance as evi-
denced empirically (Liu et al., 2018).

Trade-off of practical estimates. In practice, TD weights
wc are unknown and need to be estimated wψ ≈ wc. As
a concrete example, consider ct = π(at|xt)

µ(at|xt) and wc =

wπ,µx,a . To clarify the trade-off, let Q ≡ 0. In this
case, R̂cQ(x, a) =

∑
t≥0 γ

t(Π1≤s≤t
π(as|xs)
µ(as|xs) )rt (Precup,

2000), which might suffer from high variance due to the
product of IS ratios (Liu et al., 2019). On the other
hand, M̂wψQ(x, a) = (1 − γ)−1

∑∞
t=0 wψ(xt, at)rt ≈

M̂wcQ(x, a) where wψ ≈ wc is a parametric estimate (Liu
et al., 2018). As argued in prior work, the latter has lower
variance due to marginalized IS but at the cost of the bias
in the estimate wψ. Overall, moving from the multi-step
operator R̂c to its estimated marginalized counterpart M̂wψ ,
one trades-offs variance with potential bias due to imper-
fect estimates of wc (Rowland et al., 2020a). For general
step-wise traces ct and wc, this trade-off should still hold.
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As such, the quality of wψ ≈ wc determines the quality of
downstream updates. We will discuss in Section 5 how to
characterize such effects and estimate wψ .

Related work on conditional IS. (Rowland et al., 2020b)
interprets a large class of off-policy evaluation algorithms
as a two-stage process: (1) start with an initial estimate;
(2) compute the conditional IS of the estimate w.r.t. some
conditioning variables. State-action pairs (x, a) are popular
choices of the conditioning variables, e.g., when applied
to marginalized IS (Xie et al., 2019; Liu et al., 2018) and
eligibility traces (van Hasselt et al., 2020). In this work,
we interpret marginalized operators as applying a similar
procedure to step-wise traces ct to derive TD weights wc.

Extensions to V-trace operators and hindsight credit as-
signment (HCA). Understanding the TD weights as con-
ditional IS of step-wise traces allows us to extend this ap-
proach to V-trace operators (Espeholt et al., 2018), see Ap-
pendix C for detailed results. Recently, (Ma and Perre-Luc,
2020) shows that HCA (Harutyunyan et al., 2019) could
be interpreted as extended conditional IS. We show in Ap-
pendix D how time-independent HCA estimates could be
interpreted also as conditional IS and could be estimated
with similar techniques introduced in Section 5.

4.3. Policy evaluation via linear programs and its
connections to contractions

The linear programming (LP) formulation of MDPs
(De Farias and Van Roy, 2003; Puterman, 2014) is an im-
portant framework for policy evaluation, which gives rise to
a large number of recent work on marginalized off-policy
evaluation (e.g., see (Nachum and Dai, 2020)). Here, we
explore how the notion of contraction is in fact consistent
with the LPs. We will see that this offers a new way to
interpret LP formulation for policy evaluation, and might
pave the way for new algorithms.

Dual LP for policy evaluation. Consider the evaluation
of Qπ(x, a). Denote R ∈ RX×A as the reward vector
R(x, a) = r(x, a). We directly start with the dual LP where
d ∈ RX×A are dual variables. The dual LP for policy
evaluation is (Puterman, 2014){

min (1− γ)−1dTR
(1− γ)δx,a + γ(Pπ)T d− d = 0

(7)

Since the equality constraints are essentially the balance
equations defined in Eqn (4), the single feasible (optimal)
solution is d∗ = dπx,a.

Sequence of relaxed LPs as repeated application of con-
tractive operators. We start by assuming an iterative al-
gorithm, where at iteration t we have access to Q-function

estimate Qt ∈ RX×A. At iteration t+ 1, consider the dual
LP (Eqn (7)) for each (x, a). We augment its objective
function as follows{

min QTt δx,a + (1− γ)−1dT (R+ γ(Pπ)TQt −Qt)
(1− γ)δx,a + γ(Pπ)T d− d = 0

(8)

Note that the augmented dual LP (Eqn (8)) has the same
optimal solution as the original dual LP (Eqn (7)) because
both of their feasible region contains only dπx,a. Let η ∈
[0, 1) be a scalar constant. We relax the constraints of the
above dual LP as follows,

min QTt δx,a + (1− γ)−1dT (R+ γPπQt −Qt)
(1− γ)δx,a + γ(Pπ)T d− d ≤ (1− γ)u
(1− γ)δx,a + γ(Pπ)T d− d ≥ −(1− γ)u
1Tu ≤ η, u ≥ 0

(9)

We name the above relaxed problem LP(t)(x, a). The fea-
sible region of the relaxed dual LP (Eqn (9)) is expanded
into a non-trivial polyhedron Dx,a when η > 0. Instead
of requiring balance equations to hold exactly, violations
are allowed and their magnitude is controlled by η. De-
fine Qt+1(x, a) to be the objective value of Eqn (9). The
following result relates the sequence of LP objectives to
contraction.

Proposition 4.3. The following holds for the sequence of
values produced by relaxed LPs,

‖Qt+1 −Qπ‖∞ ≤ η ‖Qt −Q
π‖∞ .

To better understand the above result, note that the feasible
region Dx,a effectively characterizes all TD weights w that
Mw is contractive with rate at most η. In particular,

Dx,a =
{
wx,a � dµx,a|ηwx,a ≤ η

}
where � is the element-wise product of vectors. As we
show below, the iterative process Qt → Qt+1 is equivalent
to applying contractive operators for policy evaluation

Corollary 4.4. For any (x, a), let w∗x,a = d∗

dµx,a
∈ RX×A

and d∗ is the optimal solution to LP(t)(x, a), then η
w∗x,a
x,a ≤ η

and

Qt+1(x, a) =Mw∗x,aQt(x, a).

In other words, instead of directly outputting Qπ(x, a) by
solving LP(0)(x, a), this iterative algorithm solves relaxed
problems and generates a sequence of LP values Qt → Qπ

by implicitly applying a marginalized operatorMw∗x,a .
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Related ideas. The idea of reducing solving a single LP
into a solving a sequence of relaxed LPs has been explored
(e.g., in (Peters et al., 2010; Bas-Serrano et al., 2020)).
They consider the LP for policy optimization, and relax
constraints by projecting them onto low-dimensional spaces.
This is orthogonal to the box relaxation in Eqn (9).

5. Estimating TD Weights
Given a specific step-wise trace coefficient ct, we seek an
algorithm that estimates the equivalent TD weights wψ ≈
wcx,a,∀(x, a) . Throughout the discussion, we focus on
Markovian step-wise traces that define Retrace operators
0 ≤ c(xt, at) ≤ π(at|xt)

µ(at|xt) (Munos et al., 2016).

We adapt the TD-learning based method introduced in
(Liu et al., 2018) and derive algorithms to estimating TD
weights for generic Markovian step-wise traces. We define
π̃(a|x) := µ(a|x)c(x, a) and a scoring function (also called
a critic or discriminator) q ∈ RX×A. Consider the loss
function,

L(q, wψ) := (1− γ)q(x, a)

+ E(x′,a′)∼dµx,a,x′′∼p(·|x′,a′) [∆(x′, a′)] . (10)

Here, we define ∆(x′, a′) as

w(x′, a′)
(
γEx′′∼p(·|x′,a′) [q (x′′, π̃(x′′))]− q(x′, a′)

)
.

We now show a few important properties of the loss function,

Lemma 5.1. Given any two class of scoring functions
Q1 ⊂ Q2, maxq∈Q1

L(q, w) ≤ maxq∈Q2
L(q, w),∀w

In addition, the TD weights achieve the global optimal
wcx,a = arg minw maxq∈Q L(q, w) for any Q.

This motivates the use of the saddle point optimization ob-
jective to search for wψ ≈ wcx,a,

min
ψ

max
q∈Q

L(q, wψ). (11)

Intuitively, whenQ contains a large set of scoring functions,
the soltuion ψ∗ to Eqn (11) should be closer to wcx,a. This
is captured by the following result.

Proposition 5.2. For any sub-probability measure π̃, Let
Tπ̃(x′, a′|x, a) := p(x′|x, a)π̃(a′|x′) be the one-step
marginal transition probability. Let T tπ̃(x′, a′|x, a) be the
t-time composition of Tπ̃(·|x, a). Given a target state-action
pair (x∗, a∗), define the scoring function q(x, a, x∗, a∗) :=∑
t≥0 γ

tT tπ̃(x, a|x∗, a∗). Then if QT (x, a, x∗, a∗) =
{±q(x, a, x∗, a∗)} ⊂ Q, the following holds,

|wψ(x∗, a∗)− wcx,a(x∗, a∗)| ≤ maxq∈Q L(q, wψ)

dµx,a(x∗, a∗)
.

When ct = π(at|xt)
µ(at|xt) , Proposition 5.2 reduces to Theorem 6

in (Liu et al., 2018) as a special case. In practice, however,
it might not be necessary to estimate accurately at each
point (x, a). This is because for practical purposes, we only
need the downstream operatorMwψ to be contractive. The
following section discusses how the objective can be directly
used for optimizing the contraction rate.

5.1. Optimizing for the contraction rate
The following result shows that how one could directly
minimize the local contraction rate ηwψx,a.

Proposition 5.3. Assume that Qb = {±δ(x = x∗, a =

a∗),∀(x∗, a∗)} ⊂ Q. When ct = π(at|xt)
µ(at|xt) and wc = wπ,µ,

the contraction rate ofMwψ is upper bounded as ηwψx,a ≤
maxq∈Q L(q, wψ).

Note that even when the TD weights are not estimated per-
fectly, the estimated marginalized operatorMwψ are still
properly defined operators. The above result further implies
that in the presence of estimation errorsMwψ could still be
contractive. As a result, repeated application of the operator
still converges to the correct value. This differs from how
prior work generally interprets imperfect weight estimates
(e.g., see (Liu et al., 2018)) as incurring errors to the final
prediction in the offline case.

Remarks on Qb. Compared to QT (x, a, x∗, a∗), Qb is
much more straightforward to parameterize in practice.
For example, consider a neural network fη which takes
(x, a) as input and takes tanh as the output activation:
tanh(fη(x, a)) ∈ [−1, 1]. When fη is expressive enough, it
parameterizes the convex hull of Qb.

Other methods for marginalized estimations. Recently,
there is a growing interest in marginalized estimation for
off-policy evaluation. Besides TD-learning methods, other
notable examples include Fenchel-duality based methods
(Nachum et al., 2019a;b; Nachum and Dai, 2020) and kernel
machines (Mousavi et al., 2020). In Appendix F, we derive
a Fenchel-duality based approach to estimating TD weights,
which naturally extends the original work (Nachum et al.,
2019a).

6. Experiments
We start with a few tabular examples to build better under-
standing of the empirical properties of marginalized opera-
tors. For all tabular MDPs, we adopt the tabular represen-
tation when learning TD weights. Then we evaluate the
potential benefits of marginalized operators when combined
with multi-step deep RL algorithms. In this latter case, the
TD weights are estimated with function approximations.
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(a) Number of actions (b) Horizon (c) Off-policy level (d) Noise level (e) Truncation level

Figure 1. Comparison of baseline operators on chain MDPs. Each curve is averaged over 100 random seeds. The y-axis shows the
evaluation errors and x-axis shows the number of iterations. In each plot, we vary one hyper-parameter of the MDP shown by curves with
different line styles. The line styles and their corresponding hyper-parameters are shown in Table 1.

Line styles Solid Dashed Dashed-dot

# ACTIONS |A| 5 10 20
HORIZON T 10 20 30

OFF-POLICY β 0 0.3 0.7
NOISE σ 0.1 0.5 1.0

TRUNCATION c̄ 1 2 5

Table 1. Parameter tables of the chain MDP. This table shows the
line styles and their corresponding parameters in Figure 1.

6.1. Chain MDP
Consider a chain MDP. The reward is zero unless at the
rightmost state. At the rightmost state, the reward for action
a ∈ A is N (µa, σ

2) where µa = 0 for all but one action
a∗ where µa∗ = 1. The episode starts with the leftmost
state. For all states, the transition goes to the state to its
right with probability 1, no matter what action is taken, until
at the rightmost state when the episode terminates. Due
to the dynamics of the problem, the episodic horizon is
T ≡ |X |. We consider the target policy π as a deterministic
policy of choosing action a = a∗ at all time. We start with
a uniformly random policy u and construct the behavior
policy as µ = βπ + (1− β)u where β ∈ [0, 1] controls the
off-policy level. The problem is on-policy by setting β = 1.
For further details, see Appendix G.

We vary the number of actions |A|, the horizon T , the off-
policy level β, the noise level σ as they capture different
aspects of the MDP. In each sub-plot we vary only one
parameter and keep others at the default values. Curves with
different line styles correspond to different values of a given
parameter, shown in Table 1. We compare three baselines:
(1) one-step operator; (2) Retrace (ct = min{c̄, π(at|xt)µ(at|xt)}
where c̄ = 1 by default) and (3) marginalized operator
Mwψ with wψ ≈ wc.

Results. In Figure 1(a)-(b) shows that the increase in the
number of actions or the horizon makes the evaluation more
difficult: a large number of actions induces large variance
in the estimation due to the increased ratio π(a|x)

µ(a|x) ; at the

same time, long horizons require the propagation of values
with more iterations. Overall, the marginalized operator
converges faster than Retrace, which further outperforms
the one-step operator. In Figure 1(c), we vary the off-policy
level: all operators’ performance increase as the problem
interpolates from very off-policy to near on-policy.

While Figure 1(a)-(c) show the advantages of the marginal-
ized operator, Figure 1(d) highlights potential limitations.
As the noise level of the final reward increases, the marginal-
ized operator and Retrace converge to a higher error rate
than the one-step operator (similar observations are made
in Figure 1(a)-(c)). We speculate that this is because as
marginalized estimator and Retrace propagate downstream
values more effectively, they also bootstrap noises faster.
This implies that when there is much noise in the MDP,
operators with short bootstrap horizons might be preferred.

To compare Retrace and its marginalized counterpart, we
vary the truncation level c̄. Here, c̄ controls the variance of
the target values, as c̄ = 0 reduces to the one-step operator
while c̄ = ∞ reduces to full importance sampling. As
shown in Figure 1(e), the performance of Retrace tends
to be unstable when c̄ is large; the marginalized operator,
converges more stably though the asymptotic errors still
increase as c̄ increases.

6.2. Open World
We further consider the open world example introduced in
(van Hasselt et al., 2020). The open world is a deterministic
maze with |X | = n2 states with n = 10. At each state,
there are four actions A = {L,U,R,D}, each moving the
agent to a neighboring state except when moving beyond
the boundary, in which case the agent does not move. The
agent always starts at the upper left corner. The reward is
zero unless the agent transitions into the lower right corner
terminal state, where r = 1.

We first consider both off-policy evaluation. The agent
estimates Q-function tables Q̂(x, a), but in Figure 2 we
color-code the value functions for all states computed as
V̂ (x) =

∑
a π(a|x)Q̂(x, a). Here, the behavior policy µ is
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a uniformly random policy, while the target policy π assigns
all probability masses uniformly to {D,R}. We compare
three baselines: (1) one-step operator; (2) Retrace and (3)
marginalized operator Mwψ with wψ ≈ wc. For further
details, see Appendix G. Due to space limit, we also provide
results on policy optimization in Appendix G, where off-
policy evaluation is used as a subroutine.

Results. As observed in Figure 2, consistent with results
in the chain MDP, the one-step operator propagates infor-
mation rather slowly compared to the multi-step Retrace.
When c̄ = 1, the performance of Retrace and its marginal-
ized counterpart is highly similar; however, when c̄ = 2, Re-
trace becomes unstable. Indeed, moving from lower right to
the upper left of the state space, the estimated values do not
show any clear trend as in the case of c̄ = 1, which implies
potential divergence. On the other hand, the marginalized
operator performs much more stably. All such observations
imply that the marginalized operator might achieve an addi-
tional effect of variance reduction compared to Retrace. To
better interpret the behavior of marginalized operators,we
visualize the TD weights wψ in Appendix G. The heat maps
of the TD weights capture the intuitions of how Bellman
errors at future states should impact the estimation at initial
states.

Figure 2. Comparison of operators on the Open World MDP. Each
plot is averaged over 100 runs. In each plot, moving from light
yellow to red and further to black colors, the estimated values
decrease. In Figure 2, going from the leftmost column to rightmost
column, the number of iterations increases.

6.3. Deep RL experiments
For high-dimensional state space (or high-dimensional ac-
tion space), the estimation wψ must be combined with more
complex function approximation such as neural networks.
We use simulated continuous control tasks as the test beds,
and compare multi-step RL algorithms against the marginal-
ized counterparts. We consider twin-delayed deep deter-
ministic policy gradient (TD3) (Fujimoto et al., 2018) as
the base algorithm. TD3 implements a deterministic policy
πφ(x) and critic Qθ(x, a)), both parameterized by neural
networks. The critic is updated by minimizing Bellman er-
rors E

[
(Qθ(x, a)−Qtarget(x, a))

2
]

where Qtarget(x, a) is
constructed by a few alternatives: one-step operator, multi-
step operator and its equivalent marginalized operator. The
marginalized operator maintains an estimator wψ param-
eterized by a neural network. See Appendix E for fur-
ther details on the multi-step algorithms and how to im-
plement marginalized multi-step algorithms. Also see and
Appendix G for more experimental details.

(a) Cheetah(D) (b) WalkerRun(D)

(c) Cheetah(B) (d) Ant(B)

Figure 3. Comparison of operators with deep RL implementations.
Each curve is averaged over 5 seeds. The x-axis shows the number
of time steps and y-axis shows the performance. (D) and (B)
denote the simulation backends. See Appendix G for details

Results. We show comparison in Figure 3, where we eval-
uate algorithms over a subset of continuous control tasks
(Brockman et al., 2016). Overall, we find that multi-step
updates might outperform or perform similarly as the one-
step update, both in terms of learning speed and asymptotic
performance; marginalized multi-step updates provide fur-
ther marginal performance gains over the vanilla multi-step
update. We provide more discussions in Appendix G.
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7. Conclusion
We have proposed marginalized operators, a general class
of off-policy evaluation operators. Marginalized operators
bridge the conceptual gap between multi-step operators and
marginalized IS methods for off-policy evaluation. This
provides a unified framework to reason about off-policy
evaluation, and opens doors to new combinations of algo-
rithmic techniques from both sides.
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Borsa, Tom Schaul, Rémi Munos, and Will Dabney. Con-
ditional importance sampling for off-policy learning. In
International Conference on Artificial Intelligence and
Statistics, pages 45–55. PMLR, 2020b.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deep-
mind control suite. arXiv preprint arXiv:1801.00690,
2018.

Philip Thomas and Emma Brunskill. Data-efficient off-
policy policy evaluation for reinforcement learning. In
International Conference on Machine Learning, pages
2139–2148. PMLR, 2016.

Philip Thomas, Georgios Theocharous, and Mohammad
Ghavamzadeh. High-confidence off-policy evaluation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 29, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012.

Masatoshi Uehara and Nan Jiang. Minimax weight and q-
function learning for off-policy evaluation. arXiv preprint
arXiv:1910.12809, 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel,
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APPENDICES: Marginalized Operators for Off-Policy Reinforcement Learning
A. Proofs
Proposition 3.2. Given a multi-step operatorRc with step-wise trace coefficients ct, define wcx,a(x′, a′) as

1− γ
dµx,a(x′, a′)

Eµ

∑
t≥0

γt (Π1≤s≤tcs) I[xt = x′, at = a′]

 . (6)

If dµx,a(x′, a′) = 0 for some (x′, a′), we can instead define wcx,a(x′, a′) = 0. Let wc be the matrix form. When w = wc, the
two operators are equivalent,Mwc = Rc.

Proof. We start by assuming dµx,a(x′, a′) > 0 for all (x, a), (x′, a′). We introduce matrix notations for the marginalized
operator. For TD weights w, let W be a matrix such that W (x, a, x′, a′) = wx,a(x′, a′). For any two matrices A,B
of the same shape, let A � B be the element-wise product. Let R ∈ RX×A be the expected reward vector such that
R(x, a) = r̄(x, a). By the definition of marginalized operators, we rewrite

MwQ = Q+
[
(I − γPµ)−1 �W

]
(R+ γPπQ−Q) .

We first assume that the multi-step operator adopts Markovian step-wise traces. Let P cµ be the transition matrix defined by
the sub-probability measure cµ such that P cµ(x, a, x′, a′) = p(x′|x, a)µ(a′|x′)c(x′, a′). We can write (Munos et al., 2016)

RcQ = Q+ (I − γP cµ)−1 (R+ γPπQ−Q) .

By lettingMw = Rc, we can see the following is a solution to w

W = (I − γP cµ)−1/(I − γPµ)−1. (12)

Here, for two matrices A,B of the same shape, we define A/B to be the element-wise division, where it is required that
all entries of B are strictly positive. Note that (I − γP cµ)−1 =

∑∞
t=0 (γP cµ)

t and (I − γPµ)−1 =
∑∞
t=0 (γPµ)

t. This
implies that the (x, a, x′, a′) component of (I − γPµ)−1 is (1 − γ)−1dµx,a(x′, a′), and the (x, a, x′, a′) component of
(I − γP cµ)−1 is accordingly

1− γ
dµx,a(x′, a′)

Eµ

∑
t≥0

γt (Π1≤s≤tcs) I[xt = x′, at = a′]

∣∣∣∣∣∣ x0 = x, a0 = a

 .
By reading off components from the matrix equality Eqn (12), we arrive at the desired result.

When the traces are non-Markovian, the proof can be extended naturally. Let ct ∈ RX×A be a vector such that ct(x, a)
defines the step-wise trace at time t after starting with (x, a). The multi-step operator can be written as

RcQ = Q+

∞∑
t=0

(Π0≤s≤tP
ctµ) (R+ γPπQ−Q) . (13)

We then arrive at the following sufficient condition forMw = Rc

W =

∞∑
t=0

(Π0≤s≤tP
ctµ) /(I − γPµ)−1.

By reading off components of both sides, we arrive at the desired conclusion.

Now in case for some (x, a, x′, a′), dµx,a(x′, a′) = 0, we can safely set wcx,a(x′, a′) = 0. This is because dµx,a(x′, a′) = 0
implies that there is zero probability that the agent arrives in (x′, a′) starting from (x, a), which means Bellman errors
starting from (x′, a′) are never computed as part of expectation which defines the operator.
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Technical conditions for the summation in Eqn (6). It is clear that there exists some step-wise traces ct such that the
summation in Eqn (6) does not converge, e.g., ct = 1

γ . We impose a condition: (C.1) The step-wise traces ct should be such
thatRcQ is finite under the definition in Eqn 13. Naturally, (C.1) implies that

∑∞
t=0 (Π0≤s≤tP

ctµ) is finite element-wise,

which further implies that the infinite sum Eµ
[∑

t≥0 γ
t (Π1≤s≤tcs) I[xt = x′, at = a′]

∣∣∣ x0 = x, a0 = a
]

is finite for all
(x, a), (x′, a′). Note that (C.1) is very weak and is valid for all situations of interest to us.

Corollary 3.3. For any tuple T = (p, r, π, µ, γ), Let C(T ) be the space of all step-wise traces (Markovian or non-Markovian)
such thatRc, c ∈ C(T ) is contractive; letW(T ) be the space of all TD weights such thatMw, w ∈ W(T ) is contractive.
Then

{Rc, c ∈ C(T )} ⊂ {Mw, w ∈ W(T )}.

Proof. Given any step-wise traces ct (Markovian or non-Markovian), we can compute corresponding marginalzied traces w
via Eq (6). ThenRc =Mw per Proposition 3.2. This implies the desired result in the corollary.

Proposition 3.4. There exists tuples T = (p, r, π, µ, γ) such that either of the following holds

(i) {Rc, c ∈ C(T )} ( {Mw, w ∈ W(T )},
(ii) {Rc, c ∈ C(T )} = {Mw, w ∈ W(T )}.

Proof. We start with some clarifications on notations. The TD weights ct could be either Markovian or non-Markovian.
In the latter case, we require that ct is measurable w.r.t. (xs, as)s≤t. Given a tuple of MDP, policy and discount factor
T = (r, p, π, µ, γ), Note that here ct could be Markovian or non-Markovian. Let Cmarkov(T ) ∈ R(X×A)×(X×A) be the set
of Markovian traces such that Rc is contractive; let Cnon-markov(T ) ∈

(
RX×A

)H
be the set of non-Markovian traces such

thatRc is contractive, where H is horizon of the Markov chain induced by π starting from any state-action pair. In general,
we consider H =∞. As such, for any T , C(T ) = Cmarkov(T ) ∪ Cnon-markov(T ). Finally, letW(T ) be the set of TD weights
such that for any w ∈ W(T ), anyMw ∈ W(T ) is contractive.

Per Proposition 3.2, we can start with any c ∈ C(T ) and project it into a w ∈ W(T ). For convenience of the discussion, we
denote such a projection as fTc→w, where the T denotes that this projection generally depends on T (e.g., the expectation
defined in Eqn (6) is computed with respect to the dynamics p). Formally, we can write fTc→w : C(T ) 7→ W(T ).

We state a few important properties of fTc→w as lemmas.

Lemma A.1. When constrained fTc→w to Markovian traces, let the constrained mapping be fCmarkov,T
c→w : Cmarkov(T ) 7→W (T ).

There exists tuples T such that fCmarkov,T
c→w is not surjective.

Proof. We prove by constructing a counterexample where for some T , there exists a w ∈ W(T ) that cannot be obtained by
first picking a Markovian trace c ∈ Cmarkov and then project it through fCmarkov,T

c→c .

Consider a deterministic chain MDP with N states {xi}Ni=1. All first N − 1 states transition deterministically to the next
state on the right. The last (rightmost) state is absorbing. Assume also π = µ to be both deterministic policy. Consider the
TD weights w∗ such that its (x, a, x′, a′) component is wx,a(x′, a′) =

δx′=x,a′=a
dµx,a(x′,a′)

. In this case, the operatorMw∗ is exactly
the one-step TD operator. Starting from state xi, 1 ≤ i ≤ N − 1, the marginalized operator is

MwQ(xi, ai) = Q(xi, a) + (ri + γQ (xi+1, π(xi+1))−Q(xi, a)) .

The step-wise operator is

RcQ(xi, ai) = Q(xi, ai) +
∑

i≤j≤N−1

γj−i (ci+1...cj) (rj + γQ (xj+1, π(xj+1))−Q(xj , aj)−Q(xj)) + F (N),

where F (N) is some function of the last state. Now, we find c such thatMw∗ = Rc. By matching coefficients of the term
Q(xi+1, ai+1), it is necessary that c(xi, ai) = 1. However, by setting c(xi, ai) = 1, Rc 6= Mw∗ . In other words, there
does not exist a Markovian trace c ∈ RX×A such that fc→w(c) = w∗. This implies that under this setup, the mapping is not
surjective.
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Lemma A.2. Let W+(T ) = {w ∈W (T ), w > 0} ⊂W (T ). For any T , fTc→w is surjective to W+(T ).

Proof. Intuitively, for those TD weights w that could not be realized by Markovian step-wise traces, we need to construct
non-Markovian step-wise traces ct to construct them, such that fTc→w(c) = w.

We construct non-Markovian step-wise traces as follows. Given w ∈ W+(T ). starting from (x, a), the step-wise coefficient
at time t ≥ 0 is computed as

ct :=
wx,a(xt, at)

wx,a(xt−1, at−1)
,

where we define wx,a(xt, at) = 1 for t = −1. We can show that by such a construction, (Π1≤s≤tcs) = wx,a(xt, at) and as
such

fc→w(T )(c) = w.

Lemma A.3. There exists T , such that fc→w(T ) is not surjective to W (T ).

Proof. We construct a counterexample of T . In this case, we seek TD weights w ∈ W (r, p, π, µ, γ) such that we cannot
find c ∈ C(T ) such that fc→w(T )(c) = w. Notably, in this case, C(T ) should contain all step-wise traces, both Markovian
and non-Markovian ones.

Consider a deterministic chain MDP with |X | = N = 5 states {xi}Ni=1 and |A| = 2 actions {ai}2i=1. All first N − 1 states
transition deterministically to the next state on the right. The last (rightmost) state is absorbing. Assume that π = µ are both
uniformly random. Finally, let γ = 0.8.

Consider the contraction property ofMw starting from the state (x1, a1). We can show that by defining dx1,a1(x′, a′) = 0
except

dx1,a1(x1, a1) = 0.2, dx1,a1(x3, a3) = 0.01.

Then we set wx1,a1 =
dx1,a1
dµx1,a1

(element-wise division). We can show that

|MwQ1 −MwQ2| (x1, a1) ≤ 0.89 ‖Q1 −Q2‖∞ .

This implies that the resulting operatorMw is contractive for the pair (x1, a1). We can complete the definition of w for
other state-action pairs (x, a) by specifying wx,a properly. Concretely, as an example, we might set wx

′,a′

x,a =
δx′=x,a′=a
dµx,a(x′,a′)

so
that |MwQ1 −MwQ2| (x′, a′) ≤ γ ‖Q1 −Q2‖∞ = 0.8 ‖Q1 −Q2‖∞ for any (x′, a′) 6= (x1, a1). Overall, the operator
is contractive

‖MwQ1 −MwQ2‖∞ ≤ 0.89 ‖Q1 −Q2‖∞ .

Now, we argue why this particular choice of wx1,a1 cannot be realized by any step-wise traces. Note that since by
construction, dx2,a = 0,∀a ∈ {a1, a2}. This implies that starting from (x1, a1), if we seek any step-wise traces which are
equivalent to dx1,a1 , they must cut the traces at (x2, a). A direct consequence of this result is that c(x2, a) = 0 for both
Markovian or non-Markovian traces. However, since the traces are multiplicative, this further means that the cumulative
product of traces at (x3, a) would be zero. This does not replicate the behavior of dx1,a1 , whose entry at (x3, a3) is
constructed to be 0.01 > 0.

To summarize, the above example shows that under this particular set of T , there exists a w that cannot be realized by any
step-wise traces through the mapping fc→w(T ). Hence the result is concluded.

Lemma A.4. There exists T , such that fc→w(T ) is surjective to W (T ).
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Proof. Consider a special case where we have |X | = 2 states and |A| = 1 action. Let x1, x2 be the states and a1 the single
action. Assume also all rewards are deterministic. As such, the policy π, µ are trivial as π(a1|x) = µ(a1|x) = 1,∀x. The
transition matrix is

Pπ =

(
0 1
1 0

)
.

With the above setup, consider any marginalized trace at (x1, a1), wx1,a1 ∈ W (r, p, π, µ, γ). Note that wx1,a1 ∈ R2.
Let ct, t ≥ 1 be the non-Markovian step-wise trace starting from (x1, a1). Define the one-step Bellman errors ∆1 :=
r1 + γQ(x2, a1)−Q(x1, a1),∆2 := r2 + γQ(x1, a1)−Q(x2, a1).

The marginalized operator evaluated at (x1, a1) is

MwQ(x1, a1) = Q(x1, a1) +
(
1 + γ2 + γ4 + ...

)
wx1,a1
x1,a1∆1 +

(
γ + γ3 + γ5 + ...

)
wx2,a1
x1,a1∆2.

The step-wise operator is

RcQ(x1, a1) = Q(x1, a1) +
(
1 + γ2c1c2 + γ4c1c2c3c4 + ...

)
∆1 +

(
γc1 + γ3c1c2c3 + ...

)
∆2.

We can identify the following solution c to satisfy the equalityMwQ(x1, a1) = Rc(x1, a1).

c1 = 1, c2 =
A− 1

γ2
, c3 = B − γ − γ(A− 1), c4 = c5 = ... = 0,

where A =
(
1 + γ2 + γ4

)
wx1,a1(x1, a1), B =

(
γ + γ3 + γ5 + ...

)
wx1,a1(x2, a1). Note that the solution always exists

regardless of wx1,a1 . In a similar way, we can solve for non-Markovian traces for wx2,a1 as well. We conclude for any w,
there exists non-Markovian traces c such that fc→w(r, p, π, µ, γ)(c) = w for the above (r, p, π, µ, γ).

The above lemmas characterize the space of {Rc, c ∈ C(T )} relative to {Mw, w ∈ W(T )}. From Lemma A.3 we conclude
case (i) of the proposition; from Lemma A.4, we conclude the case (ii) of the proposition.

Proposition 4.1. Let τ be an integer-valued random time, such that P (τ = n) = (1− γ)γn,∀n ≥ 0. For any step-wise
trace coefficient ct, its equivalent TD weights w(x′, a′) is

wcx,a(x′, a′) = Eµ,τ [(Π1≤s≤τ cs) | xτ = x′, aτ = a′] .

Proof. The definition of wc could rewrite as

wcx,a(x′, a′) · dµx,a(x′, y′) = Eµ,τ [(Π1≤s≤τ I[xτ = x′, aτ = a′]]

As such, we expand the RHS of the above

wcx,a(x′, a′) · dµx,a(x′, y′) = Eµ,τ [(Π1≤s≤τ I[xτ = x′, aτ = a′]]

= Eµ,τ [(Π1≤s≤τ cs) | xτ = x′, aτ = a′]

× Pµ(x′τ = x′, aτ = a|x0 = x, a0 = a). (14)

Also note that dµx,a(x′, a′) := (1−γ)
∑
t≥0 γ

tPµ(xt = x′, at = a′|x0 = x, a0 = a) = Pµ(xτ = x′, aτ = a′|x0 = x, a0 =
a), which cancel on both sides of the equation. Hence we conclude the equality.

Corollary 4.2. Assume that both state transitions and rewards are deterministic. While having the same expectations, the
random-time based estimate for the marginalized operator has smaller variance compared to that of the multi-step operator,

V
[
M̂wc

τ Q(x, a)
]
≤ V

[
R̂cτQ(x, a)

]
.
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Proof. With Proposition 4.1, we have wc(xτ , aτ ) = Eµ,τ [(Π1≤s≤τ cs) | xτ , aτ ]. Further,

w(xτ , aτ )∆̂π
τ = Eµ,τ [(Π1≤s≤τ cs) | xτ , aτ ] ∆̂π

τ

= Eµ,τ [(Π1≤s≤τ cs)δ
π
τ | xτ , aτ ]

Note that since the transitions are deterministic ∆̂π
τ is a measurable function of (xτ , aτ ) and could be taken out of the

expectation. Then with the tower property of variance V [X] ≥ V [E [X | Y ]], by letting X = (Π1≤s≤τ cs)∆̂
π
τ and

Y = (xτ , aτ ) we conclude the result.

Proposition A.5. For any step-wise trace coefficient ct, its equivalent TD weights wc and dw
c

x,a := dµx,a � wcx,a,

dw
c

x,a = (1− γ)δx,a + γ(P π̃)T dw
c

x,a, (15)

where π̃(a|x) = π(a|x)c(x, a) and π̃(a|x) := µ(a|x)c(x, a) is a non-negative measure for any 0 ≤ c(x, a) ≤ π(a|x)
µ(a|x) .

Proof. We show the Bellman equation directly from the definition of dw
c

x,a(x′, a′). In the following, we always condition on
x0 = x, a0 = a inside expectations. For the simplicity of notations, we drop this conditioner by default. It is clear that by
construction,

dw
c

x,a(x′, a′) = (1− γ)Eµ

∑
t≥0

γt(Πt
s=1cs)I[xt = x′, at = a′]


We rewrite the above into the following

dw
c

x,a(x′, a′) = (1− γ)I[x0 = x′, a0 = a′] + Eµ

∑
t≥1

γt
(
Πt
s=1cs

)
I[xt = x′, at = a′]


= (1− γ)I[x0 = x′, a0 = a′] + γEµ

∑
u≥0

γu (Πu
s=1cs) cu+1I[xu+1 = x′, au+1 = a′]

 ,
where in the second equality we apply the transformation u = t − 1. Now, let hu := {x0 = x, a0, ...xu, au} denote the
sequence of random variables until time u. For each term in the summation, for any given u ≥ 0,

Eµ [γu(Πu
s=1cs)cu+1I[xu+1 = x′, au+1 = a′]] =

∑
y∈X ,b∈A

Eµ [γu(Πu
s=1cs)cu+1I[xu+1 = x′, au+1 = a′]I[xu = y, au = b]]

=
∑

y∈X ,b∈A

Eµ [Eµ [γu(Πu
s=1cs)cu+1I[xu+1 = x′, au+1 = a′]I[xu = y, au = b] | hu]]

=
∑

y∈X ,b∈A

Eµ
[
γu(Πu

s=1cs)I[xu = y, au = b]P π̃(xu, au, x
′, a′)

]
= Eµ

[
γu(Πu

s=1cs)I[xu = y, au = b]P π̃(y, b, x′, a′)
]
.

In the above, we have used the equality,

Eµ [cu+1I[xu+1 = x′, au+1 = a′] | hu] = Eµ [cu+1I[xu+1 = x′, au+1 = a′] | xu, au] = P π̃(xu, au, x
′, a′),

which derives from the definition of the transition matrix. Finally, we sum up over the time step k to yield the final fixed
point equation,

dw
c

x,a(x′, a′) = (1− γ)I[x0 = x′, a0 = a′] + γ
∑

y∈X ,b∈A

dw
c

x,a(y, b)P π̃(y, b, x′, a′).

By rewriting the above equation into the matrix form, we conclude the proof.
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Alternative proof by matrix notations. We can derive much simpler alternative proof with matrix notations. Let
dw

c ∈ R(X×A)×(X×A) be a matrix such that dw
c

(x, a, x′, a′) = dw
c

x,a(x′, a′). Also define the visitation distribution matrix
dµ = (1− γ)(I − γPµ)−1. Recall that from the proof of Proposition 3.2, in matrix form,

W = (I − γP cµ)−1/(I − γPµ)−1.

Then by construction,

dw
c

= (1− γ)W � dµ = (1− γ)(I − γP cµ)−1 = (1− γ)

∞∑
t=0

(γP cµ)t.

Then naturally, dw
c

satisfies the following Bellman equations,

dw
c

= (1− γ) + γP cµdw
c

.

When indexing the row at (x, a), we arrive at the desired result.

Proposition 5.2. For any sub-probability measure π̃, Let Tπ̃(x′, a′|x, a) := p(x′|x, a)π̃(a′|x′) be the one-step marginal
transition probability. Let T tπ̃(x′, a′|x, a) be the t-time composition of Tπ̃(·|x, a). Given a target state-action pair (x∗, a∗),
define the scoring function q(x, a, x∗, a∗) :=

∑
t≥0 γ

tT tπ̃(x, a|x∗, a∗). Then ifQT (x, a, x∗, a∗) = {±q(x, a, x∗, a∗)} ⊂ Q,
the following holds,

|wψ(x∗, a∗)− wcx,a(x∗, a∗)| ≤ maxq∈Q L(q, wψ)

dµx,a(x∗, a∗)
.

Proof. Define dψ := wψ�dµx,a. By construction of the objective L(q, wψ), we can rewrite the objective as an inner product,

L(q, wψ) = qT [(1− γ)δx,a + γ(P π̃)T dψ − dψ], (16)

where π̃(a|x) = µ(a|x)c(x, a) is a sub-probability measure. Per results in Proposition A.5, the objective satisfies the
following equation when the second argument is wc

L(q, wc) = 0.

Hence, we can rewrite Eqn (16) as the following

L(q, wψ) = L(q, wψ)− L(q, wc)

= qT [γ(P π̃)T − I](dψ − wc).

Rewriting the product of matrix and vectors into expectations,

L(q, wψ) = E(x′,a;)∼dµx,a [(wψ(x′, a′)− w(x′, a′))(Πq)(x′, a′)] ,

where (Πq)(x′, a′) := γEa′′∼π̃(·|x′′) [q(x′′, a′′)]−q(x′, a′) where x′′ ∼ p(·|x′, a′). Interestingly, here (Πq)(x′, a′) could be
interpreted as a reward such that if policy π̃ is executed, the Q-function would be q(x′, a′). Following the techniques of (Liu
et al., 2018), it is straightforward to show that when q(x′, a′, x∗, a∗) =

∑
t≥0 γ

tT tπ̃(x′, a′|x, a), we have (Πq)(x′, a′) =

δ(x′ = x∗, a′ = a∗). Here, importantly, because π̃ is a sub-probability measure, T tπ̃ exists and
∑
t≥0 T

t
π̃ converges. As

a result, with this choice of q(x∗, a∗), we have L(±q(x∗, a∗), wψ) = ±(wψ(x∗, a∗) − w(x∗, a∗)). Then it follows that
when {±q(x′, a′, x∗, a∗),∀(x, a)} ∈ Q, the error |wψ(x∗, a∗)− w(x∗, a∗)| is upper bounded by maxq∈Q L(q, wψ).

Proposition 5.3. Assume that Qb = {±δ(x = x∗, a = a∗),∀(x∗, a∗)} ⊂ Q. When ct = π(at|xt)
µ(at|xt) and wc = wπ,µ, the

contraction rate ofMwψ is upper bounded as ηwψx,a ≤ maxq∈Q L(q, wψ).
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Proof. Assume Qb ⊂ Q. Based on Eqn (16), we deduce the following

max
q∈Q

L(q, wψ) = max
q∈Q

qT [(1− γ)δx,a + γ(Pπ)Twψ − wψ] =
∑
x′,a′

∣∣(1− γ)δx,a + γ(Pπ)Twψ − wψ
∣∣ (x′, a′) = ηwψ .

Here, the maximizer q∗ ∈ Qb is

q∗(x, a) = sign
(
(1− γ)δx,a + γ(Pπ)Twψ − wψ]

)
,

where sign(x) is the element-wise sign function.

Proposition 4.3. The following holds for the sequence of values produced by relaxed LPs,

‖Qt+1 −Qπ‖∞ ≤ η ‖Qt −Q
π‖∞ .

Proof. Let Qt(x, a) be the set of LP objectives at iteration t, and assign them to the objective coefficients of LPs at
iteration t + 1. This operation is defined through an equivalent operator R. Recall that we abuse notations and denote
Qt+1, Qt ∈ RX×A as vector Q-functions. Let d∗ be the optimal solution to the LP(t)(x, a), then by construction

Qt+1(x, a) = δTx,aQt + (1− γ)−1(d∗)T (R+ γPπQt −Qt).

Then recall that the constraints in Eqn (9) imply that∥∥(1− γ)δx,a + γ(Pπ)T d∗ − d∗
∥∥
1
≤ (1− γ)η.

This implies that the iteration Qt+1 ← Qt ≡ δTx,aQt + (1− γ)−1(d∗)T (R+ γPπQt −Qt) is contractive. In addition, the
fixed point of this process is Qπ . We then conclude the desired result.

Discussion on more general results. The above proof relies on the important fact that the feasible set defined in LP(x, a)
in Eqn (9) corresponds to a set of d such that the iteration process is contractive. Hence, if we choose any arbitrary element
d̃ ∈ Dx,a, and define

Qt+1 ← δTx,aQt + (1− γ)−1(d̃)T (R+ γPπQt −Qt),

we still have the contraction ‖Qt+1 −Qπ‖∞ ≤ η ‖Qt −Qπ‖∞.

Corollary 4.4. For any (x, a), let w∗x,a = d∗

dµx,a
∈ RX×A and d∗ is the optimal solution to LP(t)(x, a), then η

w∗x,a
x,a ≤ η and

Qt+1(x, a) =Mw∗x,aQt(x, a).

Proof. By construction, the following is true

MwQ = δTx,aQt + (1− γ)−1dT (R+ γPπQt −Qt),

where d = w � dµx,a. Recall also by construction,

Qt+1 ← δTx,aQt + (1− γ)−1(d∗)T (R+ γPπQt −Qt).

Combining the above two equations directly implies the desired result.

B. Relations between different stochastic estimators
In Figure 4, we show relations between stochastic estimates to different operators. Blue arrows represent marginalization
over the random time variables τ ; the red arrow represents marginalization over the random state-action pair (xτ , aτ ). Under
suitable conditions, the directions of the arrows indicate potential variance reductions. We see that under suitable conditions
outlined in Proposition 4.1, we have V[Mwc

τ ] ≥ V[Mwc ], V[Rcτ ] ≥ V[Rc] and V[Rcτ ] ≥ V[Mwc

τ ]. However, it is not clear
what is the ordering of the variance betweenRc andMwc .
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Figure 4. Visualization of relations between stochastic estimates to different operators. Blue arrows represent marginalization over the
random time variables τ ; the red arrow represents marginalization over the random state-action pair (xτ , aτ ). Under suitable conditions,
the directions of the arrows indicate potential variance reductions.

C. Marginalized V-trace operator
The V-trace operator (Espeholt et al., 2018) is defined for value functions V ∈ R|X |. Given a target policy π and a behavior
policy µ, the operatorRc,ρ is parameterized by step-wise trace coefficients c(x, a) and ρ(x, a). In particular,

Rc,ρV (x) := V (x) + Eµ

∑
t≥0

γt(c0...ct−1)ρt∆t

∣∣∣∣∣∣ x0 = x

 , (17)

where ∆t = r̄t + γEx′∼p(·|xt,a),a∼µ(·|xt) [V (xt′)] − V (xt) is the TD-error at step t. Here, ρt determines the fixed point
of the operator, while ρt, ct jointly determine the contraction rate. Consider defining a marginalized V-trace operator
Mw,ρV (x0) as below

Mw,ρV (x) := V (x) + (1− γ)−1Ex′∼dµx,a [wx(x′)ρ(x′, a′)∆(x′, a′)] , (18)

where dµx(x) := (1 − γ)
∑
t≥0 Pµ(xt = x′|x0 = x) is the discounted visitation distribution under µ. here, w(x′) is

state-dependent, ρ(x′, a′) is state-action dependent and ∆(x′, a′) := r̄(x′, a′) + γEx′′∼p(·|x′,a′),a′∼µ(·|x′) [V (x′′)]− V (x′).

C.1. State-marginalized V-trace operator.
Consider setting ρ(x, a) and the V-trace step-wise traces. Define TD weights wcx(x′), which is computed as

wcx(x′) := Eµ

∑
t≥0

γt(c0...ct−1)I[xt = x′]

∣∣∣∣∣∣ x0 = x

 . (19)

It is then straightforward to show that the multi-step operator and the marginalized operator are equivalent in expectation
Rc,ρ ≡Mw,ρ. The trace coefficient is obtained via conditional expectation as follows.

Proposition C.1. Let τ be an integer-valued random time, such that P (τ = n) = (1− γ)γn,∀n ≥ 0. For V-trace, given
any step-wise trace coefficient ct, its equivalent TD weights w(x′) is

wcx(x′) = Eµ,τ [(Π1≤s≤τ−1cs) | xτ = x′, x0 = x] .

Now define dw
c

x (x′) := wcx(x′)dµx(x′). It can be shown that dw
c

x (x′) ∈ R|X | also satisfy fixed point equations.

Proposition C.2. The following Bellman equation holds for the step-wise trace coefficient ct and dw
c

x,a(x′)

dw
c

x (x′) = (1− γ)δ(x′ = x) + γ
∑
x′,a′

dw
c

x (x′)c(x′, a′)µ(a′|x′)p(x′′|x′, a′),

where δ is the Dirac function. Let P π̃ ∈ R|X |×|X| be a transition matrix such that P π̃(x, a) =
∑
a′ p(y|x′, a′)π̃(a′|x′) =∑

a p(y|x′, a′)µ(a′|x′)c(x′, a′). Then equivalently, in matrix form,

dw
c

x = (1− γ)δx + γ(P π̃)T dw
c

x . (20)
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Based on the Bellman equation in Eqn (20), it is possible to estimate wc(x) from the behavior data under µ. In particular,
given a starting state pair x, let wψ(x′) ≈ dwcx (x′) ∈ R|X | be a parameteric function used for estimating dw

c

x (x′). With a
critic function q ∈ Q ⊂ RX , formulate the objective

L(q, wψ) := qT [(1− γ)δx + γ(P π̃)Twψ − wψ]

= (1− γ)q(x) + E(y)∼dµa [∆(y)] . (21)

Here, the TD-error ∆(y) :=
(
Eb∼π(·|y),y′∼p(·|y,b) [q(y′)c(y, b)]− q(y)

)
wψ(y). By solving a saddle point optimization

problem of the above objective minwψ maxq L(q, wψ), we find wψ ≈ dw
c

x .

D. Marginalized hindsight credit assignment
Hindsight credit assignment (HCA) (Harutyunyan et al., 2019) proposes novel methods for evaluating Q-functions and value
functions in an on-policy context. In the following, we make use of a few notations from (Harutyunyan et al., 2019). Let
PT (π,x) denote the probability measure conditional on initial state x0 = x under π. Similar definitions hold for PT (π,x,a),
where we further condition on the initial action a0 = a. The following holds (Harutyunyan et al., 2019),

Qπ(x, a) = r(x, a) + Eτ∼T (π,x)

∑
t≥1

γt
ht(a|x, xt)
π(a|x)

rt

 , (22)

where ht(a|x, a) := PT (π,x)(a0 = a|x0 = x, xt = y) denote the posterior distribution of having taken action a0 = a, given
that the agent starts from state x0 = x and is in state xt = y at step k. Intuitively, the ratio ht(a|x,a)

π(a|x) measures the statistical
relevance of how taking action a0 = a ends up in state xt = y at step t. If the event xt = y and a0 = a are statistically
independent, then the ratio is 1. However, if a0 = a contributes significantly to the event xt = y, then ratio > 1 and one
assigns more weights to the corresponding reward rt when estimating the Q-function.

To remove the time dependency, define

hβ(a|x, a) = PT (π,x,a)(a0 = a|x0 = x, xτ = x, τ ∼ Geometric(β)) :=

∑
t≥1 γ

tPT (π,x)(a0 = a, x0 = x, xt = y)∑
t≥1 γ

tPT (π,x)(x0 = x, xt = y)
,

where τ ∼ Geometric(β) means P (τ = n) ∝ βn for n ≥ 1. Note that different from prior definitions of the geometric
distribution, here we require the random time τ ≥ 1. We will discuss later. Then it is shown in (Harutyunyan et al., 2019)
that

Qπ(x, a) = r(x, a) + Eτ∼T (π,x)

∑
t≥1

γt
hγ(a|x, xt)
π(a|x)

rt

 . (23)

D.1. Conditional IS view of HCA.
By (Ma and Perre-Luc, 2020), consider a non-stationary policy πa such that at starting state x0 = x, it always takes action a.
Then the Q-function Qπ(x, a) could be interpreted as the value function V π

a

(x) := Eπa
[∑

t≥0 γ
trt

∣∣∣ x0 = x
]
. If we take

π as the behavior policy and πa the target policy, then

Qπ(x, a) = V π
a

(x) = Eπ

∑
t≥0

γt
(

Πt
s=0

πa(as|xs)
π(as|xs)

)
rt

∣∣∣∣∣∣ x0 = x

 = r(x, a) + Eπ

∑
t≥1

γt
(

Πt
s=0

πa(as|xs)
π(as|xs)

)
rt

∣∣∣∣∣∣ x0 = x


= r(x, a) +

γ

1− γ
Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

)
rτ

∣∣∣∣ x0 = x

]
, (24)

The following is true.

Proposition D.1. Let τ be an integer-valued random time, such that P (τ = t) = (1− γ)γt,∀t ≥ 1. Then we have

hγ(a|x, a)

π(a|x)
= Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

) ∣∣∣∣ x0 = x, xτ = y

]
.
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Proof. By definition of the conditional expectation, we can rewrite the RHS as

Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

) ∣∣∣∣ x0 = x, xτ = y

]
=

Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

)
I [x0 = x, xτ = y]

]
Pπ(x0 = x, xτ = y)

.

First, consider the numerator. By definition, πa(as|xs) = π(as|xs),∀s ≥ 1. This implies that the numerator evaluates to

Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

)
I [x0 = x, xτ = y]

]
= Eπ,τ∼Geometric(γ)

[
I[a0 = a]

π(a|x0)
I [x0 = x, xτ = y]

]
=

1− γ
π(a|x)

·
∑
t≥1

γtPπ(a0 = a, , x0 = x, xt = y).

By definition, the denominator evaluates to

Pπ(x0 = x, xτ = y) = (1− γ)
∑
t≥1

γtPπ(x0 = x, xt = y).

Finally, recall that by definition,

hγ(a|x, a) =

∑
t≥1 γ

tPπ(a0 = x, , x0 = x, xt = y)∑
t≥1 γ

tPπ(x0 = x, xt = y)
,

we conclude the proof.

Now, we intend to express Qπ(x, a) as a function of the time-independent factor hγ(a|x, a). The following lemma is true
(see also alternative derivation from (Harutyunyan et al., 2019).

Proposition D.2. The Q-function Qπ(x, a) could be expressed as a function of hγ(a|x, a) as

Qπ(x, a) = r(x, a) + EP (T (π,x))

∑
t≥1

hγ(a|x, xt)
π(a|x)

rt

 .
Proof. Taking results from Proposition D.1, we can rewrite Eqn (24) as

Qπ(x, a) = r(x, a) +
γ

1− γ
Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

)
rτ

∣∣∣∣ x0 = x

]
= r(x, a) +

γ

1− γ
Eπ,τ∼Geometric(γ)

[
Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

)
r(xτ , aτ )

∣∣∣∣ x0 = x, xτ , aτ

] ∣∣∣∣ x0 = x

]
= r(x, a) +

γ

1− γ
Eπ,τ∼Geometric(γ)

[
r(xτ , aτ ) · Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

) ∣∣∣∣ x0 = x, xτ , aτ

] ∣∣∣∣ x0 = x

]
= r(x, a) +

γ

1− γ
Eπ,τ∼Geometric(γ)

[
r(xτ , aτ ) · Eπ,τ∼Geometric(γ)

[(
Πτ
s=0

πa(as|xs)
π(as|xs)

) ∣∣∣∣ x0 = x, xτ

] ∣∣∣∣ x0 = x

]
= r(x, a) +

γ

1− γ
Eπ,τ∼Geometric(γ)

[
hγ(a|x, xτ )

π(a|x)
rτ

∣∣∣∣ x0 = x

]

= r(x, a) + Eπ

∑
t≥1

hγ(a|x, xt)
π(a|x)

rt

∣∣∣∣∣∣ x0 = x

 ≡ r(x, a) + EP (T (π,x))

∑
t≥1

hγ(a|x, xt)
π(a|x)

rt

 .

In the derivation above, we applied several facts: the reward rτ = r(xτ , aτ ) is a function of (xτ , aτ ) only and can be
taken out of the conditional expectation; when τ ≥ 1, conditioning on xτ , aτ is equivalent to conditioning on xτ . In the
last equality, we marginalize out the random variable τ , which arrives at the result in the HCA estimator without time
dependency Eqn (23).
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D.2. Marginalized estimation for HCA
Intuitively, the hindsight ratio hγ(a|x,a)

π(a|x) is conceptually equivalent to the marginalized traces wcx,a for the marginalized
Retrace operators, or the state-conditional marginalized traces wcx for the marginalized V-trace operators, as they could
all be interpreted as conditional expectations of multiplicative step-wise traces ct. Note that for Retrace, by defining
dwx,a(x′, a′) = w(x′, a′)dµx,a(x′, a′) (or for V-trace, by defining dwx (x′) = w(x′)dµx(x)), i.e. multiplying the ratio by the
marginalized sampling distribution, the resulting quantity dwx,a(x′, a′) (or dwx,a(x′)) satisfies fixed point equations. It turns out

that a similar result holds for HCA. Define dhca
x,a(y) :=

hγ(a|x,a)
π(a|x) ·d

π
x,a(y; t ≥ 1), where dµx,a(y; t ≥ 1) :=

∑
k≥1 γ

kPπ(xk =

y|x0 = x, a0 = a), i.e. the unnormalized discounted visitation distribution starting with state x0 = x, a0 = a after step
t = 1.

Proposition D.3. The following Bellman equation holds for dhca
x,a(y)

dhca
x,a(y) = p(y|x, a) + γ

∑
x

dhca(z)π(a|z)p(y|z, a),

Let Pπ ∈ R|X |×|X| be a transition matrix such that Pπ(x, y) =
∑
a p(y|x, a)π(a|x). Then equivalently, in matrix form,

dhca = px,a + γ(Pπ)T dhca, (25)

where px,a ∈ R|X | is the transition vector such that px,a[y] = p(y|x, a).

Proof. It can be verified that dhca(y) :=
∑
t≥1 γ

tPπ(xt = y|x0 = x, a0 = a). Then we can rewrite this as

dhca(y) :=
∑
t≥1

γtPπ(xt = y|x0 = x, a0 = a) = p(x1 = y|x0 = x, a0 = a) +
∑
t≥2

γtPπ(xt = y|x0 = x, a0 = a)

= p(x1 = y|x0 = x, a0 = a) + γ
∑
u≥1

γuPπ(xu+1 = y|x0 = x, a0 = a)

It is possible to decompose the conditional probability Pπ(xu+1 = y|x0 = x, a0 = a), for all u ≥ 1,

Pπ(xu+1 = y|x0 = x, a0 = a) =
∑
z

Pπ(xu+1 = y, xu = z|x0 = x, a0 = a)

=
∑
z

Pπ(xu+1 = y|xu = z, x0 = x, a0 = a)Pπ(xu = z|x0 = x, a0 = a)

=
∑
z

Pπ(z, y)Pπ(xu = z|x0 = x, a0 = a).

Summing up the index u ≥ 1 and rewriting the result in matrix form, we get Eqn (25).

With the Bellman equation in Eqn (25), it is possible to estimate the ratio hγ(a|x,a)
π(a|x) with techniques developed for TD

weights. In particular, given a starting state-action pair (x, a), let wψ(y) ≈ dhca
x,a(y) ∈ R|X | be a parameteric function used

for estimating dhca
x,a(y). With a critic function q ∈ Q ⊂ R|X |, formulate the objective

L(q, wψ) := qT [px,a + γ(Pπ)Twψ − wψ]

= Ey∼p(·|x,a) [q(y)] + Ey∼dπx,a(·;t≥1) [∆(y)] . (26)

Here, the TD-error ∆(y) :=
(
Eb∼π(·|y),y′∼p(·|y,b) [q(y′)]− q(y)

)
wψ(y). By solving a saddle point optimization problem

of the above objective minwψ maxq L(q, wψ), we find wψ ≈ dhca
x,a.

Remark on t ≥ 1 in Eqn (22). Note that importantly, all geometric distributions defined in this section are conditional on
t ≥ 1. From a technical standpoint, this is necessary because the policy πa is stationary except at the first step t = 0. In
order to establish Bellman equation, the resulting policy needs to be stationary. By conditioning on t ≥ 1, we restore the
stationarity of the target policy πa.
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E. Multi-step RL algorithms
Motivated by previous theoretical insights, we seek a practical algorithm which could combine the benefits of multi-step
TD-learning and estimations of TD weights.

E.1. Multi-step RL algorithms with TD weights
We focus on the actor-critic setup where the algorithm maintains a target policy π and a Q-function critic Qθ(x, a). Here,
the policy π could be either parameterized π = πφ or defined by the Q-function, e.g. the greedy policy. The algorithm
collects data with behavior policy µ.

To estimate TD weights, we parameterize the scoring function qη(x, a;x0, a0) and estimator wψ(x, a;x0, a0), both taking
as inputs the starting state-action pair (x0, a0) and the target pair (x, a). For simplicity of notations, we omit the dependency
on (x0, a0). Given a trajectory (xt, at, rt)

∞
t=0 ∼ µ, we approximate the loss function in Eqn (10) with stochastic samples,

L̂(η, ψ) := (1− γ)qη(x0, a0) + (1− γ)

∞∑
t=0

γt∆̂t, (27)

where ∆̂t = γEπ [qη(xt+1, ·)wψ(xt+1, ·)] − qη(xt, at)wψ(xt, at). Following prior methods on scaling saddle-point
optimization to neural networks (e.g. (Nachum et al., 2019a)), we approximate the optimal solution to Eqn (10) via
stochastic gradient descents (ascents) on the empirical loss η ← η + α∇ηL̂(η, ψ), ψ ← ψ − α∇ψL̂(η, ψ).

At policy evaluation stage, we construct the Q-function targets withMwQ(x0, a0). From the trajectory (xt, at, rt)
∞
t=0,

compute the following Q-function target

MwQ(x0, a0) := Qθ−(x0, a0) + (1− γ)−1
∞∑
t=0

γtwψ(xt, at)∆̂t, (28)

where ∆̂t = rt + γEπ [Qθ−(xt+1, ·)] − Qθ−(xt, at). Then the Q-function is optimized by minimizing (Qθ(x0, a0) −
Mw(x0, a0))2.

Algorithm 1 Multi-step RL with TD weights
Require: policy π, Q-function critic Qθ(x, a), density estimator wψ(x), critic qη and learning rate α ≥ 0

while not converged do
1. Collect data (xt, at, rt)

∞
t=0 ∼ µ and save to the buffer D

2. Construct the empirical loss for marginalized estimation based on Eqn (27). Optimize η, ψ by alternating gradient
descents (ascents): η ← η + α∇ηL̂(η, ψ), ψ ← ψ − α∇ψL̂(η, ψ).
3. Construct Q-function targets based on Eqn (28). Optimize θ: θ ← θ − α∇θ(Qθ −MwQ(x0, a0))2.
4. Improve the policy by either policy gradient or being greedy with respect to the new Q-function Qθ(x, a).
5. Update target network θ− ← θ.

end while

F. Fenchel-duality based approach to estimating TD weights
In this section, we introduce Fenchel-duality based approaches to off-policy evaluation (Nachum et al., 2019a; Zhang et al.,
2020; Nachum and Dai, 2020). While different in details, a common feature of this family of work is to convert the off-policy
evaluation problem into a convex-concave optimization problem. Here, we focus on the initial formulation Dualdice. We
start by introducing this algorithm and then discuss how to extend this framework to estimate TD weights.

F.1. Background on Dualdice
Following (Nachum et al., 2019a), consider the following optimization problem with argument w ∈ RX×A

J(w) =
1

2
E(x′,a′)∼dµx,a

[
w2(x′, a′)

]
− E(x′,a′)∼dπx,a [w(x′, a′)] .

This objective is minimized at w(x′, a′) =
dµx,a(x

′,a′)

dπx,a(x
′,a′) . Note that the original derivation from (Nachum et al., 2019a) focuses

on the discounted visitation distribution dµx(x′)) without conditioning on the initial action a0 as in our case dµx,a(x′, a′),
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because they focus on policy evaluation of a single starting state x. However, it is straightforward to extend their results. By
Fenchel duality, one could further show that the above optimization could be transformed into the following saddle-point
problem with v, ψ ∈ RX×A,

min
v

max
ψ

Ex′,a′∼dµx,a,x′′∼p(·|x,a),a′′∼π(·|x′)
[
(v(x′, a′)− γv(x′′, a′′))ψ(x′, a′)− ψ2(x′, a′)

2

]
− (1− γ)v(x, a). (29)

The main motivation for proposing the saddle-point optimization problem is to bypass the double sampling issue (Baird,
1995). The saddle point of Eqn (29) is (v∗, ψ∗) and ψ∗(x′, a′) =

dπx,a(x
′,a′)

dµx,a(x′,a′)
. See (Nachum et al., 2019a) for details

F.2. Fenchel duality-based estimation for TD weights
Now we introduce the extension to TD weights. Given a step-wise trace coefficient c(x, a) and its equivalent TD weights
wc(x, a), recall that we define dw

c

x,a(x′, a′) := wc(x′, a′) · dµx,a(x′, a′). Consider the following objective, whose optimal
solution is wcx,a(x′, a′).

arg min
w
J(w) =

1

2
E(x′,a′)∼dµx,a

[
w2(x′, a′)

]
− E(x′,a′)∼dwcx,a [w(x′, a′)] . (30)

First, we define π̃(a|x) := c(x, a)µ(a|x). We assume that c(x, a) is such that π̃(·|x) is a sub-probability vector. this is
satisfied in the context of general Retrace (c(x, a) ≤ π(a|x)

µ(a|x) (Munos et al., 2016)).

Now, define variables v(x′, a′) such that v(x′, a′) = w(x′, a′) + γEx′′∼p(·|x′,a′),a′′∼π̃(·|x′′) [v(x′′, a′′)]. Note that such a
quantity v(x′, a′) exists and is unique. To see why, it is straightforward to verify that v(x′, a′) is the fixed point of the
operator T π̃, defined as T π̃Q(x′, a′) := w(x′, a′) + Ex′′∼p(·|x′,a′),a′′∼π̃(·|x′′) [Q(x′′, a′′)]. Because γ < 1 and π̃(·|x′′) is
a sub-probability vector, this operator is contractive and has a unique fixed point. As a result, starting from w(x′, a′), by
applying (T π̃)kw(x′, a′) and let k →∞ we obtain v(x′, a′). In vector notations, the second term of Eqn (30) writes

(dw
c

x,a)Tw = (dw
c

x,a)T (v − γP π̃v) = (dw
c

x,a − γ(P π̃)T dw
c

x,a)Tv = (1− γ)δTx,av = (1− γ)v(x, a),

where the second to last equality stems from the Bellman equation of dw
c

x,a in Eqn (15).

The integrand of the first term can be rewritten as
(
(v − γP π̃v)(x′, a′)

)2
, but directly plugging in the transition matrix P π̃

results in the double-sampling problem (Baird, 1995). To bypass this, we follow the exact same procedure as (Nachum et al.,
2019a) and propose the following saddle-point optimization problem.

min
v

max
ψ

Ex′,a′∼dµx,a,x′′∼p(·|x′,a′),a′′∼π̃(·|x′′)
[
(v(x′, a′)− γv(x′′, a′′))ψ(x′, a′)− ψ2(x′, a′)

2

]
− (1− γ)v(x, a). (31)

The saddle point solution (v∗, ψ∗) will be such that ψ∗(x′, a′) = wcx,a(x′, a′). Note that the only difference between
Eqn (31) and Eqn (29) is the target policy. Alternatively, one could interpret the new objective in Eqn (31) as executing the
original dualdice algorithm but with the behavior policy π̃, which is in general a sub-probability policy.

G. Experiment
G.1. Details on tabular estimations of TD weights
We adopt tabular representations for wψ for both the chain MDP and Open World MDP. For tabular MDPs with |X | states
and |A| actions, we represent wψ as a |X ||A|× |X ||A| matrix. When both the critic q ∈ Q and the estimates wψ are tabular
represented, there is no need for solving the saddle point optimization. In fact, one can directly derive solutions to the
estimates given off-policy samples. We summarize the algorithmic procedure for estimating TD weights in Algorithm 2.

Given a trajectory (xt, at, rt)
∞
t=0, Algorithm 2 specifies how to construct empirical estimates ŵ and update the table wx0,a0 ,

i.e., the TD weights with initial state (x0, a0). However, all state-action pairs along the trajectory could be seen as initial
states. To get updates for all such pairs, we need to loop through initial pairs along the trajectory.

Remarks. We can interpret Algorithm 2 as a direct implementation of the Monte-Carlo estimation to the TD weights as
defined in Eqn (6). This bears close resemblance to marginalized estimation techniques adopted in (van Hasselt et al., 2020).
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Algorithm 2 Tabular estimation of TD weights
Require: Table w of size |X ||A| × |X ||A| initialized with zeros

while not converged do
1. Collect a trajectory (xt, at, rt)

∞
t=0 ∼ µ

2. Construct cumulative step-wise traces along the trajectory: define Ĉ(xt, at) := (1− γ)γt (Π1≤s≤tc(xs, as)) for all
t ≥ 0.
3. Accumulate cumulative step-wise traces per state-action:

ŵ(x, a) :=

∑
t≥0 Ĉ(xt, at)I[xt = x′, at = a′]∑

t≥0 I[xt = x, at = a]
,∀(x, a).

If the denominator is zero, define the ratio to be zero.
4. Update the estimate ŵ(x, a) and set wx0,a0(x, a)← (1− α)wx0,a0(x, a) + αŵ(x, a) for all (x, a) with α = 0.1.

end while

G.2. Additional experiment results
G.2.1. CHAIN MDP
Details on Q-function estimation. At each iteration t, the agent collects N = 1 trajectory (xt, at, rt)

∞
t=0. The agent

maintains a Q-function Q(t)(x, a). Along the trajectory, we use an operator baseline to generate estimates Q̂(xt, at). Then
the Q-function is updated as Q(t+1)(xt, at) ← (1 − α)Q(t)(xt, at) + αQ̂(xt, at) with α = 0.1. The relative errors in

Figure 4 are computed as
∑
a
|Q(t)(x0,a)−Qπ(x0,a)|

Qπ(x0,a)
, i.e., an average measure of prediction error at the initial state x0 (the

leftmost state of the chain). Here, Qπ(x, a) is computed analytically from the MDP.

G.2.2. OPEN WORLD

Visualization of TD weights. In Figure 5, we visualize the TD weights learned by tabular representations. Recall that in
general, wψ ≈ wc is a matrix – it takes two pairs of state-action, (x, a) and (x′, a′). Here (x, a) is the initial state-action pair
while (x′, a′) is the typical argument. In the four subplots of Figure 5, we each fix the initial location (x, a) and visualize
TD weights as a function of (x′, a′) as heat maps.

Overall, we see that the learned TD weights reflect the intuition of correct credit assignment. In Figure 5(d), where the
initial state is located near the terminal state (bottom-right), it assigns low weights to most state-action pairs except near the
bottom-right corner. In this case, the intuition is that Bellman errors at state-action pairs far from the bottom right should
contribute much less to the estimation on average, because the random policy µ has a small chance of visiting them.

(a) Top left (b) Top right (c) Bottom left (d) Bottom right

Figure 5. Visualization of TD weights in the open world problem. All four plots show the trace estimation with different starting state,
located at the top left, top right, bottom left and bottom right of the square. The trace for a state is the average of the TD weights for all
actions at the state. Recall that given an initial state, the TD weights are a function of future states, which spans the entire state space.

Results on policy optimization. We also consider the setup of a full off-policy optimization algorithm: policy iteration
(PI): the behavior policy µ is always uniformly random, the target policy π(0) is initialized as random. At iteration i, the
new policy is computed as π(i+1) = (1− α)π(i) + απtarget where πtarget is the greedy policy with respect to the Q-function
estimate Q̂ at iteration i. In Figure 6(a), we carry out soft PI by setting α = 0.1; and in Figure 6(b), hard PI by setting α = 1.
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(a) Soft PI α = 0.1 (b) Hard PI α = 1

Figure 6. Comparison of RL algorithms based on baseline operators. Each plot is averaged over 50 runs. The x-axis shows the number of
iterations and y-axis shows the performance of algorithms.

To evaluate the performance, we compare the average returns starting from uniformly random sampled states, estimated via
MC estimates. For the marginalized operators, the performance gains in the one-shot off-policy evaluation seem to carry
over to the downstream optimization; however, this is not the case for Retrace. where it obtains a similar performance as the
one-step operator for the soft PI; for the hard PI, because π(i), i ≥ 1 are greedy policies, it is likely to cut traces quickly. In
this case, Retrace does not seem to retain advantages over the one-step operator and slow down the optimization.

G.3. Further details on deep RL experiments
Benchmarks. For the deep RL implementations of the algorithms, we focus on continuous control tasks (Brockman
et al., 2016; Tassa et al., 2018), with various simulation engines, such as MuJoCo (Todorov et al., 2012) and Bullet physics
(Coumans, 2015). These benchmarks generally consist of locomotion tasks defined with robotics systems, with state space
X the sensory inputs such as velocities and joints, and A the position or toeque controls. See documentations such as (Tassa
et al., 2018) for details. In our experiments, we use (D) to stand for DeepMind control suite (Tassa et al., 2018) and (B) to
stand for bullet physics (Coumans, 2015).

Algorithms. We consider twin-delayed deep deterministic policy gradient (TD3) (Fujimoto et al., 2018) as the baseline
algorithm. By default, the algorithm maintains a deterministic policy πθ(x) and Q-function critic Qθ(x, a). The policy
is updated by the gradients ∇θQφ(x, πθ(x)). The critic is updated by regression against Q-function targets, such that
Qφ ≈ Qπ. Different algorithms vary in ohw the Q-function targets are defined. In general, they are defined by stochastic
estimates of the evaluation operator RQ(x, a). For example, the vanilla TD3 constructs the target as the one-step target
Qtarget(x, a) = r(x, a) + γQφ(x′, πθ(x

′)). TD3 also introduces a set of techniques, such as double Q-learning (Hasselt,
2010; Van Hasselt et al., 2016) and target networks (Mnih et al., 2015) to stabilize updates.

Per Algorithm 1, marginalized operators also need a density estimator wψ and a discriminator qη . They are trained via the
objective defined in Eqn (10),

min
ψ

max
η

L(qη, wψ) = (1− γ)q(x, a) + E(x′,a′)∼dµx,a,x′′∼p(·|x′,a′) [δ(x′, a′, x′′)] .,

where data (x′, a′) ∼ dµx,a, x′′ ∼ p(·|x′, a′) are equivalently sampled as tuples (x′, a′, x′′) from the replay buffer. We can
construct Qtarget(x, a) =MwψQ(x, a). Parameters ψ and η are optimized with alternating gradient descents (ascents). See
Appendix E for further algorithmic details.

Baseline multi-step algorithm. We implement a variant of Retrace (Munos et al., 2016) as the baseline multi-step
algorithm. Such algorithms start with a trajectory (xt, rt, at)

∞
t=0 starting from (x, a) such that x0 = x, a0 = a, Q-function

targets are computed recursively

Q̂i = ri + γQφ−(xi+1, πθ−(xi+1)) + γci

(
Q̂i+1 − Q̃i+1)

)
. (32)

Here, parameters φ−, θ− are delayed copies of the parameters φ, θ (Mnih et al., 2015). The coefficients c(x, a) =

λ ·min{1, π(a|x)µ(a|x)}. By Retrace, the Q-function Q̃i+1 = Q(xi+1, ai+1), which we find to not work stably in practice. Instead,

we use Q̃i+1 = Qφ−(xi+1, πθ−(xi+1)). Throughout the experiments, we use λ = 0.7 for the multi-step algorithms.
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Implementation details and other hyper-parameters. All implementations are built on SpinningUp (Achiam, 2018).
Please refer to the code base for all missing details on network architecture and hyper-parameters.

Architecture and hyper-parameters. All policy networks πθ, Q-function networks Qφ, discirminator qη and estimator
wψ share the same torso networks. After the input layer, they have 2 layers of hidden units each of size 256. The inputs to
the policy network πθ are only the state variables x, while for all other networks are the concatenated state-action variables
[x, a]. The discriminator output is squashed between [−1, 1] via tanh(x) activation; the estimator wψ output is transformed
by f(x) = log(1 + exp(x)) to ensure that it is strictly non-negative. Finally, the density estimator wψ is transformed across

batch w̃(xi, ai) = (w(xi,ai))
T∑

j(w(xj ,aj))
T to ensure stability, where T = 0.1.

All networks are trained with sub-sampling of mini-batches from a replay buffer. Each mini-batch is of size 100. All
networks are trained with Adam (Kingma and Ba, 2014) optimizers with learning rates 10−3 except for the estimator, where
the learning rate is 10−4.

G.4. Limitation of deep RL implementations
We discuss some limitations when combining marginalized operators with multi-step deep RL algorithms: training the
density ratio estimator wψ usually introduces computational overhead and potential instability to the overall algorithm. In
large-scale distributed agents (see e.g., (Espeholt et al., 2018; Kapturowski et al., 2018)), where the data throughput is large,
it might not be worthwhile to incur the bias due to the marginalized estimation. It is of interest to further investigate how
marginalized estimations can scale to such applications.


