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Abstract
We consider reinforcement learning (RL) in
episodic Markov decision processes (MDPs)
with linear function approximation under drift-
ing environment. Specifically, both the reward
and state transition functions can evolve over
time, constrained so their total variations do not
exceed a given variation budget. We first de-
velop LSVI-UCB-Restart algorithm, an op-
timistic modification of least-squares value itera-
tion combined with periodic restart, and bound
its dynamic regret when variation budgets are
known. We then propose a parameter-free algo-
rithm that works without knowing the variation
budgets, Ada-LSVI-UCB-Restart, but with
a slightly worse dynamic regret bound. We also
derive the first minimax dynamic regret lower
bound for nonstationary linear MDPs to show
our proposed algorithms are near-optimal. As a
byproduct, we establish a minimax regret lower
bound for linear MDPs, which was unsolved
by Jin et al. (2020).

1. Introduction
Reinforcement learning (RL) is a core control problem in
which an agent sequentially interacts with an unknown en-
vironment to maximize its cumulative reward (Sutton &
Barto, 2018). RL finds enormous applications in real-time
bidding in advertisement auctions (Cai et al., 2017), au-
tonomous driving (Shalev-Shwartz et al., 2016), gaming-
AI (Silver et al., 2018), and inventory control (Agrawal
& Jia, 2019), among others. Recent advances in RL rely
on function approximators such as deep neural nets to
overcome the curse of dimensionality for large-scale deci-
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sion making problems, i.e., the value function is approx-
imated by a function which is able to predict the value
function for unseen state-action pairs given a few train-
ing samples (Mnih et al., 2015; Silver et al., 2017; Akkaya
et al., 2019). Motivated by the empirical success of RL
algorithms with function approximation, there is growing
interest in developing RL algorithms with function ap-
proximation that are statistically efficient in the minimax
sense (Yang & Wang, 2019; Cai et al., 2020; Jin et al.,
2020; Modi et al., 2020; Wang et al., 2020; Wei et al.,
2020; Neu & Olkhovskaya, 2020; Zanette et al., 2020).
One recent work also studies the instance-dependent sam-
ple complexity bound for RL with function approximation,
which adapts to the complexity of the specific MDP in-
stance (Foster et al., 2020). The focus of this line of work
is to develop statistically efficient algorithms with function
approximation for RL. Such efficiency is especially cru-
cial in data-sparse applications such as medical trials (Zhao
et al., 2009).

However, all of the aforementioned empirical and theoret-
ical works on RL with function approximation assume the
environment is stationary, which is insufficient to model
problems with time-varying dynamics. In general nonsta-
tionary random processes naturally occur in many settings
and are able to characterize larger classes of problems of
interest (Cover & Pombra, 1989). In this work, we con-
sider the setting of episodic RL with nonstationary reward
and transition functions. To measure the performance of an
algorithm, we use the notion of dynamic regret, the perfor-
mance difference between an algorithm and the set of poli-
cies optimal for individual episodes in hindsight. For non-
stationary RL, dynamic regret is a stronger and more ap-
propriate notion of performance measure than static regret,
but is also more challenging for algorithm design and anal-
ysis. To incorporate function approximation, we focus on
a subclass of MDPs in which the reward and transition dy-
namics are linear in a known feature map (Melo & Ribeiro,
2007), termed linear MDP. For nonstationary linear MDPs,
we show that one can design a near-optimal statistically-
efficient algorithm to achieve sublinear dynamic regret as
long as the total variation of reward and transition dynam-
ics is sublinear.

Our contributions are two-fold. First, we prove the min-
imax regret lower bound for non-stationary linear MDPs.
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As a byproduct, we also derive the minimax regret lower
bound for stationary linear MDP, which is unsolved in (Jin
et al., 2020). Second, we propose two algorithms to
learn the optimal policy for nonstationary linear MDPs that
achieve near-optimal regret. The first algorithm is based
on combining the periodic restart and optimistic in the face
of uncertainty principle, but requires the knowledge of the
environmental drift. To overcome the limitation of the
first algorithm, the second algorithm leverages the bandit-
over-bandit (Cheung et al., 2019) mechanism to become
parameter-free, only with a slight performance degrada-
tion.

Notation We use 〈·, ·〉 to denote inner products in Eu-
clidean space, ‖v‖2 to denote the L2 norm of vector v, and
‖v‖Λ to denote the norm induced by a positive definite ma-
trix A for vector v, i.e., ‖v‖Λ =

√
v>Λv. For an integer

N , we denote the set of positive integers {1, 2, . . . , N} as
[N ].

2. Preliminaries
We consider the setting of a nonstationary episodic
Markov decision process (MDP), specified by a
tuple (S,A, H,K,P = {Pkh}h∈[H],k∈[K], r =

{rkh}h∈[H],k∈[K]), where the set S is the collection of
states, A is the collection of actions, H is the length of
each episode, K is the total number of episodes, and P
and r are the transition kernel and deterministic reward
functions respectively. Moreover, Pkh(·|s, a) denotes
the transition kernel over the next states if the action
a is taken for state s at step h in the k-th episode, and
rkh : S ×A → [0, 1] is the deterministic reward function at
step h in the k-th episode. Note that we are considering a
nonstationary setting, thus we assume the transition kernel
P and reward function r may change in different episodes.
We will explicitly quantify the nonstationarity later.

Given a policy π, a level h ∈ [H] and a state s ∈ S, the
value function at k-th episode is defined as

V πh,k(s) = Eπ

[
H∑

h′=h

rkh′(sh′ , ah′)|sh = s

]
.

Similarly, for a given state-action pair (s, a) ∈ S × A, the
Q-funtion for policy π at step h in the k-th episode is de-
fined as

Qπh,k(s, a) = rkh(s, a)

+ Eπ

[
H∑

h′=h+1

rkh′(sh′ , ah′)|sh = s, ah = a

]

To measure the convergence to optimality, we consider
an equivalent objective of minimizing the dynamic re-

gret (Cheung et al., 2020; Jin et al., 2020),

Dyn-Reg(K) =

K∑
k=1

[
V ∗1,k(sk1)− V πk

1,k (sk1)
]
.

We consider a special class of MDPs called linear Markov
decision process (Melo & Ribeiro, 2007; Bradtke & Barto,
1996; Jin et al., 2020), which assumes both transition func-
tion P and reward function r are linear in a known feature
map φ(·, ·). The formal definition is as follows.

Definition 1. (Linear MDP). The MDP (S,A, H,K,P, r)
is a linear MDP with the feature map φ : S × A → Rd, if
for any (h, k) ∈ [H]×[K], there exist d unknown measures
µh,k = (µ1

h,k, . . . ,µ
d
h,k)> on S and a vector θh,k ∈ Rd

such that

Pkh(s′|s, a) = φ(s, a)>µh,k(s′), rkh(s, a) = φ(s, a)>θh,k.

Without loss of generality, we assume ‖φ(s, a)‖2 ≤ 1 for
all (s, a) ∈ S×A, and max{‖µh,k‖2 , ‖θh,k‖2} ≤

√
d for

all (h, k) ∈ [H]× [K].

Following (Besbes et al., 2014; Cheung et al., 2019; 2020),
we quantify the total variation on µ and θ in terms of their
respective variation budgetBθ andBµ, and define the total
variation budget B as the summation of these two variation
budgets:

Bθ =

K∑
k=2

H∑
h=1

‖θh,k − θh,k−1‖2 ,

Bµ =

K∑
k=2

H∑
h=1

‖µh,k(S)− µh,k−1(S)‖2 ,

where µh,k(S) is the concatenation of µh,k(s) for all
states.

3. Minimax Regret Lower Bound
In this section, we derive the minimax regret lower bound
for nonstationary linear MDPs. All of the detailed proofs
for this section are included in Appendix A.

We first derive the minimax regret lower bound for station-
ary linear MDP by constructing hard instances, which ad-
dresses a problem proposed in (Jin et al., 2020).

Theorem 1. For any algorithm, if d ≥ 4 and T ≥ 64(d−
3)2H , then there exists at least one stationary linear MDP
instance that incurs regret at least Ω(d

√
HT ).

Remark 1. Note that this lower bound is tighter than
simply applying the minimax regret lower bound for tab-
ular episodic MDP. Recall that the minimax regret lower
bound for tabular episodic MDP is Ω(

√
SAHT ) (Osband

& Van Roy, 2016), and we can convert any tabular MDP
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into a linear MDP by setting the feature φ(·, ·) as an in-
dicator vector with d = SA dimension (Jin et al., 2020).
Thus simply applying the regret lower bound for tabular
episodic MDP yields Ω

(√
dHT

)
.

The key step of this proof is to construct the hard-to-learn
MDP instances. Inspired by lower bound construction
for stochastic contextual bandits (Dani et al., 2008; Latti-
more & Szepesvári, 2020), we construct an ensemble of
hard-to-learn 3-state linear MDPs, which is illustrated in
Fig. 1. This construction can be viewed as a generaliza-
tion of the lower bound construction for linear contextual
bandits (Dani et al., 2008; Lattimore & Szepesvári, 2020).
The intuition is that the reward distributions under optimal
and suboptimal policies for these instances are close: thus
it is statistically hard for any learner to identify the opti-
mal policy. Each linear MDP instance in this constructed
ensemble has three states s0, s1, s2 (s1 and s2 are absorb-
ing states), and it is characterized by a unique (d − 3)-
dimensional vector {±

√
(d− 3)H/

√
T}d−3. Specifically,

the vector v defines the transition function of the corre-
sponding MDP, as illustrated in Fig. 1. Each action a of
this MDP instance is encoded by a (d − 3) dimensional
vector a ∈

{
±1/
√
d− 3

}d−3
. The reward functions for

the three states are fixed regardless of the actions, specif-
ically, r(s0, a) = r(s2, a) = 0, r(s1, a) = 1,∀a ∈ A.
For each episode, the agent starts at s0, and ends at step H .
The transition functions of the linear MDP parametrized by
v are defined as follows,

P(s1|s0, a) = δ + 〈a,v〉, P(s2|s0, a) = 1− δ − 〈a,v〉,
P(s1|s1, a) = 1, P(s2|s2, a) = 1,

where δ = 1
4 . Notice that the optimal policy for the MDP

instance parametrized by v is taking the action that max-
imizes the probability to reach s1, which is equivalent to
taking the action such that its corresponding vector a satis-
fies sgn(ai) = sgn(vi),∀i ∈ [d − 3]. Furthermore, it can
be verified that the above MDP instance is indeed a linear
MDP, by setting:

φ(s0, a) = (0, 1, δ,a),φ(s1, a) = (1, 0, 0,~0),

φ(s2, a) = (0, 1, 0,~0),µ(s0) = (0, 0, 0,~0),

µ(s1) = (1, 0, 1,v),µ(s2) = (0, 1,−1,−v),

θ = (1, 0, 0, 0).

Remark 2. Note that the above parameters violate the nor-
malization assumption in Def. 1, but it is straightforward to
normalize them. We ignore the additional rescaling to clar-
ify the presentation.

After constructing the ensemble of hard instances, we can
derive the minimax regret lower bound for stationary linear
MDP. For the detailed proof, please refer to Appendix A.

s0

s1

s2

δ + 〈a1,v〉

δ + 〈ai,v〉

1− δ − 〈a1,v〉

1− δ − 〈ai,v〉

1

1

. .
.

. . .

1

Figure 1. Graphical illustration of the hard-to-learn linear MDP
instances with deterministic reward.

Based on Thm. 1, we can derive the dynamic regret lower
bound for nonstationary linear MDP.

Theorem 2. For any algorithm, the dynamic regret is at
least Ω(B1/3d2/3H1/3T 2/3) for one nonstationary linear
MDP instance, if d ≥ 4, T ≥ 64(d− 3)2H .

4. LSVI-UCB-Restart Algorithm
In this section, we describe our proposed algorithm
LSVI-UCB-Restart, and discuss how to tune the
hyper-parameters for cases when local variation is known
or unknown. For both cases, we present their respective
regret bounds. Detailed proofs are deferred to Appendix B.

4.1. Algorithm Description

Our proposed algorithm LSVI-UCB-Restart has two
key ingredients: least-squares value iteration with up-
per confidence bound to properly handle the exploration-
exploitation trade-off (Jin et al., 2020), and restart strategy
to adapt to the unknown nonstationarity. The algorithm is
summarized in Alg. 1. From a high-level point of view,
our algorithm runs in epochs. At each epoch, we first es-
timate the action-value function by solving a regularized
least-squares problem from historical data, then construct
the upper confidence bound for the action-value function,
and update the policy greedily w.r.t. action-value function
plus the upper confidence bound. Finally, we periodically
restart our algorithm to adapt to the nonstationary nature of
the environment.

4.2. Regret Analysis

Now we derive the dynamic regret bounds for
LSVI-UCB-Restart , first introducing ad-
ditional notation for local variations. We let
Bθ,E =

∑
k∈E

∑H
h=1 ‖θh,k − θh,k−1‖2 and

Bµ,E =
∑
k∈E

∑H
h=1 ‖µh,k(S)− µh,k−1(S)‖2 be

the local variation for θ and µ in epoch E .

We proceed to derive the dynamic regret bounds for two
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Algorithm 1 LSVI-UCB-Restart Algorithm
Require: time horizon T , epoch size W

1: Set epoch counter j = 1.
2: while j ≤ d TW e do
3: set τ = (j − 1)WH
4: for all k = τ, τ + 1, . . . ,min(τ + W

H − 1,K) do
5: Receive the initial state sk1 .
6: for all step h = H, . . . , 1 do
7: Λkh ←

∑k−1
l=τ φ(slh, a

l
h)φ(slh, a

l
h)> + I

8: wk
h ← (Λkh)−1

∑k−1
l=τ φ(slh, a

l
h)[rh,l(s

l
h, a

l
h) +

maxaQ
k−1
h+1(slh+1, a)]

9: Qkh(·, ·) ← min{(wk
h)>φ(·, ·) +

βk ‖φ(·, ·)‖(Λk
h)−1 , H}

10: end for
11: for all step h = 1, . . . ,H do
12: take action akh ← arg maxaQ

k
h(skh, a), and ob-

serve skh+1

13: end for
14: end for
15: set j = j + 1
16: end while

cases: (1) local variations are known, and (2) local varia-
tions are unknown.

4.2.1. KNOWN LOCAL VARIATIONS

For the case of known local variations, the dynamic regret
upper bound for LSVI-UCB-Restart is as follows.

Theorem 3. If we set βk = cdH
√

log(2dT/p) +

Bθ,E
√
d(k − τ) + Bµ,EH

√
d(k − τ), the dynamic re-

gret of LSVI-UCB-Restart is Õ(H3/2d3/2TW−1/2 +
BθdW +BµdHW ), with probability at least 1− p.

By properly tuning the epoch size W , we can obtain a tight
dynamic regret upper bound.

Corollary 1. Let W = dB−2/3T 2/3d1/3H−2/3eH ,
and βk = cdH

√
log(2dW/p) +

Bθ,E
√
d(k − τ) + Bµ,EH

√
d(k − τ) for each epoch.

LSVI-UCB-Restart achieves Õ(B1/3d4/3H4/3T 2/3)
dynamic regret, with probability at least 1− p.

Remark 3. Corollary 1 shows that if local variations are
known, we can achieve near-optimal dependency on the the
total variationBθ, Bµ and time horizon T compared to the
lower bound provided in Thm 2. However, the dependency
on d andH is worse. This is not surprising since the depen-
dency on d and H is not optimal for LSVI-UCB suggested
by Thm 1, thus it is impossible for LSVI-UCB-Restart
to achieve optimal dependency on d and H .

Remark 4. One concurrent work (Mao et al., 2020)
studied nonstationary RL for the tabular setting; their
algorithm Restart-QUCB is also based on combin-

ing UCB and periodic restart. When specialized
to nonstationary tabular MDP, our algorithm achieves
Õ(B1/3S4/3A4/3H4/3T 2/3), whereas Restart-QUCB
achieves Õ(B1/3S1/3A1/3HT 2/3) dynamic regret, with
better dependency on the size of state space and the plan-
ning horizon H . This better regret bound is achieved
by variance reduction for tabular MDP via reference-
advantage decomposition (Zhang et al., 2020).

4.2.2. UNKNOWN LOCAL VARIATION

If the local variations are unknown, the dynamic regret
bound is as follows.

Theorem 4. If we set β = cdH
√

log(2dT/p),
then the dynamic regret of LSVI-UCB-Restart
is Õ(d3/2H3/2TW−1/2 + Bθd

1/2H−1/2W 3/2 +
Bµd

1/2H1/2W 3/2), with probability at least 1− p.

By properly tuning the epoch size W , we can obtain a tight
regret bound for the case of unknown local variations as
follows.

Corollary 2. Let W = dB−1/2T 1/2d1/2H−1/2eH and
βk = cdH

√
log(2dW/p). Then LSVI-UCB-Restart

achieves Õ(B1/4d5/4H5/4T 3/4) dynamic regret, with
probability at least 1− p.

Remark 5. Concurrently, (Touati & Vincent, 2020) pro-
pose to combine weighted least-squares value iteration and
optimistic principle to solve the same problem, achieving
the same regret.

5. Ada-LSVI-UCB-Restart: a
Parameter-free Algorithm

In practice, the total variations Bθ and Bµ are un-
known. To mitigate this issue, we leverage the
bandit-over-bandit mechanism (Cheung et al., 2019)
to develop a new algorithm, ADA-LSVI-UCB-Restart.
ADA-LSVI-UCB-Restart keeps running
LSVI-UCB-Restart, and adaptively choose the
time to restart based on the historical rewards. The
pseudocode is summarized in Alg. 2, and the choices of
hyperparameters are included in the appendix.

Now we present the dynamic regret bound achieved by
Ada-LSVI-UCB-Restart, and we postpone the de-
tailed proof to the appendix.

Theorem 5. The dynamic regret of
Ada-LSVI-UCB-Restart is Õ(B1/4d5/4H5/4T 3/4).

Remark 6. The dynamic regret bound of
Ada-LSVI-UCB-Restart is on the same order as
that of LSVI-UCB-Restart when local variations are
unknown. Thus we do not lose too much by not knowing
local variations.
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Algorithm 2 ADA-LSVI-UCB-Restart Algorithm
Require: time horizon T , block length M , feasible set of

epoch size Jw
1: Initialize α, β, γ and {ql,1}l∈[∆] according to Eq. 12.
2: for all i = 1, 2, . . . , dT/HMe do
3: Receive the initial state s(i−1)H

1

4: Update the epoch size selection distribution
{ul,i}l∈[∆] according to Eq. 14

5: Sample li ∈ [∆] from the updated distribution
{ul,i}l∈[∆], then set the epoch size for block i as
Wi = bM li/blnMccH .

6: for all t = (i− 1)MH + 1, . . . ,min(iMH, T ) do
7: Run LSVI-UCB-Restart algorithm with

epoch size Wi

8: end for
9: After observing the total reward for block i,

Ri(Wi, s
(i−1)H
1 ), update the estimated total reward

of running different epoch sizes {ql,i+1}l∈[∆] ac-
cording to Eq. 15

10: end for

6. Conclusion and Future Work
In this paper, we studied nonstationary RL with time-
varying reward and transition functions. We focused on the
class of nonstationary linear MDPs such that linear func-
tion approximation is sufficient to realize any value func-
tion. We first incorporated the epoch start strategy into
LSVI-UCB algorithm (Jin et al., 2020) to propose an al-
gorithm with low dynamic regret when the total variations
are known. We then designed a parameter-free algorithm
that enjoys a slightly worse dynamic regret bound without
knowing the total variations. We derived a minimax regret
lower bound is for nonstationary linear MDPs to demon-
strate that our proposed algorithms are near-optimal. A
number of future directions are of interest. An immediate
step is to investigate whether the dependence on the dimen-
sion d and planning horizon H in our bounds can be im-
proved, and whether the minimax regret lower bound can
also be improved. It would also be interesting to investigate
the setting of nonstationary RL under general function ap-
proximation (Wang et al., 2020), which is closer to modern
RL algorithms in practice.
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algorithms for linear stochastic bandits. In Proc. 25th
Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), pp.
2312–2320, December 2011.

Agrawal, S. and Jia, R. Learning in structured MDPs with
convex cost functions: Improved regret bounds for in-
ventory management. In Proc. 20th ACM Conf. Electron.
Commer. (EC’19), pp. 743–744, June 2019.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Pow-
ell, G., Ribas, R., Schneider, J., Tezak, N., Tworek, J.,
Welinder, P., Weng, L., Yuan, Q., Zaremba, W., and
Zhang, L. Solving rubik’s cube with a robot hand.
arXiv:1910.07113 [cs.LG]., October 2019.

Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(51):1563–1600, 2010.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. In Proc.
28th Annu. Conf. Neural Inf. Process. Syst. (NeurIPS),
pp. 199–207, December 2014.

Bradtke, S. J. and Barto, A. G. Linear least-squares algo-
rithms for temporal difference learning. Machine Learn-
ing, 22(1-3):33–57, March 1996.

Bretagnolle, J. and Huber, C. Estimation des densités:
risque minimax. Zeitschrift für Wahrscheinlichkeitsthe-
orie und verwandte Gebiete, 47(2):119–137, 1979.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends in Machine Learning, 5
(1):1–122, 2012.

Cai, H., Ren, K., Zhang, W., Malialis, K., Wang, J., Yu,
Y., and Guo, D. Real-time bidding by reinforcement
learning in display advertising. In Proc. 10th ACM Int.
Conf. Web Search Data Min. (WSDM ’17), pp. 661–670,
February 2017.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. In Proc. 37th
Int. Conf. Mach. Learn. (ICML 2020), July 2020.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. Learning to
optimize under non-stationarity. In Proc. 22nd Int. Conf.
Artif. Intell. Stat. (AISTATS 2019), pp. 1079–1087, April
2019.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. Non-
stationary reinforcement learning: The blessing of
(more) optimism. In Proc. 37th Int. Conf. Mach. Learn.
(ICML 2020), July 2020.



Nonstationary RL with Linear Function Approximation

Cover, T. M. and Pombra, S. Gaussian feedback capacity.
IEEE Transactions on Information Theory, 35(1):37–43,
January 1989.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear
optimization under bandit feedback. In Proc. 21st An-
nual Conf. Learning Theory (COLT 2008), pp. 355–366,
July 2008.

Foster, D. J., Rakhlin, A., Simchi-Levi, D., and Xu,
Y. Instance-dependent complexity of contextual bandits
and reinforcement learning: A disagreement-based per-
spective. arXiv preprint arXiv:2010.03104, 2020.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Proc. Conf. Learning Theory (COLT),
pp. 2137–2143, July 2020.
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A. Proofs in Section 3
In this section, we prove the minimax regret lower bound of nonstationary linear MDP. We first prove the regret lower
bound of stationary linear MDP.

Proof of Theorem 1. Let Pπt,v (assume t is a multiple of H) be the probability distribution of

{a1
1,
∑H
h=1 r

1
h, a

2
1,
∑H
h=1 r

2
h, . . . , a

t/H
1 ,

∑H
h=1 r

t/H
h } of running algorithm π on linear MDP parametrized by v. First note

that by the Markov property of π, we can decompose DKL(Pπt,v||Pπt,v′) as

t/H∑
l=1

EDKL

(
P

(
H∑
h=1

rlh|al1,v
)
||P
(

H∑
h=1

rlh|al1,v′
))

.

Recall that due to our hard cases construction, the first step in every episode determines the distribution of the total reward
of that episode, thus

DKL

(
P

(
H∑
h=1

rlh|al1,v
)
||P
(

H∑
h=1

rlh|al1,v′
))

=
(
δ + 〈al1,v〉

)
log

δ + 〈al1,v〉
δ + 〈al1,v′〉

+
(
1− δ − 〈al1,v〉

)
log

1− δ − 〈al1,v〉
1− δ − 〈al1,v′〉

(1)

We bound the KL divergence in (1) applying the following lemma.

Lemma 1. (Auer et al., 2010) If 0 ≤ δ′ ≤ 1/2 and ε′ ≤ 1− 2δ′, then

δ′ log
δ′

δ′ + ε′
+ (1− δ′) log

1− δ′
1− δ′ − ε′ ≤

2(ε′)2

δ′
.

To apply Lemma 1, we let 〈al1,v〉 + δ = δ′, 〈v − v′,al1〉 = ε′. Thus we must ensure the following inequalities hold for
any a,v,v′:

〈a,v〉+ δ ≤ (d− 3)
√
H√

T
+ δ ≤ 1/2

〈v − v′,a〉 ≤ 2(d− 3)
√
H√

T
≤ 1− 2

(
(d− 3)

√
H√

T
+ δ

)
≤ 1− 2δ′.

To guarantee the above inequalities hold, we can set δ = 1
4 and let (d−3)

√
H√

T
≤ 1

8 . Now we get back to bounding Eq. 1.

Let ∆ = (d−3)
√
H√

T
and suppose v and v′ only differ in one coordinate. Then

DKL

(
P

(
H∑
h=1

rlh|al1,v
)
||P
(

H∑
h=1

rlh|al1,v′
))
≤

8∆2 1
(d−3)2

δ −∆
≤ 16∆2

δ(d− 3)2
≤ 64H

T
.

Furthermore, let Ei,b be the the following event:

|{l ∈ [K] : sgn(al1)i 6= sgn(b)}|≥ 1

2
K.

Let qi,v = P[Ei,vi |v], the probability that the agent is taking sub-optimal action for the i-th coordinate for at least half
of the episodes given that the underlying linear MDP is parameteriezed by v. We can then lower bound the regret of any
algorithm when running on linear MDP parameterized by v as:

Regv(T ) ≥
d−3∑
i=1

qi,vK(H − 1)

√
H

T

≥
(√

TH −
√
K
) d−3∑
i=1

qi,v, (2)
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since whenever the learner takes a sub-optimal action that differs from the optimal action by one coordinate, it will incur

2
√

H
T (H − 1) expected regret. Next we take the average over 2d−3 linear MDP instances to show that on average it incurs

Ω(d
√
HT ) regret, thus there exists at least one instance incurring Ω(d

√
HT ) regret. Before that, we need to bound the

summation of bad events under two close linear MDP instances. Denote the vector which is only different from v in i-th
coordinate as v⊕i. Then we have

qi,v + qi,v⊕i = P[Ei,vi |v] + P[Ei,v⊕i
i
|v⊕i]

= P[Ei,vi |v] + P[Ēi,vi |v⊕i]

≥ 1

2
exp(−DKL(PT,v||PT,v⊕i))

≥ 1

2
exp(−64), (3)

where the inequality is due to Bretagnolle-Huber inequality (Bretagnolle & Huber, 1979). Now we are ready to lower
bound the average regret over all linear MDP instances.

1

2d−3

∑
v

Regv(T ) ≥
√
HT −

√
K

2d−3

∑
v

d−3∑
i=1

qi,v

≥
√
HT −

√
K

2d−3

d−3∑
i=1

∑
v

qi,v + qi,v⊕i

2

≥
√
HT −

√
K

2d−3
2d−3 1

4
e−64(d− 3)

& Ω(d
√
HT )

where the first inequality is due to (2), and the third inequality is due to (3).

Based on Thm. 1, we can derive the minimax dynamic regret for nonstationary linear MDP.

Proof of Thm. 2. We construct the hard instance as follows: We first divide the whole time horizon T into dKN e intervals,
where each interval has dKN e episodes (the last interval might be shorter if K is not a multiple of N ). For each interval, the

linear MDP is fixed and parameterized by a v ∈ {±
√

(d−3)√
N
}d−3 which we define when constructing the hard instances in

Thm. 1. Note that different intervals are completely decoupled, thus information is not passed across intervals. For each
interval, it incurs regret at least Ω(d

√
H2N) by Thm. 1. Thus the total regret is at least

Dyn-Reg(T ) & (dK
N
e − 1)Ω(d

√
H2N)

& Ω(d
√
H2K2N−1/2). (4)

Intuitively, we would like N to be as small as possible to obtain a tight lower bound. However, due to our construction, the
total variation for two consecutive blocks is upper-bounded by√√√√d−3∑

i=1

4(d− 3)

N
=

2(d− 3)√
N

.

Note that the total time variation for the whole time horizon is B and by definition B ≥ 2(d−3)√
N

(bKN c − 1), which

impliesN & Ω(B−2/3d2/3K2/3). Substituting the lower bound of N into (4), we have

Dyn-Reg(T ) & Ω(B1/3d2/3K2/3H) & Ω(B1/3d2/3H1/3T 2/3)

which concludes the proof.
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B. Proofs in Section 4
Here we provide the proofs in Sec. 4. First, we introduce some notations we use throughout the proof. We let wk

h, Λkh
and Qkh as the parameters and action-value function estimate in episode k for step h. Denote value function estimate as
V kh (s) = maxaQ

k
h(s, a). For any policy π, we letwπ

h,k, Qπh,k be the ground-truth parameter and action-value function for
that policy in episode k for step h. We also abbreviate φ(slh, a

l
h) as φlh, and Es′∼Pk

h(·|s,a)[Vh+1(s′)] = [PkhVh+1](s, a), for
notational simplicity.

The regret bound analysis is not just a simple combination of (Jin et al., 2020) and (Zhao et al., 2020), since the estimation
error incurred by environmental drift can propagate through the whole episode in an arbitrary manner. Contrarily for the
bandit problem, one need not consider the error propagation problem due to unit planing horizon. To derive the dynamic
regret upper bounds, we need the following lemma to control the fluctuation of least-squares value iteration.

Lemma 2. (Modified from (Jin et al., 2020)) Denote τ to be the first episode in the epoch which contains episode k. There
exists an absolute constant C such that the following event E,

∥∥∥∥∥
k−1∑
l=τ

φlh[V kh+1(slh+1)− PlhV kh+1(slh, a
l
h)]

∥∥∥∥∥
(Λk

h)−1

≤ CdH
√

log[2(cβ + 1)dW/p], ∀(k, h) ∈ E × [H].

happens with probability at least 1− p/2.

We first work on the case when local variation is known and then consider the case when local variation is unknown.

B.1. Case 1: Known Local Variation

Before we prove the regret upper bound, we need some additional lemmas.
The first lemma is used to control the fluctuations in least-squares value iteration, when performed on the value function
estimate V kh (·) maintained in Alg. 1.

Proof of Lemma 2. The lemma is slightly different than Lemma B.3 in (Jin et al., 2020), since they assume Ph is fixed
for different episodes. It can be verified that the proof for stationary case still holds in our case without any modifications
since the results in (Jin et al., 2020) holds for least-squares value iteration for arbitrary function in the function class of our
interest, i.e., {V |V = {φ(·, ·),w},w ∈ Rd}.

We then proceed to derive the error bound for the action-value function estimate maintained in the algorithm for any policy.

Lemma 3. Under event E defined in Lemma 2, we have for any policy π, ∀s, a, h, k ∈ S ×A× [H]× E ,

|〈φ(s, a),wk
h〉 −Qπh,k(s, a)− Pkh(V kh+1 − V πh+1,k)(s, a)|≤ βk ‖φ(s, a)‖(Λk

h)−1 ,

where βk = C0dH
√

log(2dW/p) +Bθ,E
√
d(k − τ) +Bµ,EH

√
d(k − τ) and τ is the first episode in the current epoch.
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Proof of Lemma 3. Note that Qπh,k(s, a) = 〈φ(s, a),wπ
h,k〉. First we can decompose wk

h −wπ
h,k as

wk
h −wπ

h,k = (Λkh)−1
k−1∑
l=τ

φlh[rlh(slh, a
l
h) + V kh+1(slh+1)]−wπ

h,k

= (Λkh)−1{−wπ
h,k +

k−1∑
l=τ

φlh[V kh+1(slh+1)− PkhV πh+1,k(slh, a
l
h)] +

k−1∑
l=τ

φlh[rlh(slh, a
l
h)− rkh(slh, a

l
h)]}

= −(Λkh)−1wπ
h,k︸ ︷︷ ︸

1

+ (Λkh)−1
k−1∑
l=τ

φlh[V kh+1(slh+1)− PlhV kh+1(slh, a
l
h)]︸ ︷︷ ︸

2

+ (Λkh)−1
k−1∑
l=τ

φlh[(Plh − Pkh)V kh+1(slh, a
l
h)]︸ ︷︷ ︸

3

+ (Λkh)−1
k−1∑
l=τ

φlhPkh(V kh+1 − V πh+1,k)(slh, a
l
h)︸ ︷︷ ︸

4

+ (Λkh)−1
k−1∑
l=τ

φlh[rlh(slh, a
l
h)− rkh(slh, a

l
h)]︸ ︷︷ ︸

5

.

We bound the individual terms on right side one by one. For the first term,

|〈φ(s, a), 1 〉| = |〈φ(s, a), (Λkh)−1wπ
h,k〉|

≤
∥∥wπ

h,k

∥∥ ‖φ(s, a)‖(Λk
h)−1

≤ 2H
√
d ‖φ(s, a)‖(Λk

h)−1 ,

where the last inequality is due to Lemma 9. For the second term, we know that under event E defined in Lemma 2,

|〈φ(s, a), 2 〉|≤ CdH
√

log[2(cβ + 1)dW/p] ‖φ(s, a)‖(Λk
h)−1 .

For the third term,

〈φ(s, a), 3 〉 =〈φ(s, a), (Λkh)−1
k−1∑
l=τ

φlh[(Plh − Pkh)V kh+1(slh, a
l
h)]〉

≤
k−1∑
l=τ

|φ(s, a)>(Λkh)−1φlh|[(Plh − Pkh)V kh+1(slh, a
l
h)]

≤Bµ,EH
k−1∑
l=τ

|φ(s, a)>(Λkh)−1φlh|

≤Bµ,EH

√√√√k−1∑
l=τ

‖φ(s, a)‖2(Λk
h)−1

√√√√k−1∑
l=τ

(φlh)>(Λkh)−1φlh

≤
√
d(k − τ)Bµ,EH ‖φ(s, a)‖(Λk

h)−1 ,

where the first three inequalities are due to Cauchy-Schwarz inequality and boundedness of Plh − Pkh and V kh+1, and the
last inequality is due to Lemma 10.
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For the fourth term,

〈φ(s, a), 4 〉 = 〈φ(s, a), (Λkh)−1
k−1∑
l=τ

φlhPkh(V kh+1 − V πh+1,k)(slh, a
l
h)〉

= 〈φ(s, a), (Λkh)−1
k−1∑
l=τ

φlh(φlh)>
∫

(V kh+1(s′)− V πh+1,k(s′))dµh,k(s′)〉

= 〈φ(s, a),

∫
(V kh+1 − V πh+1,k)(s′)dµh,k(s′)〉︸ ︷︷ ︸

6

〉 − 〈φ(s, a), (Λkh)−1

∫
(V kh+1 − V πh+1,k)(s′)dµh,k(s′)〉︸ ︷︷ ︸

7

,

where 6 = [Pkh(V kh+1 − V πh+1,k)](s, a) and 7 ≤ 2H
√
d ‖φ(s, a)‖(Λk

h)−1 due to Cauchy-Schwarz inequality.

For the fifth term,

〈φ(s, a), 5 〉 = 〈φ(s, a), (Λkh)−1
k−1∑
l=τ

φlh[rlh(slh, a
l
h)− rkh(slh, a

l
h)]〉

≤
k−1∑
l=τ

|φ(s, a)>(Λkh)−1φlh||rlh(slh, a
l
h)− rkh(slh, a

l
h)|

≤
√
d(k − τ)Bθ,E ‖φ(s, a)‖(Λk

h)−1 ,

where the inequalities are derived similarly as bounding the third term. After combining all the upper bounds for these
individual terms, we have

|〈φ(s, a),wk
h〉 −Qπh,k(s, a)− Pkh

(
V kh+1 − V πh+1,k

)
(s, a)|

≤4H
√
d ‖φ(s, a)‖(Λk

h)−1 + CdH
√

log[2(cβ + 1)dW/p] ‖φ(s, a)‖(Λk
h)−1

+Bθ,E
√
d(k − τ) ‖φ(s, a)‖(Λk

h)−1 +Bµ,EH
√
d(k − τ) ‖φ(s, a)‖(Λk

h)−1

≤C0dH
√

log[2dW/p] ‖φ(s, a)‖(Λk
h)−1 +Bθ,E

√
d(k − τ) ‖φ(s, a)‖(Λk

h)−1

+Bµ,EH
√
d(k − τ) ‖φ(s, a)‖(Λk

h)−1 .

The second inequality holds if we choose a sufficiently large absolute constant C0.

The next lemma implies that the action-value function estimate we maintained in Alg. 1 is always an optimistic upper
bound of the optimal action-value function with high confidence under event E defined in Lemma 2, if we know the local
variation.

Lemma 4. Under event E defined in Lemma 2, for episode k, if we set βk = cdH
√

log(2dW/p) + Bθ,E
√
d(k − τ) +

Bµ,EH
√
d(k − τ), we have

Qkh(s, a) ≥ Q∗h,k, ∀(s, a, h, k) ∈ S ×A× [H]× E .

Proof of Lemma 4. We prove this by induction. First prove the base case when h = H . According to Lemma 3, we have

|〈φ(s, a),wk
H〉 −Q∗H,k(s, a)|≤ βk ‖φ(s, a)‖(Λk

H)−1 ,

which implies

QkH(s, a) = min{〈wk
H ,φ(s, a)〉+ βk ‖φ(s, a)‖(Λk

H)−1 , H} ≥ Q∗H,k(s, a).

Now suppose the statement holds true at step h+ 1, then for step h, due to Lemma 3, we have

|〈φ(s, a),wk
h〉 −Qπh,k(s, a)− Pkh(V kh+1 − V ∗h+1,k)(s, a)|≤ βk ‖φ(s, a)‖(Λk

h)−1 .
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By the induction hypothesis, we have Pkh(V kh+1 − V ∗h+1,k)(s, a) ≥ 0, thus

Qkh(s, a) = min{〈wk
h,φ(s, a)〉+ βk ‖φ(s, a)‖(Λk

H)−1 , H} ≥ Q∗h,k(s, a).

Next we derive the bound for the gap between the value function estimate and the ground-truth value function for the
executing policy πk, δkh = V kh (skh)− V πk

h,k(skh), in a recursive manner.

Lemma 5. Let δkh = V kh (skh)−V πk

h,k(skh), ζkh+1 = E[δkh+1|skh, akh]− δkh+1. Under event E defined in Lemma 2, we have for
all (k, h) ∈ E × [H],

δkh ≤ δkh+1 + ζkh+1 + 2βk
∥∥φkh∥∥(Λk

h)−1 .

Proof. By Lemma 3, for any (s, a, h, k) ∈ S ×A× [H]× E ,

Qkh(s, a)−Qπk

h (s, a) ≤ Pkh(V kh+1 − V π
k

h+1,k)(s, a) + 2βk ‖φ(s, a)‖(Λk
H)−1 .

Note that Qkh(skh, a
k
h) = maxaQ

k
h(skh, a) = V kh (skh) according to Algorithm 1, and Qπ

k

h,k(skh, a
k
h) = V π

k

h,k(skh) by the
definition. Thus,

δkh ≤ δkh+1 + ζkh+1 + 2βk
∥∥φkh∥∥(Λk

h)−1 .

Now we are ready to derive the regret bound within one epoch.

Theorem 6. For each epoch E with epoch size W , set β in the k-th episode as βk = cdH
√

log(2dW/p) +

Bθ,E
√
d(k − τ)+Bµ,EH

√
d(k − τ), where c is an absolute constant and p ∈ (0, 1). Then the dynamic regret within that

epoch is Õ(H3/2d3/2W 1/2 +Bθ,EdW +Bµ,EdHW ) with probability at least 1− p.

Proof of Theorem 6. We denote the dynamic regret within that epoch as Dyn-Reg(E). We define δkh = V kh (skh)− V πk

h,k(skh)

and ζkh+1 = E[δkh+1|skh, akh]−δkh+1 as in Lemma 8. We derive the dynamic regret within a epoch E (the length of this epoch
is W which is equivalent to W

H episodes) conditioned on the event E defined in Lemma 2 which happens with probability
at least 1− p/2.

Dyn-Reg(E) =
∑
k∈E

[
V ∗1,k(sk1)− V πk

1,k

]
≤
∑
k∈E

[
V k1 (sk1)− V πk

1,k

]
≤
∑
k∈E

δk1

≤
∑
k∈E

H∑
h=1

ζkh + 2
∑
k∈K

βk

H∑
h=1

∥∥φkh∥∥(Λk
h)−1 , (5)

where the first inequality is due to Lemma 4, the third inequality is due to Lemma 5. For the first term in the right side, since
V kh is independent of the new observation skh, {ζkh} is a martingale difference sequence. Applying the Azuma-Hoeffding
inequlity, we have for any t > 0,

P

(∑
k∈E

H∑
h=1

ζkh ≥ t
)
≥ exp(−t2/(2WH2)).
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Hence with probability at least 1− p/2, we have∑
k∈E

H∑
h=1

ζkh ≤ 2H
√
W log(2dW/p). (6)

For the second term, we bound via Cauchy-Schwarz inequality:

2
∑
k∈E

βk

H∑
h=1

∥∥φkh∥∥(Λk
h)−1 = 2C0dH

√
log 2(dW/p)

∑
k∈E

H∑
h=1

∥∥φkh∥∥(Λk
h)−1 + 2

∑
k∈E

Bθ,E
√
d(k − τ)

H∑
h=1

∥∥φkh∥∥(Λk
h)−1

+ 2
∑
k∈E

BµH
√
d(k − τ)

H∑
h=1

∥∥φkh∥∥(Λk
h)−1

≤ 2C0dH
√

log 2(dW/p)

H∑
h=1

√
W/H(

∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2

+ 2

H∑
h=1

(
∑
k∈E

Bθ,E
√
d(k − τ))1/2(

∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2

+ 2

H∑
h=1

(
∑
k∈E

Bµ,EH
√
d(k − τ))1/2(

∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2

≤ 2C0dH
√

log 2(dW/p)

H∑
h=1

√
W/H(

∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2

+ 2

H∑
h=1

Bθ,E
√
d
W

H
(
∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2

+ 2

H∑
h=1

Bθ,E
√
dW (

∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2 (7)

By Lemma 11, we have

(
∑
k∈E

∥∥φkh∥∥2

(Λk
h)−1)1/2 ≤

√
d log

(
W

H
+ 1

)
. (8)

Finally, by combining Eq. 5–8, we obtain the regret bound within the epoch E as:

Dyn-Reg(E) . Õ(H3/2d3/2W 1/2 +Bθ,EdW +Bµ,EdHW ).

By summing over all epochs and applying a union bound, we obtain the regret bound for the whole time horizon.
Theorem 7. If we set β = βk = cdH

√
log(2dT/p) + Bθ,E

√
d(k − τ) + Bµ,EH

√
d(k − τ), the dynamic regret of

LSVI-UCB-Restart is Õ(H3/2d3/2TW−1/2 +BθdW +BµdHW ), with probability at least 1− p.

Proof. In total there areN = d TW e epochs. For each epoch Ei if we set δ = p
N , then it will incur regret Õ(d3/2H3/2W 1/2+

Bθ,EidW +Bµ,EidHW ) with probability at least 1− p
N . By summing over all epochs and applying the union bound over

them, we can obtain the regret upper bound for the whole time horizon. With probability at least 1− p,

Dyn-Reg(T ) =
∑
Ei

Dyn-Reg(Ei)

.
∑
Ei

Õ(d3/2H3/2W 1/2 +Bθ,EidW +Bµ,EidHW )

. Õ(H3/2d3/2TW−1/2 +BθdW +BµdHW ).
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B.2. Case 2: Unknown Local Variation

Similar to the case of known local variation, we first derive the error bound for the action-value function estimate main-
tained in the algorithm for any policy, which is the following technical lemma.

Lemma 6. Under event E defined in Lemma 2, we have for any policy π, ∀s, a, h, k ∈ S ×A× [H]× E ,

|〈φ(s, a),wk
h〉 −Qπh,k(s, a)− Pkh(V kh+1 − V πh+1,k)(s, a)|≤ β ‖φ(s, a)‖(Λk

h)−1 +Bθ,E
√
d(k − τ) +Bµ,EH

√
d(k − τ),

where β = C0dH
√

log(2dW/p) and τ is the first episode in the current epoch.

Proof. This lemma is a looser upper bound implied by Lemma 3. By Lemma 3, we have

|〈φ(s, a),wk
h〉 −Qπh,k(s, a)− Pkh(V kh+1 − V πh+1,k)(s, a)|

≤CodH
√

log(2dW/p) ‖φ(s, a)‖(Λk
h)−1 +Bθ,E

√
d(k − τ) ‖φ(s, a)‖(Λk

h)−1

+Bµ,EH
√
d(k − τ) ‖φ(s, a)‖(Λk

h)−1

≤CodH
√

log(2dW/p) ‖φ(s, a)‖(Λk
h)−1 +Bθ,E

√
d(k − τ)

+Bµ,EH
√
d(k − τ),

where the second inequality is due to ‖φ(s, a)‖ ≤ 1 and λmin(Λkh) ≥ 1, thus ‖φ(s, a)‖(Λk
h)−1 ≤ 1.

Different from Lemma 4, when the local variation is unknown, the action-value function estimate we maintained in Algo-
rithm 1 is no longer an optimistic upper bound of the optimal action-value function, but approximately up to some error
proportional to the local variation. The rigorous statement is detailed in the following lemma.

Lemma 7. Under event E defined in Lemma 2, if we set β = cdH
√

log(2dW/p), we have

∀(s, a, h, k) ∈ S ×A× [H]× E ,
Qkh(s, a) ≥ Q∗h,k − (H − h+ 1)(Bθ,E

√
d(k − τ) +Bµ,EH

√
d(k − τ)).

Proof of Lemma 7. We prove this by induction. First prove the base case when h = H . According to Lemma 6, we have

|〈φ(s, a),wk
H〉 −Q∗H,k(s, a)| ≤ β ‖φ(s, a)‖(Λk

H)−1 +Bθ,E
√
d(k − τ) +Bµ,EH

√
d(k − τ),

which implies

QkH(s, a) = min{〈wk
H ,φ(s, a)〉+ β ‖φ(s, a)‖(Λk

H)−1 , H}
≥ Q∗H,k(s, a)− (Bθ,E

√
d(k − τ) +Bµ,EH

√
d(k − τ)).

Now suppose the statement holds true at step h+ 1, then for step h, due to Lemma 6, we have

|〈φ(s, a),wk
h〉 −Qπh,k(s, a)− Pkh(V kh+1 − V ∗h+1,k)(s, a)|

≤β ‖φ(s, a)‖(Λk
h)−1 +Bθ,E

√
d(k − τ) +Bµ,EH

√
d(k − τ).

By the induction hypothesis, we have [Pkh(V kh+1−V ∗h+1,k)](s, a) ≥ −(H−h+2)(Bθ,E
√
d(k − τ)+Bµ,EH

√
d(k − τ)),

thus

Qkh(s, a) = min{〈wk
h,φ(s, a)〉+ β ‖φ(s, a)‖(Λk

H)−1 , H}
≥ Q∗h,k(s, a)− (H − h+ 1)(Bθ,E

√
d(k − τ) +Bµ,EH

√
d(k − τ)).
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Similar to Lemma 5, next we derive the bound for the gap between the value function estimate and the ground-truth value
function for the executing policy πk, δkh = V kh (skh)−V πk

h,k(skh), in a recursive manner, when the local variation is unknown.

Lemma 8. Let δkh = V kh (skh)−V πk

h,k(skh), ζkh+1 = E[δkh+1|skh, akh]− δkh+1. Under event E defined in Lemma 2, we have for
all (k, h) ∈ E × [H],

δkh ≤ δkh+1 + ζkh+1 + 2β
∥∥φkh∥∥(Λk

h)−1 +Bθ,E
√
d(k − τ) +Bµ,EH

√
d(k − τ).

Proof. By Lemma 6, for any (s, a, h, k) ∈ S ×A× [H]× E ,

Qkh(s, a)−Qπk

h (s, a) ≤ Pkh(V kh+1 − V π
k

h+1,k)(s, a) + 2β ‖φ(s, a)‖(Λk
H)−1 +Bθ,E

√
d(k − τ) +Bµ,EH

√
d(k − τ).

Note that Qkh(skh, a
k
h) = maxaQ

k
h(skh, a) = V kh (skh) according to Algorithm 1, and Qπ

k

h,k(skh, a
k
h) = V π

k

h,k(skh) by the
definition. Thus,

δkh ≤ δkh+1 + ζkh+1 + 2β
∥∥φkh∥∥(Λk

h)−1 +Bθ,E
√
d(k − τ) +Bµ,EH

√
d(k − τ).

Now we are ready to prove Theorem 8, which is the regret upper bound within one epoch.
Theorem 8. For each epoch E with epoch size W , if we set βk = cdH

√
log(2dW/p), where c is an absolute constant

and p ∈ (0, 1), then the dynamic regret within that epoch is Õ(
√
d3H3W + Bθ,E

√
d/HW 3/2 + Bµ,E

√
dHW 3/2) with

probability at least 1− p, where Bθ,E and Bµ,E are the total variation within that epoch.

Proof of Theorem 8. We denote the dynamic regret within an epoch as Dyn-Reg(E). We define δkh = V kh (skh) − V πk

h,k(skh)

and ζkh+1 = E[δkh+1|skh, akh]−δkh+1 as in Lemma 8. We derive the dynamic regret within a epoch E (the length of this epoch
is W which is equivalent to W

H episodes) conditioned on the event E defined in Lemma 2 which happens with probability
at least 1− p/2.

Dyn-Reg(E)

=
∑
k∈E

[
V ∗1,k(sk1)− V πk

1,k (sk1)
]

≤
∑
k∈E

[V k1 (sk1) +Bθ,EH
√
d(k − τ) +Bµ,EH

2
√
d(k − τ)− V πk

1,k (sk1)]

≤
∑
k∈E

[δk1 +Bθ,EH
√
d(k − τ) +Bµ,EH

2
√
d(k − τ)]

≤
∑
k∈E

H∑
h=1

ζkh + 2β
∑
k∈E

H∑
h=1

∥∥φkh∥∥(Λk
h)−1 + 2

∑
k∈E

Bθ,EH
√
d(k − τ) + 2

∑
k∈E

Bµ,EH
2
√
d(k − τ)

≤
∑
k∈E

H∑
h=1

ζkh + 2β
∑
k∈E

H∑
h=1

∥∥φkh∥∥(Λk
h)−1 +Bθ,EW

√
2d(W/H + 1) +Bµ,EW

√
2d(WH +H) (9)

where the first inequality is due to Lemma 7, the third inequality is due to Lemma 8, and the last inequality is due to
Jensen’s inequality. Now we need to bound the first two terms in the right side. Note that {ζkh} is a martingale difference
sequence satisfying |ζkh |≤ 2H for all (k, h). By Azuma-Hoeffding inequality we have for any t > 0,

P

(∑
k∈E

H∑
h=1

ζkh ≥ t
)
≥ exp(−t2/(2WH2)).

Hence with probability at least 1− p/2, we have

∑
k∈E

H∑
h=1

ζkh ≤ 2H
√
W log(2dW/p). (10)
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For the second term, note that by Lemma 11 for any h ∈ [H], we have∑
k∈E

(φkh)>(Λkh)−1φkh ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
≤ 2d log

(
W

H
+ 1

)
.

By Cauchy-Schwarz inequality, we have

∑
k∈E

H∑
h=1

∥∥φkh∥∥(Λk
h)−1 ≤

H∑
h=1

√
W/H

[∑
k∈E

(φkh)>(Λkh)−1φkh

]1/2

≤ H
√

2d
W

H
log

(
W

H
+ 1

)
≤ H

√
2d
W

H
log [2dW/p]. (11)

Finally, combining (9)–(11), we have with probability at least 1− p,

Dyn-Reg(E) ≤ 2H
√
W log(2dW/p) + C0dH

2
√

log(2dW )/p

√
2d
W

H
log[2dW/p]

+Bθ,EW
√

2d(W/H + 1) +Bµ,EW
√

2d(WH +H)

. Õ(
√
d3H3W +Bθ,E

√
d/HW 3/2 +Bµ,E

√
dHW 3/2).

Now we can derive the regret bound for the whole time horizon by summing over all epochs and applying a union bound.
We restate the regret upper bound and provide its detailed proof.
Theorem 9. If we set β = cdH

√
log(2dT/p), the dynamic regret of LSVI-UCB-Restart algorithm is

Õ(W−1/2Td3/2H3/2 +Bθd
1/2H−1/2W 3/2 +Bµd

1/2H1/2W 3/2), with probability at least 1− p.

Proof. In total there are N = d TW e epochs. For each epoch Ei if we set δ = p
N , then it will incur regret Õ(

√
d3H3W +

Bθ,Ei
√
d/HW 3/2 +Bµ,Ei

√
dHW 3/2) with probability at least 1− p

N . By summing over all epochs and applying a union
bound over them, we can obtain the regret upper bound for the whole time horizon. With probability at least 1− p,

Dyn-Reg(T ) =
∑
Ei

Dyn-Reg(Ei) .
∑
Ei

Õ(
√
d3H3W +Bθ,Ei

√
d/HW 3/2 +Bµ,Ei

√
dHW 3/2)

. Õ(d3/2H3/2TW−1/2 +Bθd
1/2H−1/2W 3/2 +Bµd

1/2H1/2W 3/2).

C. Detailed Description of ADA-LSVI-UCB-Restart
Inspired by bandit-over-bandit mechanism (Cheung et al., 2019), we develop the ADA-LSVI-UCB-Restart. The key
idea is to use LSVI-UCB-Restart as a subroutine (set β = cdH

√
log(2dT/p) since we assume total variations are

unknown), and periodically update the epoch size based on the historical data under the time-varying P and r (potentially
adversarial). More specifically, Ada-LSVI-UCB-Restart (Alg. 2) divides the whole time horizon into d T

HM e blocks
of equal length M episodes (the length of the last block can be smaller than M episodes), and specifies a set JW from
which epoch size is drawn. For each block i ∈ [d T

HM e], Ada-LSVI-UCB runs a master algorithm to select the epoch size
Wi and runs LSVI-UCB-Restart with Wi for the current block. After the end of this block, the total reward of this
block is fed back to the master algorithm, and the posteriors of the parameters are updated accordingly.

For the detailed master algorithm, we select EXP3-P (Bubeck & Cesa-Bianchi, 2012) since it is able to deal with non-
oblivious adversary. Now we present the details of Ada-LSVI-UCB-Restart. We set the length of each block M and
the feasible set of epoch size JW as follows:

M = d5T 1/2d1/2H−1/2e, JW = {H, 2H, 4H, . . . ,MH}.
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The intuition of designing the feasible set for epoch size JW is to guarantee it can well-approximate the optimal epoch size
with the knowledge of total variations while on the other hand make it as small as possible, so the learner do not lose much
by adaptively selecting the epoch size from JW . This intuition is more clear when we derive the dynamic regret bound of
Ada-LSVI-UCB-Restart. Denoting |JW |= ∆, the master algorithm EXP3-P treats each element of JW as an arm
and updates the probabilities of selecting each feasible epoch size based on the reward collected in the past. It begins by
initializing

α = 0.95

√
ln ∆

∆dT/MHe , β =

√
ln ∆

∆dT/MHe , (12)

γ = 1.05

√
ln ∆

∆dT/MHe , ql,1 = 0, l ∈ [∆], (13)

where α, β, γ are parameters used in EXP3-P and ql,1, l ∈ [∆] are the initialization of the estimated total reward of
running different epoch lengths. At the beginning of the block i, the agent first sees the initial state s(i−1)H

1 , and updates
the probability of selecting different epoch lengths for block i as

ul,i = (1− γ)
exp(αql,i)∑

l∈[∆] exp(αql,i)
+
γ

∆
. (14)

Then the master algorithm samples li ∈ [∆] according to the updated distribution {ul,i}i∈[∆]; the epoch size Wi for the
block i is chosen as li-th element in JW , bM li/blnMccH . After selecting the epoch size Wi, Ada-LSVI-UCB runs a new
copy of LSVI-UCB-Restart with that epoch size. By the end of each block, Ada-LSVI-UCB-Restart observes
the total reward of the current block, denoted as Ri(Wi, s

(i−1)H
1 ), then the algorithm updates the estimated total reward of

running different epoch sizes (divide Ri(Wi, s
(i−1)H
1 ) by MH to normalize):

ql,i+1 = ql,i +
β + 1{l = li}Ri(Wi, s

(i−1)H
1 )/MH

ul,i
. (15)

D. Proofs in Section 5
In this section, we derive the regret bound for Ada-LSVI-UCB-Restart algorithm.

Proof of Theorem 5. Let Ri(W, s
(i−1)H
1 ) be the totol reward recieved in i-th block by running proposed

LSVI-UCB-Restart with window size W starting at state s(i−1)H
1 , we can first decompose the regret as follows:

Dyn-Reg(T ) =

K∑
k=1

V ∗1,k(s1
k)−

dT/MHe∑
i=1

Ri(W
†, s

(i−1)H
1 )︸ ︷︷ ︸

1

+

dT/MHe∑
i=1

(Ri(W
†, s

(i−1)H
1 )−Ri(Wi, s

(i−1)H
1 )︸ ︷︷ ︸

2

,

where term 1 is the regret incurred by always selecting the best epoch size for restart in the feasible set JW , and term
2 is the regret incurred by adaptively tuning epoch size by EXP3-P. We denote the optimal epoch size in this case as
W ∗ = d(Bθ + Bµ + 1)−1/2d1/2H1/2T 1/2eH . It is straightforward to verify that 1 ≤ W ∗ ≤ MH , thus there exists a
W † ∈ JW such that W † ≤ W ∗ ≤ 2W †, which well-approximates the optimal epoch size up to constant factors. Denote
the total variation of θ and µ in block i as Bθ,i and Bµ,i respectively. Now we can bound the regret. For the first term, we
have

1 .
dT/MHe∑
i=1

Õ(d3/2H3/2MH(W †)−1/2 +Bθ,id
1/2H−1/2(W †)3/2 +Bµ,id

1/2H1/2(W †)3/2)

. Õ(d3/2H3/2T (W †)−1/2 +Bθd
1/2H−1/2(W †)3/2 +Bµd

1/2H1/2(W †)3/2)

. Õ(d3/2H3/2T (W ∗)−1/2 +Bθd
1/2H−1/2(W ∗)3/2 +Bµd

1/2H1/2(W ∗)3/2)

. Õ((Bθ +Bµ + 1)1/4d5/4H5/4T 3/4),
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where the first inequality is due to Theorem 4, and the third inequality is due to W † differs from W ∗ up to constant factor.
For the second term, we can directly apply the regret bound of EXP3-P algorithm (Bubeck & Cesa-Bianchi, 2012). In this
case there are ∆ = lnM + 1 arms, number of equivalent time steps is d T

MH e, and loss per equivalent time step is bounded
within [0,MH]. Thus we have

2 . Õ(MH
√

∆T/MH) ≤ Õ(d1/4H3/4T 3/4).

Combining the bound of 1 and 2 yields the regret bound of Ada-LSVI-UCB-Restart,

Dyn-Reg(T ) . Õ((Bθ +Bµ + 1)1/4d5/4H5/4T 3/4).

E. Auxiliary Lemmas
In this section, we present some useful auxiliary lemmas.

Lemma 9. For any fixed policy π, let {wπh,k}h∈[H],k∈[K] be the corresponding weights such that Qπh,k(s, a) =
〈φ(s, a),wπ

h,k〉 for all (s, a, h, k) ∈ S ×A× [H]× [K]. Then we have

∀(k, h) ∈ [K]× [H],
∥∥wπ

h,k

∥∥ ≤ 2H
√
d.

Proof. By the Bellman equation, we know that for any (h, k) ∈ [H]× [K],

Qπh,k(s, a) = (rkh + PkhV πh+1,k)(s, a)

= 〈θh,k +

∫
V πh+1,kdµh,k(s′),φ(s, a)〉

= 〈wπ
h,k,φ(s, a)〉,

where the second equality holds due to the linear MDP assumption. Under the normalization assumption in Def. 1, we
have ‖θh,k‖ ≤

√
d, V πh+1,k ≤ H and ‖µh,k(s′)‖ ≤

√
d. Thus,

wπ
h,k ≤

√
d+H

√
d ≤ 2H

√
d.

Lemma 10. Let Λt = I +
∑t
i=1 φ

>
i φi, where φt ∈ Rd, then

t∑
i=1

φ>i (Λt)
−1φi ≤ d.

Proof. We have
∑t
i=1 φ

>
i (Λt)

−1φi =
∑t
i=1 Tr(φ>i (Λt)

−1φi) = Tr((Λt)
−1
∑t
i=1 φiφ

>
i ). After apply eigen-

value decomposition, we have
∑t
i=1 φiφ

>
i = Udiag(λ1, . . . , λd) and Λt = Udiag(λ1 + 1, . . . , λd + 1). Thus∑t

i=1 φ
>
i (Λt)

−1φi =
∑d
i=1

λi

λi
≤ d.

Lemma 11. (Abbasi-Yadkori et al., 2011) Let {φt}t≥0 be a bounded sequence in Rd satisfying supt≥0 ‖φt‖ ≤ 1. Let
Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we define Λt = Λ0 +

∑t
j=1 φ

>
j φj . Then if the smallest eigenvalue

of Λ0 satisfies λmin(Λ0) ≥ 1, we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

φ>j Λ−1
j−1φj ≤ 2 log

[
det(Λt)

det(Λ0)

]
.
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