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Abstract
Policy evaluation (including multi-step off-policy
importance sampling) has the interpretation of
solving a generalized Bellman equation. In this
paper, we derive finite-sample bounds for any gen-
eral off-policy TD-like stochastic approximation
algorithm that solves for the fixed point of this
generalized Bellman operator. Our key step is to
show that the generalized Bellman operator is si-
multaneously a contraction mapping with respect
to a weighted `p-norm for each p in [1,∞), with
a common contraction factor. Our results imme-
diately imply finite-sample bounds of variants of
off-policy TD-learning algorithms in the literature
(e.g. Qπ(λ), Tree-Backup, Retrace, and Q-trace).

1. Introduction
Reinforcement learning (RL) demonstrated its success in
learning effective policies for a variety of decision making
problems. In RL, there is an important sub-problem – called
the policy evaluation problem – of estimating the expected
long term reward of a given policy.

The policy evaluation problem is usually solved with the
TD-learning method (Sutton, 1988). A key ingredient in
TD-learning is the policy used to collect samples (called
the behavior policy). Ideally we want to generate samples
from the target policy whose value function we want to
estimate, and this is called on-policy sampling. However, in
many cases such on-policy sampling is not possible due to
practical reasons, and hence we need to work with historical
data that is generated by a possibly different policy (aka off-
policy sampling). For example, in high stake applications
such as clinic trials (Zhao et al., 2011), it is not practically
possible to re-collect data every time we need to evaluate
the performance of a given policy.
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Although off-policy sampling is more practical than on-
policy sampling, it is more challenging to analyze and is
known to have high variance (Glynn & Iglehart, 1989),
which is due to the presence of the product of the importance
sampling ratios, and is a fundamental difficulty in off-policy
learning. To overcome this difficulty, many variants of off-
policy TD-learning algorithms have been proposed in the
literature, such as the Qπ(λ) (Harutyunyan et al., 2016)
algorithm, the TB(λ) algorithm (Precup et al., 2000), the
Retrace(λ) algorithm (Munos et al., 2016), and the Q-trace
algorithm (Khodadadian et al., 2021), etc.

Main Contributions. In this work, we establish finite-
sample bounds of a general n-step off-policy TD-learning
algorithm that also subsumes several algorithms presented
in the literature. The key step is to show that such algorithm
can be modeled as a Markovian stochastic approximation
(SA) algorithm for solving a generalized Bellman equation.
We present sufficient conditions under which the generalized
Bellman operator is contractive with respect to a weighted
`p-norm for every p ∈ [1,∞), with a uniform contraction
factor for all p. Our result shows that the sample complexity
scales as Õ(ε−2), where ε is the required accuracy. It also
involves a factor that depends on the problem parameters, in
particular, the generalized importance sampling ratios, and
explicitly demonstrates the bias-variance trade-off.

Our result immediately gives finite-sample guarantees for
variants of multi-step off-policy TD-learning algorithms
including Qπ(λ), TB(λ), Retrace(λ), and Q-trace. For
Qπ(λ), TB(λ), and Retrace(λ), we establish the first-known
results in the literature, while for Q-trace, we improve the
best known results in (Khodadadian et al., 2021). In this
paper we only present the finite-sample bound for Q-trace.

1.1. Preliminaries
The RL problem is usually modeled as a Markov decision
process (MDP). In this work, we consider an MDP with
a finite set of states S, a finite set of actions A, a set of
unknown action dependent transition probability matrices
P = {Pa ∈ R|S|×|S| | a ∈ A}, an unknown reward
function R : S × A 7→ [0, 1], and a discount factor γ ∈
(0, 1). In order for an MDP to progress, we must specify
the policy of selecting actions based on the state of the



Title Suppressed Due to Excessive Size

environment. Specifically, a policy π is a mapping from
the state-space to probability distributions supported on
the action space, i.e., π : S 7→ ∆|A|. The state-action
value function Qπ associated with a policy π is defined by
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kR(Sk, Ak) | S0 = s,A0 = a] for
all (s, a). The goal in policy evaluation is to estimate the
state-action value function Qπ for a given policy π.

Since the transition probabilities as well as the reward func-
tion are unknown, such state-action value function cannot be
directly computed. The TD-learning algorithm is designed
to estimate Qπ using the SA method. Specifically, in TD-
learning, we first collect a sequence of samples {(Sk, Ak)}
from the model using some behavior policy πb. Then the
value function Qπ is iteratively estimated using the samples
{(Sk, Ak)}. When πb = π, the algorithm is called on-policy
TD-learning, otherwise it is called off-policy TD-learning.

2. Finite-sample analysis of general off-policy
TD-learning

In this section, we present finite-sample analysis of off-
policy TD-learning using generalized importance sampling
ratios and multi-step bootstrapping.

2.1. A generic model for n-step off-policy TD
Algorithm 1 presents our generic algorithm model. Due to
off-policy sampling, the two functions c, ρ : S ×A 7→ R+

are introduced in Algorithm 1 to serve as generalized impor-
tance sampling ratios in order to account for the discrepancy
between π and πb. We denote cmax = maxs,a c(s, a) and
ρmax = maxs,a ρ(s, a). We next show how Algorithm 1
captures variants of off-policy TD-learning algorithms in
the literature by using different c(·, ·) and ρ(·, ·).

Algorithm 1 General n-Step Off-Policy TD-Learning
1: Input: K, {αk}, Q0, π, πb, generalized importance

sampling ratios c, ρ : S ×A 7→ R+, and sample trajec-
tory {(Sk, Ak)}0≤k≤K+n collected under the behavior
policy πb.

2: for k = 0, 1, · · · ,K − 1 do
3: αk(s, a) = αkI{(s,a)=(Sk,Ak)} for all (s, a)
4: ∆(Si, Ai, Si+1, Ai+1, Qk) = R(Si, Ai) +

γρ(Si+1, Ai+1)Qk(Si+1, Ai+1) − Qk(Si, Ai)
for all i ∈ {k, k + 1, ..., k + n− 1}.

5: Qk+1(s, a) = Qk(s, a)+

αk(s, a)
∑k+n−1
i=k γi−k

∏i
j=k+1 c(Sj , Aj)×

∆(Si, Ai, Si+1, Ai+1, Qk) for all (s, a)
6: end for
7: Output: QK

Vanilla IS. When c(s, a) = ρ(s, a) = π(a|s)
πb(a|s) for all (s, a),

Algorithm 1 is the standard off-policy TD-learning with
importance sampling (Precup et al., 2000). We will refer to

this algorithm as Vanilla IS.

Qπ(λ). When c(s, a) = λ and ρ(s, a) = π(a|s)
πb(a|s) , Algorithm

1 is the Qπ(λ) algorithm (Harutyunyan et al., 2016).

TB(λ). When c(s, a) = λπ(a|s) and ρ(s, a) = π(a|s)
πb(a|s) , we

have the TB(λ) algorithm (Precup et al., 2000).

Retrace(λ). When c(s, a) = λmin(1, π(a|s)
πb(a|s) ) and

ρ(s, a) = π(a|s)
πb(a|s) , we have the Retrace(λ) algorithm.

Q-trace. When c(s, a) = min(c̄, π(a|s)
πb(a|s) ) and ρ(s, a) =

min(ρ̄, π(a|s)
πb(a|s) ), where ρ̄ ≥ c̄, Algorithm 1 is the Q-trace al-

gorithm (Khodadadian et al., 2021). The Q-trace algorithm
is an analog of the V -trace algorithm (Espeholt et al., 2018).

From now on, we focus on studying the generic algorithm
1. We make the following assumption about the behavior
policy πb, which is fairly standard in off-policy TD-learning.

Assumption 2.1. The behavior policy πb satisfies
πb(a|s) > 0 for all (s, a), and the Markov chain {Sk}
induced by πb is irreducible and aperiodic.

Irreducibility and aperiodicity together imply that the
Markov chain {Sk} has a unique stationary distribution,
which we denote by κS ∈ ∆|S|. Moreover, the Markov
chain {Sk} mixes geometrically fast in that there exist C >
0 and σ ∈ (0, 1) such that maxs∈S ‖P k(s, ·)−κS(·)‖TV ≤
Cσk for all k ≥ 0, where ‖·‖TV is the total variation distance
(Levin & Peres, 2017). Let κSA ∈ ∆|S||A| be such that
κSA(s, a) = κS(s)πb(a|s) for all (s, a). Note that κSA is
the stationary distribution of the Markov chain {(Sk, Ak)}.
Let KS = diag(κS) ∈ R|S|×|S| and KSA = diag(κSA) ∈
R|S||A|×|S||A|, and denote the minimal diagonal entries of
KS and KSA by KS,min and KSA,min respectively.

2.2. Identifying the generalized Bellman operator
In this section, we identify the generalized Bellman equation
Algorithm 1 aims at solving, and also the corresponding
generalized Bellman operator and its asynchronous variant.
Let Tc,Hρ : R|S||A| 7→ R|S||A| be two operators defined by

[Tc(Q)](s, a)

=
∑n−1
i=0 γ

iEπb
[∏i

j=1 c(Sj , Aj)Q(Si, Ai)|S0 =s,A0 =a
]
,

[Hρ(Q)](s, a) = R(s, a)+
γEπb [ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s,Ak = a].

for all (s, a). Note that the operator Tc(·) depends on the
generalized importance sampling ratio c(·, ·), while the op-
eratorHρ(·) depends on ρ(·, ·).

With Tc(·) and Hρ(·) defined above, Algorithm 1 can
be viewed as an asynchronous SA algorithm for solving
the generalized Bellman equation Bc,ρ(Q) = Q, where
the generalized Bellman operator Bc,ρ(·) is defined by
Bc,ρ(Q) = Tc(Hρ(Q) − Q) + Q. Since Algorithm 1 per-
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forms asynchronous update, using the terminology in (Chen
et al., 2021a), we further define the asynchronous variant
B̃c,ρ(·) of the generalized Bellman operator Bc,ρ(·) by

B̃c,ρ(Q) := KSABc,ρ(Q) + (I −KSA)Q. (1)

Each component of the asynchronous generalized Bellman
operator B̃c,ρ(·) can be thought of as a convex combination
with identity, where the weights are the stationary proba-
bilities of visiting state-action pairs (s, a) ∈ S × A. This
captures the fact that when performing asynchronous up-
date, the corresponding component is updated only when
the state-action pair (s, a) is visited. It is clear from its
definition that B̃c,ρ(·) has the same fixed-points as Bc,ρ(·)
(provided that they exist).

Under some mild conditions on the generalized importance
sampling ratios c(·, ·) and ρ(·, ·), we will show in the next
section that both the asynchronous generalized Bellman op-
erator B̃c,ρ(·) and the operator Hρ(·) are contraction map-
pings. Therefore, since Tc(0) = 0, the operators Hρ(·),
Bc,ρ(·), B̃c,ρ(·) all share the same unique fixed-point. Since
the fixed-point of the operator Hρ(·) depends only on the
generalized importance sampling ratio ρ(·, ·), but not on
c(·, ·), we can flexibly choose c(·, ·) to control the variance
while maintaining the fixed-point of the operator B̃c,ρ(·).

2.3. Establishing the contraction property
In this section, we study the fixed-point and the contrac-
tion property of the asynchronous generalized Bellman op-
erator B̃c,ρ(·). We begin by introducing some notation.
Let Dc, Dρ ∈ R|S||A|×|S||A| be two diagonal matrices
such that Dc((s, a), (s, a)) =

∑
a∈A πb(a|s)c(s, a) and

Dρ((s, a), (s, a)) =
∑
a∈A πb(a|s)ρ(s, a) for all (s, a).

We denote Dc,min (Dc,max) and Dρ,min (Dρ,max) as the
minimal (maximal) diagonal entries of the matrices Dc and
Dρ respectively. In view of the definition of B̃c,ρ(·) in Eq.
(1), the fixed-point of Hρ(·) must also be a fixed-point of
B̃c,ρ(·). We first study the fixed point ofHρ(·) by establish-
ing its contraction property.
Proposition 2.1. Suppose that Dρ,max < 1/γ. Then the
operatorHρ(·) is a contraction mapping with respect to the
`∞-norm, with contraction factor γDρ,max. In this case,
the unique fixed-point Qπ,ρ ofHρ(·) satisfies the following
inequality: ‖Qπ−Qπ,ρ‖∞ ≤ γmaxs,a |π(a|s)−πb(a|s)ρ(s,a)|

(1−γ)(1−γDρ,max) .

Observe from Proposition 2.1 that when ρ(s, a) = π(a|s)
πb(a|s) ,

which is the case for Qπ(λ), TB(λ), and Retrace(λ), the
unique fixed-point Qπ,ρ is exactly the target value function
Qπ. This agrees with the definition of the operator Hρ(·)
in that it reduces to the regular Bellman operator Hπ(·)
when ρ(s, a) = π(a|s)

πb(a|s) for all (s, a). If ρ(s, a) 6= π(a|s)
πb(a|s)

for some (s, a), then in general the fixed-point ofHρ(·) is
different from Qπ . In that case, Proposition 2.1 provides an
error bound on the difference between the potentially biased

limit Qπ,ρ and Qπ. Such error bound will be useful for us
to study the Q-trace algorithm.

To further guarantee the uniqueness of the fixed-point of
B̃c,ρ(·), we establish the contraction property of B̃c,ρ(·). We
begin with the following definition.

Definition 2.1. Let {µi}1≤i≤d be positive weights. For
any x ∈ Rd, the weighted `p-norm (p ∈ [1,∞)) of x with
weights {µi} is defined by ‖x‖µ,p = (

∑
i µi|xi|p)1/p.

We next establish the contraction property of the op-
erator B̃c,ρ(·) in the following theorem. Let ω =
KSA,minf(γDc,min)(1 − γDρ,max), where the function
f : R 7→ R is defined by f(x) = n when x = 1, and
f(x) = 1−xn

1−x when x 6= 1.

Theorem 2.1. Suppose that c(s, a) ≤ ρ(s, a) for all (s, a)
and Dρ,max < 1/γ. Then for any θ ∈ (0, 1), there ex-
ists a weight vector µ ∈ ∆|S||A| satisfying µ(s, a) ≥

ω(1−θ)
(1−θω)|S||A| for all (s, a) such that the operator B̃c,ρ(·)
is a contraction mapping with respect to ‖ · ‖µ,p for any
p ∈ [1,∞), with a common contraction factor 1− θω.

Theorem 2.1 is the key result for our finite-sample anal-
ysis, and we present its proof in the next section. The
weighted `p-norm (especially the weighted `2-norm) con-
traction property we established for the operator B̃c,ρ(·) has
a far-reaching impact even beyond the finite-sample anal-
ysis of tabular RL in this paper. Specifically, recall that
the key property used for establishing the convergence and
finite-sample bound of on-policy TD-learning with linear
function approximation in the seminal work (Tsitsiklis &
Van Roy, 1997) is that the corresponding Bellman opera-
tor is a contraction mapping not only with respect to the
`∞-norm, but also with respect to a weighted `2-norm. We
establish the same property in the off-policy setting, and
hence lay down the foundation for extending our results to
the function approximation setting. This is an immediate
future research direction.

2.4. Proof of Theorem 2.1
We begin by explicitly computing the asynchronous gen-
eralized Bellman operator B̃c,ρ(·). Let πc and πρ be two
policies defined by πc(a|s) = πb(a|s)c(s,a)

Dc((s,a),(s,a)) and πρ(a|s) =
πb(a|s)ρ(s,a)
Dρ((s,a),(s,a)) for all (s, a).

Proposition 2.2. The operator B̃c,ρ(·) is explicitly given
by B̃c,ρ(Q) = AQ + b for any Q, where A =

I − KSA
∑n−1
i=0 (γPπcDc)

i(I − γPπρDρ) and b =

KSA
∑n−1
i=0 (γPπcDc)

iR.

In light of Proposition 2.2, to prove Theorem 2.1, it is
enough to work with the matrix A. To proceed, we require
the following definition.

Definition 2.2. Given β ∈ [0, 1], a matrix M ∈ Rd×d is



Title Suppressed Due to Excessive Size

called a substochastic matrix with modulus β if and only if
Mij ≥ 0 for all i, j and

∑
jMij ≤ 1− β for all i.

We next show in the following two propositions that (1) the
matrix A given in Proposition 2.2 is a sub-stochastic matrix
with modulus ω, and (2) for any sub-stochastic matrix M
with a positive modulus, there exist weights {µi} such that
the induced matrix norm ‖M‖µ,p is strictly less than 1.
These two results together imply Theorem 2.1.

Proposition 2.3. Suppose that c(s, a) ≤ ρ(s, a) for all
(s, a) and Dρ,max < 1/γ. Then the matrix A given in
Proposition 2.2 is a sub-stochastic matrix with modulus ω,
where ω = KSA,minf(γDc,min)(1− γDρ,max).

The condition c(s, a) ≤ ρ(s, a) ensures that the matrix A
is non-negative, and the condition Dρ,max < 1/γ ensures
that the each row of the matrix A sums up to at most 1− ω.
Together they imply the substochasticity of A. The modulus
ω is an important parameter for our finite-sample analysis.
In view of Theorem 2.1, we see that large modulus gives
smaller (or better) contraction factor of B̃c,ρ(·).

Proposition 2.4. For any sub-stochastic matrix M ∈ Rd×d
with a positive modulus β ∈ (0, 1), for any θ ∈ (0, 1), there
exists µ ∈ ∆d satisfying µi ≥ β(1−θ)

(1−θβ)d for all i such that
‖M‖µ,p ≤ 1− θβ for any p ∈ [1,∞). Furthermore, if M
is irreducible 1, then we can choose θ = 1.

Note that Proposition 2.4 introduces the tunable parameter
θ. It is clear that large θ gives better contraction factor of
B̃c,ρ(·) but worse lower bound on the entries of the weight
vector µ. In general, when M is not irreducible, we can-
not hope to choose a weight vector µ ∈ ∆d with positive
components and obtain ‖M‖µ,p ≤ 1− ω. To see this, con-
sider the example where M = (1− ω)[0,0, · · · ,1], which
is clearly a substochastic matrix with modulus ω, but is
not an irreducible matrix. For any weight vector µ ∈ ∆d,
we have ‖M‖µ,p = (1 − ω) maxx∈Rd:‖x‖µ,p=1 |xd| =

(1− ω)/µ
1/p
d > 1− ω. However, by choosing µd close to

unity, we can get ‖M‖µ,p arbitrarily close to 1 − ω. This
is analogous to choosing θ close to one in Proposition 2.4.
Since Proposition 2.4 is the major result for proving Theo-
rem 2.1, we provide its proof sketch in Section 3.

2.5. Finite-sample convergence guarantees
In light of Theorem 2.1, Algorithm 1 is a Markovian SA
algorithm for solving a fixed-point equation B̃c,ρ(Q) = Q,
where the fixed-point operator B̃c,ρ(·) is a contraction map-
ping. Therefore, to establish the finite-sample bounds, we
use a Lyapunov drift argument where we choose W (Q) =
‖Q − Qπ,ρ‖2µ,p as the Lyapunov function. This leads to a
finite-sample bound on E[‖Qk−Qπ,ρ‖2µ,p]. However, since
µ is unknown, to make the finite-sample bound independent

1A non-negative matrix is irreducible if and only if its associ-
ated graph is strongly connected (Berman & Plemmons, 1994).

of µ, we use the lower bound on µ(s, a) provided in The-
orem 2.1 and also tune the parameters p and θ to obtain a
finite-sample bound on E[‖Qk−Qπ,ρ‖2∞]. The fact that the
contraction factor 1− θω (cf. Theorem 2.1) is independent
of p plays an important role in such tuning process.

To present the results, we need to introduce more notation.
For any δ > 0, define tδ(MCS) as the mixing time of the
Markov chain {Sk} (induced by πb) with precision δ, i.e.,
tδ(MCS) = min{k ≥ 0 : maxs∈S ‖P k(s, ·)−κS(·)‖TV ≤
δ}. Under Assumption 2.1, we can easily verify that
tδ(MCS) ≤ L(log(1/δ) + 1) for some constant L > 0.
Let τδ,n = tδ(MCS) + n + 1. The parameters {ci}1≤i≤3

used in the following theorem are numerical constants.
Theorem 2.2. Consider {Qk} of Algorithm 1. Suppose that
(1) Assumptions 2.1 is satisfied, (2) c(s, a) ≤ ρ(s, a) for
all (s, a) and Dρ,max < 1/γ, and (3) α is chosen such that
ατα,n ≤ c1ω

log(2|S||A|/ω)f(γcmax)2(γρmax+1)2 . Then we have
the following finite-sample convergence bound:

E[‖Qk −Qπ,ρ‖2∞]≤ζ1
(

1−ωα
2

)k−τα,n
+ζ2

f(γcmax)2(γρmax+1)2 log(2|S||A|/ω)

ω
ατα,n, (2)

where ζ1 = c2(‖Q0 −Qπ,ρ‖∞ + ‖Q0‖∞ + 1)2, and ζ2 =
c3(3‖Qπ,ρ‖∞ + 1)2.

Theorem 2.2 enables one to design a wide class of off-
policy TD variants with provable finite-sample guarantees
by choosing appropriate generalized importance sampling
ratios c(·, ·) and ρ(·, ·), which, as we will see soon, are
closely related to the bias-variance trade-off in Algorithm
1. The first term on the RHS of Eq. (2) is usually called the
convergence bias in SA literature (Bottou et al., 2018), and
it goes to zero at a geometric rate. The second term on the
RHS of Eq. (2) stands for the variance in the iterates, and it
is a constant proportional to ατα,n. To see more explicitly
the bias-variance trade-off, we derive the sample complexity
of Algorithm 1 in the following.
Corollary 2.2.1. For an accuracy ε > 0, to obtain E[‖Qk−
Qπ,ρ‖∞] ≤ ε, the sample complexity is

Õ
(

n

ε2(1−γ)2

)
︸ ︷︷ ︸

T1

Õ
(

f(γcmax)2(γρmax + 1)2

K2
SAf(γDc,min)2(1−γDρ,max)2

)
︸ ︷︷ ︸

T2

.

From Corollary 2.2.1, we see that the dependency on the
accuracy is Õ(ε−2), and the dependency on the parameter
n and the effective horizon 1/(1 − γ) is Õ(n/(1 − γ)2),
both of which are the same as TD-learning in the on-policy
setting (Chen et al., 2021a). The impact of performing off-
policy sampling is captured by the term T3, which depends
on the choice of the importance sampling ratios.

In the numerator of T3, we have f(γcmax)2(γρmax + 1)2,
which is from the second term on the RHS of Eq. (2),
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and represents the impact of the variance on the sample
complexity. It is clear that smaller cmax and ρmax lead to
smaller variance. As we will see later, this is the reason
for the variance reduction of various off-policy TD-learning
algorithms in the literature. In the denominator of T3, we
have K2

SA,minf(γDc,min)2(1 − γDρ,max)2 = ω2, which
represents the effect of the contraction factor. To see this,
recall from Theorem 2.1 that the contraction factor is 1−θω.
In light of the previous analysis, the bias-variance trade-off
in general off-policy multi-step TD-learning algorithm 1 is
intuitively of the form Õ

(
Variance

(1− Contraction factor)2

)
.

2.6. Finite-sample analysis of Q-Trace
In this section, we apply Theorem 2.2 to the Q-trace algo-
rithm and obtain an improved sample complexity compared
to (Khodadadian et al., 2021). Similarly, our results can
be used to obtain the first-known finite-sample bounds of
Vanilla IS, Qπ(λ), TB(λ), and Retrace(λ).

Consider the Q-trace algorithm, where c(s, a) =

min(c̄, π(a|s)
πb(a|s) ) and ρ(s, a) = min(ρ̄, π(a|s)

πb(a|s) ) for all (s, a).
This implies that cmax = c̄ and ρmax = ρ̄. More-
over, we have Dc(s, a) =

∑
a min(c̄πb(a|s), π(a|s)) and

Dρ(s, a) =
∑
a min(ρ̄πb(a|s), π(a|s)) for all (s, a).

Theorem 2.3. Consider Algorithm 1 with Q-trace update.
Under Assumption 2.1, suppose c̄ ≤ ρ̄ and α is chosen
such that ατα,n ≤ c1ω

log(2|S||A|/ω)f(γc̄)2(γρ̄+1)2 . Then for all

k≥ τα,n we have E[‖Qk−Qπ,ρ‖2∞]≤ ζ1
(
1− ωα

2

)k−τα,n
+

ζ2
f(γc̄)2(γρ̄+1)2 log(2|S||A|/ω)

ω ατα,n, where ω =
KSA,minf(γDc,min)(1−γDρ,max). This implies a sample

complexity of Õ
(

log2(1/ε)nf(γc̄)2(γρ̄+1)2

ε2K2
SAf(γDc,min)2(1−γDρ,max)2(1−γ)2

)
.

To avoid an exponential large variance, in view of the term
f(γc̄) in our bound, we need to choose c̄ ≤ 1/γ. Due to the
truncation level ρ̄, the algorithm converges to a biased limit
Qπ,ρ instead of Qπ . Such truncation bias can be controlled
using Proposition 2.1. These observations agree with the
results (Khodadadian et al., 2021), where the finite-sample
bounds of Q-trace were first established.

Compared to (Khodadadian et al., 2021), we have an im-
proved sample complexity. Specifically, we have a sample
complexity of Õ( log2(1/ε)nf(γc̄)2(γρ̄+1)2

ε2K2
SAf(γDc,min)2(1−γDρ,max)2

), while the
result in (Khodadadian et al., 2021) implies a sample com-
plexity of Õ( log2(1/ε)nf(γc̄)2(γρ̄+1)2

ε2K3
SAf(γDc,min)3(1−γDρ,max)3

), which has an

additional factor of (KSAf(γDc,min)(1 − γDρ,max))−1.
Since K−1

SA,min ≥ |S||A|, our result improves the depen-
dency on the size of the state-action space by a factor of at
least |S||A| compared to (Khodadadian et al., 2021). Simi-
larly, since V -trace is an analog of Q-trace, we can improve
the sample complexity for V -trace in (Chen et al., 2021a).

3. Proof sketch of Proposition 2.4
The idea is to construct a stochastic matrix M ′′ such that (1)
M ′′ dominates M in the sense that M ′′ij ≥Mij for all i, j,
and (2) the Markov chain associated with M ′′ is irreducible,
hence admits a unique stationary distribution µ satisfying
µi > 0 for all i. Using µ as weights, we have the desired
result. The detailed analysis is presented in our online report
(Chen et al., 2021b). We here only present how to construct
such a stochastic matrix M ′′.

First of all, consider the special case where M itself is irre-
ducible. Then we first scale upM by a factor of 1/(1−ω) to
obtain M ′ = M

1−ω , which is clearly a substochastic matrix,
with modulus zero. Hence there exists a stochastic matrix
M ′′ that dominates M ′ (and also dominates M ). Moreover,
since M ′′ is also irreducible, its associated Markov chain
admits a unique stationary distribution µ. This is equivalent
to choosing θ = 1 in Proposition 2.4. In fact, the matrix
M being irreducible is only a sufficient condition for us to
choose θ = 1. What we need is the existence of a strictly
positive stationary distribution of the stochastic matrix M ′′,
which is guaranteed whenM ′′ does not have transient states.

Now consider the general case where M is not necessarily
irreducible. We construct the intermediate matrix M ′ by
performing a convex combination of the matrix M

1−ω and
the uniform stochastic matrix E

d , where E is the all one
matrix, with weight 1−ω

1−θω . Specifically, for any θ ∈ (0, 1),

we define M ′ =
(

1−ω
1−θω

)
M

1−ω +
(

1− 1−ω
1−θω

)
E
d . Note that

M ′ is a non-negative matrix. In addition, since M ′1 ≤
1−ω
1−θω1 +

(
1− 1−ω

1−θω

)
1 = 1, where 1 is the all one vector,

the matrix M ′ is a substochatic matrix with modulus zero,
and is also irreducible because all its entries are strictly
positive. Therefore, there exists a stochastic matrix M ′′

such that M ′′ ≥M ′. In addition, since M ′′ also has strictly
positive entries, the Markov chain associated with M ′′ is
irreducible, hence admits a unique stationary distribution
µ ∈ ∆d. By our construction, we can show a lower bound
on the components of the stationary distribution µ.

4. Conclusion
In this work, we establish finite-sample guarantees of gen-
eral n-step off-policy TD-learning algorithms. The key in
our approach is to identify a generalized Bellman operator
and establishes its contraction property with respect to a
weighted `p-norm for each p ∈ [1,∞), with a uniform con-
traction factor. Our results are used to derive finite-sample
guarantees of variants of n-step off-policy TD-learning al-
gorithms in the literature. In particular, for Q-trace, we
improve the result in (Khodadadian et al., 2021). The finite-
sample bounds we establish also provide insights about the
trade-off between the convergence rate and the variance.



Title Suppressed Due to Excessive Size

References
Berman, A. and Plemmons, R. J. Nonnegative matrices in

the mathematical sciences. SIAM, 1994.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam,
K. A Lyapunov theory for finite-sample guarantees
of asynchronous Q-learning and TD-learning variants.
Preprint arXiv:2102.01567, 2021a.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam,
K. Finite-Sample Analysis of Off-Policy TD-Learning
via Generalized Bellman Operators. arXiv preprint
arXiv:2106.12729, 2021b.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures. In
International Conference on Machine Learning, pp. 1407–
1416, 2018.

Glynn, P. W. and Iglehart, D. L. Importance sampling
for stochastic simulations. Management science, 35(11):
1367–1392, 1989.

Harutyunyan, A., Bellemare, M. G., Stepleton, T., and
Munos, R. Q(λ) with Off-Policy Corrections. In In-
ternational Conference on Algorithmic Learning Theory,
pp. 305–320. Springer, 2016.

Khodadadian, S., Chen, Z., and Maguluri, S. T. Finite-
Sample Analysis of Off-Policy Natural Actor-Critic Al-
gorithm. The 38th International Conference on Machine
Learning, 2021.

Levin, D. A. and Peres, Y. Markov chains and mixing times,
volume 107. American Mathematical Soc., 2017.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. G. Safe and efficient off-policy reinforcement learning.
In Proceedings of the 30th International Conference on
Neural Information Processing Systems, pp. 1054–1062,
2016.

Precup, D., Sutton, R. S., and Singh, S. P. Eligibility Traces
for Off-Policy Policy Evaluation. In Proceedings of the
Seventeenth International Conference on Machine Learn-
ing, pp. 759–766, 2000.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Tsitsiklis, J. N. and Van Roy, B. Analysis of temporal-
difference learning with function approximation. In Ad-
vances in neural information processing systems, pp.
1075–1081, 1997.

Zhao, Y., Zeng, D., Socinski, M. A., and Kosorok, M. R.
Reinforcement learning strategies for clinical trials in
nonsmall cell lung cancer. Biometrics, 67(4):1422–1433,
2011.


