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Abstract
Agents trained by reinforcement learning (RL) of-
ten fail to generalize beyond the environment they
were trained in, even when presented with new
scenarios that seem similar to the training envi-
ronment. We study the query complexity required
to train RL agents that generalize to multiple en-
vironments. Intuitively, tractable generalization is
only possible when the environments are similar
or close in some sense. To capture this, we intro-
duce Weak Proximity, a natural structural condi-
tion that requires the environments to have highly
similar transition and reward functions and share
a policy providing optimal value. Despite such
shared structure, we prove that tractable general-
ization is impossible in the worst case. This holds
even when each individual environment can be ef-
ficiently solved to obtain an optimal linear policy,
and when the agent possesses a generative model.
Our lower bound applies to the more complex task
of representation learning for efficient generaliza-
tion to multiple environments. On the positive
side, we introduce Strong Proximity, a strength-
ened condition which we prove is sufficient for
efficient generalization.

1. Introduction
Reinforcement learning (RL) is the dominant paradigm for
sequential decision making in machine learning. But many
issues prevent RL from being regularly used in the real
world. For example, one typically trains and tests RL agents
in the same environment. In such cases, an agent can mem-
orize behavior that achieves high reward, without acquiring
the true behavior that the system designer desires. This has
raised concerns about RL agents overfitting to a single envi-
ronment, instead of learning meaningful skills (Farebrother
et al., 2018). And although RL agents can solve difficult
tasks, they struggle to transfer the skills they learned in one
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task to perform well in a different but similar task (Rakelly
et al., 2019; Yu et al., 2019). Yet, in the real world, it is
reasonable to expect that RL agents will see scenarios that
are different from the specific scenarios they trained for.

Hence, a desirable property of RL agents is that of general-
ization, broadly defined as the ability to discern the correct
notion of behavior and perform well in semantically similar
environments. We focus on two popular generalization set-
tings. The Average Performance setting assumes there is an
underlying distribution over the environments that an agent
might encounter. The agent’s goal is to perform well on aver-
age across this distribution (Packer et al., 2018; Nichol et al.,
2018; Cobbe et al., 2019). The Meta Reinforcement Learn-
ing setting is closely related (Finn et al., 2017; Clavera et al.,
2019; Rakelly et al., 2019). Here an agent first learns from
training environments sampled from a distribution. Then at
test time the agent must leverage this experience to adapt to
a new environment sampled from the same distribution, via
only a few queries in the new environment.

Of course, in full generality, both notions of generalization
are impossible to achieve efficiently. Hence, key to both
lines of inquiry is the premise that the environments are
structurally similar. For example, a robot may face the dif-
fering tasks of screwing a bottle cap and turning a doorknob,
but both tasks involve turning the wrist (Rakelly et al., 2019).
The hope is that if the environments are sufficiently similar,
then RL can exploit this structure to efficiently discover poli-
cies that generalize. Yet, it remains unclear what it means
for different environments to be close or similar. Motivated
by this, we ask the following question:

What are the structural conditions on the
environments that permit efficient generalization?

This question underlies the analysis of our paper. We focus
on environments that share state-action spaces, since even
this basic case is not well understood in the literature. In-
deed, even in this simplified setting, efficient generalization
is highly non-trivial. We make the following contributions.

Our Contributions. We introduce Weak Proximity, a nat-
ural structural condition that is motivated by classical RL
results, and requires the environments to have highly similar
transition and reward functions and share optimal trajecto-
ries. We prove a statistical lower bound demonstrating that
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tractable generalization is impossible, despite this shared
structure. This lower bound holds even when each indi-
vidual environment can be efficiently solved to obtain an
optimal linear policy, and when the agent possesses a genera-
tive model. Consequentially, we show that a classical metric
for measuring the relative closeness of MDPs is not the right
metric for modern RL generalization settings. Our lower
bound implies that learning a state representation for the
purpose of efficiently generalizing to multiple environments,
is worst case sample inefficient — even when such a rep-
resentation exists, the environments are ostensibly similar,
and any single environment can be efficiently solved.

To provide a sufficient condition for efficient generalization,
we introduce Strong Proximity. This structural condition
strengthens Weak Proximity by additionally constraining
the environments to share an optimal policy. We provide
an algorithm which exploits Strong Proximity to provably
and efficiently generalize, when the environments share
deterministic transitions.

In this extended abstract, we will only provide results for
the Average Performance Setting, due to space constraints.
However, we stress that all our results hold for the Meta RL
setting, and we defer these to the main paper.

2. Problem Formulation
Notation & Preliminaries. We always use M to denote
a Markov decision process (MDP). Recall that an undis-
counted finite horizon MDP is specified by a set of states
S, a set of actions A, a transition function T which maps
from state-action pairs to distributions over states, a reward
function R which maps state-action pairs to nonnegative
real numbers, and a finite planning horizon H . We assume
that the state-action pairs are featurized, so that S×A ⊂ Rd,
and that ‖(s, a)‖2 = 1 for all (s, a) ∈ S×A. Any MDP we
consider is undiscounted and has a finite action space, but
could have an uncountable state space. If we need to refer
to the transition or reward function of a specific MDP M ,
then we shall denote this via T M or RM . We will denote
a distribution over MDPs as D. We also assume that S can
be partitioned into H different levels. This means that for
each s ∈ S there exists a unique h ∈ {0, 1 . . . H − 1} such
that it takes h timesteps to arrive at s from s0. We say that
such a state s lies on level h, and denote Sh to be the set of
states on level h. For any MDP, we assume a single initial
state s0, which strengthens our lower bounds.

A policy maps each state to a corresponding distribu-
tion over actions, and shall typically be denoted by
π. The total expected reward accumulated by policy
π when initialized at state s in MDP M is given by
E
[∑H−1

h=level(s)RM (sh, ah) | π
]

and will be denoted by
V sM (π). Here the expectation is over the trajectory

{(sh, ah)}H−1h=level(s) given that the first state in the trajec-
tory is s. So V sM (π) is the value of the policy π in MDP
M with respect to (w.r.t) initial state s. Analogously, if
a policy is parameterized by θ = {θh}H−1h=0 , then we de-
note it as π(θ), and the notation V sM (π) is then replaced by
V sM (θ). We assume that the cumulative reward collected
by any trajectory from any initial state s in any MDP M is
always bounded by 1. TV(P,Q) denotes the total variation
distance between probability distributions P and Q.

2.1. Problem Setting

Average Performance Setting. There is a fixed distribution
D over a family of MDPs. One can sample MDPs from D.
The algorithm can query states in the sampled MDPs, to
learn some common structure. The goal is to solve

max
π

EM∼D [V s0M (π)] . (1)

The Meta RL setting is deferred to the main paper. “Sam-
pling an MDP” means drawing an MDP i.i.d from D, so
that the agent can then interact with it by performing trajec-
tories in it. Note that in Eq. (1), we assume a single initial
state s0. This strong assumption only strengthen our lower
bounds. Furthermore, it is necessary to understand this
simpler setting, before looking at more complex scenarios.

To solve Eqs. (1), we need to define an appropriate query
model for the algorithm. We consider two query models,
the first of which is strictly stronger than the second.

Strong Query Model (SQM). Sampling an MDP from D
incurs no cost. The agent has a generative model of any
sampled MDP M . To interact with M , the agent inputs a
state-action pair (s, a) of M into the model, and receives
RM (s, a) and a state sampled from T M (s, a). This incurs
a query cost of one.

Weak Query Model (WQM). Sampling an MDP from D
incurs a query cost of qD ≥ 1. Within a sampled MDP M ,
the agent operates in the standard episodic RL setup, by
starting from s0, taking an action and observing the next
state and reward, and repeating. Each action taken during
an episode incurs a query cost of one.

We shall present our lower bounds under SQM, which makes
these results stronger, but shall present our upper bound
under the natural and standard WQM.

Without any conditions on D, generalization can be in-
tractable, even under SQM. This will occur if the MDPs
supporting D do not share structure. This will also occur
if any individual MDP cannot be solved efficiently. Never-
theless, in practice one often deals with MDPs which share
meaningful structure (Cobbe et al., 2019; Rakelly et al.,
2019). For instance, the transition distributions of the MDPs
may be close in a suitable metric. Similarly, the reward func-
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tions of the MDPs might be close in an appropriate norm,
or each MDP may share a set of optimal trajectories. And
in practice, individual MDPs can usually be optimized effi-
ciently (Packer et al., 2018; Yu et al., 2019). In such cases,
it is reasonable to expect tractable generalization. We are
interested in formalizing conditions that permit efficient gen-
eralization. We will particularly focus on conditions which
capture shared structure of the MDPs and the tractability of
individual MDPs. We now formally state the problem we
consider throughout our paper.

Which conditions on D allow us to solve the Average
Performance setting efficiently?

As mentioned above, there are two types of requirements.
The first requirement should ensure that the MDPs are
meaningfully similar. We formalize such conditions in Sec-
tion 2.2. The second requirement should ensure that any
individual MDP is efficiently solvable, else there is no hope
to efficiently find policies that generalize for many MDPs.
We formalize such properties in Section 2.3.

2.2. Strong & Weak Proximity

We now identify conditions that capture when the MDPs
supporting D share meaningful structure. Since MDPs are
defined in terms of rewards and transitions, it is very natural
to impose conditions directly on the rewards and transitions.
To this end, we state the following condition.

Condition 1 (Similar Rewards & Transitions) The dis-
tributionD satisfies this condition with parameters ξr, ξtr ≥
0 when:

(a) Each MDP supporting D shares the same state-action
space S ×A.

(b) For all Mi,Mj supporting D and all (s, a) ∈ S ×A
we have |RMi

(s, a)−RMj
(s, a)| ≤ ξr.

(c) For all Mi,Mj supporting D and all (s, a) ∈ S ×A
we have TV(T Mi

(s, a), T Mj
(s, a)) ≤ ξtr.

The parameters ξr, ξtr quantify the similarity of different
MDPs. Conditions of this form are canonical and have
yielded fruitful research in classical literature, in the guise
of the Simulation Lemma (Kearns & Koller, 1999; Kearns &
Singh, 2002; Brafman & Tennenholtz, 2003; Kakade et al.,
2003; Abbeel & Ng, 2005). To concretize this condition
with an example, consider a suite of simulated robotic goal
reaching tasks (Yu et al., 2019), where the physics simulator
is the same in each task, so the transitions are fixed and
ξtr = 0, but the goal location changes from task to task,
implying that ξr > 0. We now establish our Weak Proximity
condition, which strictly strengthens Condition 1.

Condition 2 (Weak Proximity) The distribution D satis-
fies Weak Proximity with parameters ξr, ξtr, α ≥ 0 when:

(a) D satisfies Condition 1 with parameters ξr, ξtr ≥ 0.

(b) There exists a deterministic policy π? which for any
MDP M satisfies V s0M (π?) ≥ maxπ′ V s0M (π′)− α.

Weak Proximity strengthens Condition 1 by additionally
requiring (via part (b)) that there exists some policy π?

which provides α-suboptimal value for each MDP support-
ing D. Intuitively, this condition implicitly constrains the
MDPs to be similar, since there is a single policy which
provides (nearly) optimal value, irrespective of the MDP
it is deployed in. Furthermore, recall from Eq. (1) that the
objective is defined in terms of value w.r.t the initial state s0.
So it is natural to assume, as we do in part (b), that there is
one policy which provides good value w.r.t s0 for all MDPs.

We now present Strong Proximity, a condition which strictly
strengthens Weak Proximity. We will later show that un-
like its Weak counterpart, Strong Proximity indeed permits
efficient generalization.

Condition 3 (Strong Proximity) The distribution D satis-
fies Strong Proximity with parameters ξr, ξtr, α ≥ 0 when:

(a) D satisfies Condition 1 with parameters ξr, ξtr ≥ 0.

(b) There exists a deterministic policy π? which is a near
optimal policy for each MDP. Concretely, the policy π?

satisfies V sM (π?) ≥ maxπ′ V sM (π′)− α for each state
s and each MDP M .

2.3. Tractability of Individual Optimization

As discussed previously, in order to efficiently solve Eq. (1),
we require that each individual MDP supporting D can be
efficiently solved. We now state two such properties, the
first of which is strictly stronger than the second. Since
these properties require a notion of query cost, we state both
of them with reference to a generic query model QM, and
when we later present our results we will instantiate QM to
be either SQM or WQM. We use π?M to denote an arbitrary
deterministic optimal policy of MDP M . We also use the
standard notion of a linear policy (Du et al., 2020).

Property 1 (Strong Individual Optimization (SIO)) Let
the query model be QM. The distribution D satisfies SIO
with parameters k > 0 and 0 ≤ β < 1/4 when:

(a) Any MDP M supporting D admits an optimal linear
policy.

(b) There exists a fixed and known algorithm, such that
given any MDP M and any state s, this algorithm uses
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at most O(| A |Hk) query cost (under QM) on M to
identify (almost surely) a linear policy π(θ) parameter-
ized by θ = {θh}H−1h=0 which satisfies maxπ′ V sM (π′) ≥
V sM (θ) ≥ maxπ′ V sM (π′)−β. This algorithm then out-
puts π(θ) as well as V sM (θ).

Part (a) requires that for any MDP supporting D, there ex-
ists an optimal linear policy. Part (b) requires that the user
has knowledge of an algorithm, which can efficiently find
a linear policy providing β-suboptimal value from any in-
put state s in any MDP M . SIO is a fairly strong property,
since it says that a linear policy is sufficient to optimize
any individual MDP, whereas in practice one typically re-
quires nonlinear neural network policies. SIO also heavily
constrains each individual MDP supporting D to be effi-
ciently solvable from any initial state. We stress that we will
prove our lower bounds under SIO, which makes our result
stronger. Meanwhile, we prove our upper bounds under the
following property, which is significantly weaker than SIO,
and makes no unrealistic linearity assumptions.

Property 2 (Weak Individual Optimization (WIO))
Let the query model be QM. The distribution D satisfies
WIO with parameter 0 ≤ β < 1/4 when the following
holds. There exists an oracle V̂ , which takes as input
a state s and MDP M , and outputs V̂ sM satisfying
maxπ′ V sM (π′) ≥ V̂ sM ≥ maxπ′ V sM (π′) − β, via query
cost (under QM) on M that is polynomial in | A |, H .

3. Main Results
In this extended abstract, we only present results for when
the MDPs supporting D share a deterministic transition
function, due to space constraints. Our lower bounds extend
to when the MDPs share a reward function but have varying
transitions, and we defer this to the main paper.

The classical Simulation Lemma (Kearns & Koller, 1999;
Kearns & Singh, 2002; Brafman & Tennenholtz, 2003;
Kakade et al., 2003; Abbeel & Ng, 2005) shows that if the
MDPs supporting D share deterministic transitions (so that
D at the minimum satisfies Condition 1 with ξtr = 0), then
generalization is only non-trivial in the regime where ξr is
Ω( 1

H ). The following result is a lower bound which shows
that when ξr = Θ( 1

H ), then Weak Proximity is not sufficient
to efficiently generalize in the Average Performance Setting.

Theorem 1 Let the query model be SQM. For any k ≥ 3,
there exists D satisfying Weak Proximity with ξr = Θ( 1

H ),
ξtr = 0 & α = 0 and SIO with β = 0 & k, such that
the MDPs supporting D are deterministic and the follow-
ing holds. Any (possibly randomized) algorithm requires
Ω(| A |H) total query cost to find (with probability at least

1/2) a policy π satisfying

EM∼D [V s0M (π)] ≥ max
linear policy π′

EM∼D [V s0M (π′)]− 1/4.

The theorem demonstrates that one can require an exponen-
tial query cost to find a policy that is nearly as good as the
best linear policy (which is of course easier than finding
the best generic policy). This holds even though individual
MDPs are easily optimized to obtain a linear policy pro-
viding optimal value, as defined in SIO, and even though
the MDPs are similar as defined in Weak Proximity. This
suggests that the classical (and natural) way of measuring
variation in MDPs using Condition 1 is not the right metric
for the modern Average Performance setting. Indeed, clas-
sical results show that generalization is trivial when ξr is
o( 1
H ). But when ξr is Θ( 1

H ) then these settings become ex-
ponentially hard, even under the additional Weak Proximity
condition as well as SIO & SQM.

Note that Theorem 1 holds even though each MDP support-
ingD shares a state-action space. So these lower bounds im-
mediately apply to more complex settings where the MDPs
are defined on disjoint state-action spaces, and where learn-
ing an appropriate representation is necessary. Indeed, it is
popular in practice to learn a feature mapping which maps
similar states to the same vector. Our results show that if
such a mapping enables efficient solution of Eq. (1), then
learning the mapping itself is worst case inefficient.

We now show that Strong Proximity permits efficient gener-
alization when the MDPs supporting D share deterministic
transitions. Notably, to prove our upper bound we only
require the weaker WQM and weaker WIO.

Theorem 2 Let the query model be WQM. Consider any
D satisfying WIO with β ≥ 0 and Strong Proximity with
ξtr = 0 and any α, ξr ≥ 0, such that the MDPs support-
ing D are deterministic. Fix ε, δ > 0. There exists an
algorithm whose total query complexity is polynomial in
qD, |A|, H, 1ε , log( 1

δ ), such that the following holds. With
probability at least 1 − δ, the algorithm outputs policy π
satisfying

EM∼D [V s0M (π)] ≥ max
π′

EM∼D [V s0M (π′)]−ε−3αH−3β H.

Note Theorem 2 holds under WIO. By contrast, Weak Prox-
imity was insufficient for efficient generalization even when
paired with SIO. This suggests that a condition that is
both necessary and sufficient for efficient generalization
lies somewhere between Weak and Strong Proximity — as-
suming, of course, that we do not assume an individual
optimization property that is even stronger than SIO. Indeed,
SIO is already strong, since SIO says that a linear policy is
sufficient to optimize any individual MDP, but in practice
one typically employs nonlinear neural network policies.
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4. Discussion
In this paper, we studied the design of RL agents that gen-
eralize. We proved that efficient generalization is worst
case impossible, even under structural conditions like Weak
Proximity and strong assumptions on the query model and
tractability of individual MDPs. This result extends to the
task of learning representations for the purpose of efficient
generalization. On the positive side, we provided Strong
Proximity, which permits efficient generalization, even un-
der mild assumptions on the query model and individual
tractability. Our analysis highlights that classical metrics for
measuring similarity of MDPs are inappropriate for modern
RL. It also suggests that a condition which is both neces-
sary and sufficient for efficient generalization lies between
Weak & Strong Proximity – unless we make (arguably un-
reasonable) assumptions on the tractability of individual
MDPs.

We emphasize again that the Weak Proximity condition is
extremely natural. Since MDPs are defined in terms of their
rewards and transitions, it is natural to constrain the rewards
and transitions when measuring similarity of MDPs. Indeed,
these hard constraints on the transitions and rewards at every
state are unlikely to always be satisfied in practice, which
only makes our lower bound stronger. And the existence
of an optimal policy with respect to s0, is also extremely
natural and only makes the problem easier. Strong Proximity
is also reasonable, but in our setting it requires that all MDPs
share a state-action space. We believe that in practice, after
an appropriate representation is learned which maps similar
states of MDPs to the same state space (see below), then
Strong Proximity would apply.

The primary limitation of our work is that our upper bound
has limited applicability. It holds only when the MDPs
share a state-action space, which is very restrictive in prac-
tice. Our rationale for working in this restricted setting
was due to our lower bounds, which show that even this
toy setting can be worst case inefficient, and because it is
necessary to understand the toy setting before looking at
more complex scenarios. Nevertheless, our upper bound
is several steps removed from the practice of RL. It is best
interpreted as a preliminary sufficient condition for when
efficient generalization is possible, albeit in a toy setting,
and is far from conclusive on this matter.

Note that our upper bound might apply if we are a priori
given a feature mapping which maps similar states of dif-
ferent MDPs to the same state space. For example, in self
driving, learning to drive in different countries might be
difficult because the images of traffic signs are different.
But if a known feature map extracts the underlying mean-
ing of these signs, then our upper bound could conceivably
apply. Of course, such a known feature map is rarely avail-
able a priori, and is usually learned from data. The key

direction for future work, is how to learn such a feature
mapping efficiently, while ensuring that it is still useful for
generalization.
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