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Abstract
In this paper, we develop a novel variant of off-
policy natural actor-critic algorithm with linear
function approximation and we establish a sam-
ple complexity of O(ε−3), outperforming all the
previously known convergence bounds of such
algorithms. In order to overcome the divergence
due to deadly triad in off-policy policy evaluation
under function approximation, we develop a critic
that employs n-step TD-learning algorithm with
a properly chosen n. We derive our sample com-
plexity bounds solely based on the assumption
that the behavior policy sufficiently explores all
the states and actions, which is a much lighter
assumption compared to the related literature.

1. Introduction
Reinforcement learning (RL) is a paradigm in which an
agent aims at maximizing long term rewards via interacting
with the environment. For solving the RL problem, there
are value space methods such as Q-learning, and policy
space methods such as actor-critic (AC) and its variants (e.g.
natural actor critic (NAC)). In the AC framework, the actor
aims at performing the policy update while the critic aims at
estimating the value function of the current policy at hand.
For AC type algorithms to perform well, the policy used to
collect samples (called the behavior policy) must sufficiently
explore the state-action space (Sutton and Barto, 2018). If
the behavior policy coincides with the current policy iterate
of AC, it is called on-policy sampling, otherwise it is called
off-policy sampling.

In on-policy AC, the agent is restricted to use the current pol-
icy iterate to collect samples, which may not be exploratory.
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Moreover, on-policy sampling might be of high risk (e.g.
self driving cars (Yurtsever et al., 2020)), high cost (e.g.
robotics (Gu et al., 2017; Levine et al., 2020)), or might
be unethical (e.g. in clinical trials (Gottesman et al., 2019;
Liu et al., 2018; Gottesman et al., 2020)). Off-policy AC,
on the other hand, is more practical than on-policy sam-
pling (Levine et al., 2020). Specifically, off-policy sampling
enables the agent to learn using the historical data, hence de-
couples the sampling process and the learning process. This
allows the agent to learn in an off-line manner, and makes
RL applicable in high-stake problems mentioned earlier. In
addition, it is empirically observed that by using a suitable
behavior policy, one can rectify the exploration issue in
on-policy AC. As a result, off-policy learning successfully
solved many practical problems in different areas, such as
board game (Silver et al., 2017), city navigation (Mirowski
et al., 2018), education (Mandel et al., 2014), and healthcare
(Dann et al., 2019).

In practice, AC algorithms are usually used along with func-
tion approximation to overcome the curse of dimensionality
in RL (Bellman, 1957). However, it has been observed that
the combination of function approximation, off-policy sam-
pling, and bootstrapping (also known as the deadly triad
(Sutton and Barto, 2018)) can result in instability or even
divergence (Sutton and Barto, 2018; Baird, 1995). In this
work, we develop a variant of off-policy NAC with function
approximation, and we establish its finite-sample conver-
gence guarantee in the presence of the deadly triad.

1.1. Main Contributions

The main contributions of this paper are fourfold.

Finite-Sample Bounds of Off-Policy NAC. We develop
a variant of NAC with off-policy sampling, where both
the actor and the critic use linear function approximation,
and the critic uses off-policy sampling. We establish finite-
sample mean square bound of our proposed algorithm. Our
result implies an Õ(ε−3) sample complexity, which is the
best known convergence bound in the literature for AC
algorithms with function approximation.

Novelty in the Critic. Off-policy TD with function approx-
imation is famously (Sutton and Barto, 2018) known to
diverge due to deadly triad. To overcome this difficulty, we
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employ n-step TD-learning, and show that a proper choice
of n naturally achieves convergence. To the best of our
knowledge, we are the first to design a single time-scale
off-policy TD with function approximation with provable
finite-sample bounds.

Novelty in the Actor. NAC under function approximation
was developed in (Agarwal et al., 2019) by projecting the
Q-values (gradients) to the lower dimensional space, and
this involves the use of the discounted state visitation distri-
bution, which is hard to estimate. We develop a new NAC
algorithm for the function approximation setting that is in-
stead based on the solution of a projected Bellman equation
(Tsitsiklis and Van Roy, 1997), which our critic is designed
to solve.

Exploration through Off-Policy Sampling. We establish
the convergence bounds under the minimum set of assump-
tions, viz.,ergodicity under the behavior policy, which en-
sures sufficient exploration, and thus resolving challenges
faced in on-policy sampling. As a result, learning can be
done using a single trajectory of samples generated by the
behavior policy, and we do not require constant reset of
the system that was introduced in on-policy AC algorithms
(Agarwal et al., 2019; Wang et al., 2019) to ensure explo-
ration. A similar observation about employing off-policy
sampling to ensure exploration has been made in the tabular
setting in (Khodadadian et al., 2021).

2. Main Results
In this section, we present our main results. Specifically,
in Section 2.1 we briefly cover the background of RL and
AC. In Section 2.2, we present our algorithm design for the
critic, which uses off-policy sampling with linear function
approximation. In section 2.3, we combine the critic with
our actor update to form a variant of off-policy NAC with
linear function approximation, and we present our finite-
sample guarantees and sample complexity bounds.

2.1. Preliminaries

Consider modelling the RL problem as an infinite horizon
MDP, which consists of a finite set of states S , a finite set of
actions A, a set of unknown transition probability matrices
P = {Pa ∈ R|S|×|S| | a ∈ A}, an unknown reward func-
tionR : S×A 7→ R, and a discount factor γ ∈ (0, 1). With-
out loss of generality we assume that maxs,a |R(s, a)| ≤ 1.
For a given policy π, its state value function is defined
by V π(s) = Eπ[

∑∞
k=0 γ

kR(Sk, Ak) | S0 = s] for all
s ∈ S, and its state-action value function is defined by
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kR(Sk, Ak) | S0 = s,A0 = a]
for all (s, a) ∈ S × A. The goal of RL is to find an opti-
mal policy π∗ which maximizes V π(µ) =

∑
s µ(s)V π(s),

where µ is an arbitrary fixed initial distribution over the

state space. It was shown in the literature that the optimal
policy is in fact independent of the initial distribution. See
(Bertsekas and Tsitsiklis, 1996; Puterman, 1995; Sutton and
Barto, 2018) for more details for the MDP model of the RL
problem.

To solve the RL problem, a popular approach is to use
the AC framework (Konda and Tsitsiklis, 2000). In AC
algorithm, we iteratively perform the policy evaluation
and the policy improvement until an optimal policy is ob-
tained. Specifically, in each iteration, we first estimate the
Q-function (or the advantage function) of the current policy
at hand, which is related to the policy gradient. Then we
update the policy using gradient ascent over the space of the
policies. NAC is a variant of AC where the gradient ascent
step is performed with a properly chosen pre-conditioner.
See (Agarwal et al., 2019) for more details about AC and
NAC.

In AC framework, since we need to work with the Q-
function and the policy, which are |S||A| dimensional ob-
jects, the algorithm becomes intractable when the size of the
state-action space is large (Bellman, 1957). To overcome
this difficulty, in this work we consider using linear func-
tion approximation for both the policy and the Q-function.
Specifically, let {φi}1≤i≤d be a set of basis functions, where
φi ∈ R|S||A| for all i. Without loss of generality, we as-
sume that φi, 1 ≤ i ≤ d, are linearly independent and
are normalized so that ‖φ(s, a)‖1 ≤ 1 for all (s, a), where
φ(s, a) = [φ1(s, a), · · · , φd(s, a)] is the feature associated
with state-action pair (s, a). Let Φ = [φ1, · · · , φd] be the
feature matrix. We parameterize the policy and the Q-
function using compatible function approximation (Sutton
et al., 1999). In particular, we use softmax parametriza-
tion for the policy, i.e., πθ(a|s) = exp(φ(s,a)>θ)∑

a′∈A exp(φ(s,a′)>θ)
for

all (s, a), where θ ∈ Rd is the parameter. As for the Q-
function, we approximate it from the linear sub-space given
by Q = {Qw = Φw | w ∈ Rd}, where w ∈ Rd is the cor-
responding parameter. By doing this, we now only need to
work with d-dimensional objects (i.e., w for the Q-function
and θ for the policy), where d is usually chosen to be much
smaller than |S||A|.

2.2. Off-Policy Multi-Step TD-learning with Linear
Function Approximation

In this section, we present the n-step off-policy TD-learning
algorithm under linear function approximation (Sutton and
Barto, 2018), which is used for solving the policy evaluation
(critic) sub-problem in our AC framework. Let π be the
target policy we aim to evaluate, and let πb be the behavior
policy we used to collect samples. For any state-action pairs
(s, a), let ρ(s, a) = π(a|s)

πb(a|s) , which is called the importance
sampling ratio between π and πb at (s, a). For any positive
integer n, Algorithm 2.1 presents the off-policy n-step TD-
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learning algorithm for estimating Qπ .

Algorithm 2.1 Off-Policy n-Step TD-Learning with Linear
Function Approximation

1: Input: K, α, w0, π, πb, and {(Sk, Ak)}0≤k≤(K+n) (a
single trajectory generated by the behavior policy πb)

2: for k = 0, 1, · · · ,K − 1 do
3: δk,i=R(Si, Ai)+γρ(Si+1, Ai+1)φ(Si+1, Ai+1)>wk−

φ(Si, Ai)
>wk

4: ∆k,n =
∑k+n−1
i=k γi−k

∏k+n−1
j=i+1 ρ(Sj , Aj)δk,i

5: wk+1 = wk + αφ(Sk, Ak)∆k,n

6: end for
7: Output: wK

In Algorithm 2.1, we employ the importance sampling ratio
to account for the discrepancy between the target policy
π and the behavior policy πb. Although all the three ele-
ments of the deadly triad (bootstrapping, function approxi-
mation, and off-policy sampling) (Sutton and Barto, 2018)
are present, we show that by choosing n appropriately, Algo-
rithm 2.1 has provable finite-sample convergence guarantee.
The detailed statement of the result is presented in Section
2.4.

In existing literature, to achieve stability in the presence of
the deadly triad, algorithms such as gradient TD-learning
(GTD) (Sutton et al., 2008), TD-learning with gradient
correction (TDC) (Sutton et al., 2009), and emphatic TD-
learning (Sutton et al., 2016) all require to maintain two
iterates. Such two time-scale algorithms are in general
harder to implement, and in addition, even if convergence is
guaranteed, there is no characterization on the limit point.
However, Algorithm 2.1 naturally achieves convergence, re-
quires to maintain only one iterate, and has a limit point that
can be characterized as the solution of a projected Bellman
equation.

2.3. Off-Policy Variant of NAC with Linear Function
Approximation

In this section, we combine the off-policy TD-learning
with linear function approximation algorithm in the
previous section, with our variant of NPG update
to form the off-policy variant of NAC algorithm.
For simplicity of notation, we denote Qπθt as Qπt .
Also, with input K, α, w0, π, πb, and samples
{(Sk, Ak)}0≤k≤K+n, we denote the output of Algorithm
2.1 as CRITIC(K,α,w0, π, πb, {Sk, Ak}0≤k≤K+n).

In each iteration of the off-policy NAC algorithm 2.2, the
critic first estimates the Q-function Qπt using Φwt. Then,
the actor updates the parameter θt of the current policy.
Note that unlike the on-policy NAC where the algorithm
usually needs to be constantly reset to a specific state of
the environment, which is impractical, off-policy sampling

Algorithm 2.2 Off-Policy Natural Actor-Critic Algorithm
with Linear Function Approximation

1: Input: T , K, α, β, θ0, π, πb, and
{(Sk, Ak)}0≤k≤T (K+n) (a single trajectory gen-
erated by the behavior policy πb)

2: for t = 0, 1, . . . , T − 1 do
3: wt = CRITIC(K,α,0, πt, πb,

{(Sk, Ak)}t(K+n)≤k≤(t+1)(K+n))
4: θt+1 = θt + βwt
5: end for
6: Output: θT̂ , where T̂ is uniformly sampled from

[0, T − 1].

enables us to use a single sample trajectory collected under
the behavior policy.

2.4. Finite-Sample Convergence Guarantees

In this section, we present the finite-sample convergence
bounds of Algorithms 2.1 and 2.2. We begin by stating our
one and only assumption.

Assumption 2.1. The behavior policy πb satisfies
πb(a|s) > 0 for all (s, a) and the Markov chain {Sk} in-
duced by the behavior policy is irreducible and aperiodic.

Assumption 2.1 is standard in studying off-policy TD-
learning algorithms (Maei, 2018; Zhang et al., 2020). Since
we work with finite state and action spaces, under Assump-
tion 2.1, the Markov chain {Sk} admits a unique stationary
distribution, denoted by µb ∈ ∆|S| (Levin and Peres, 2017).
In addition, we have ‖P k(s, ·)− µb(·)‖TV ≤ Cσk for any
k ≥ 0, where C > 0, σ ∈ (0, 1) are constants, and ‖ · ‖TV
stands for the total variation distance between probability
distributions (Levin and Peres, 2017). Note that in this case
the random process {(Sk, Ak)} is also a Markov chain with
a unique stationary distribution, which we have denoted by
κb ∈ ∆|S||A|, and κb(s, a) = µb(s)πb(a|s) for all (s, a).

In the existing literature, where on-policy NAC was studied,
it is typically required that all the policies achieved in the
iterations of the NAC induce ergodic Markov chains over
the state-action space (Qiu et al., 2019; Wu et al., 2020).
Such a requirement is strong and not possible to satisfy in
an MDP where the optimal policy is a unique deterministic
policy. Off-policy sampling enables us to relax such an
unrealistic requirement while also ensuring exploration.

We next present the finite-sample convergence bound of the
off-policy NAC with linear function approximation. We
begin by introducing some notation. For a given stepsize α,
let tα = min{k ≥ 0 : ‖P k(s, ·) − µb(·)‖TV ≤ α}, which
represents the mixing time of the Markov chain {Sk}, and
can be bounded by an affine function of log(1/α) under
Assumption 2.1. Let f(x) = n + 1 when x = 1 and
f(x) = 1−xn+1

1−x when x 6= 1. Denote wπ as the solution of



Finite-Sample Analysis of Off-Policy Natural Actor-Critic

the projected Bellman equation

Qw = ΠκbT nπ (Qw) = Φ(Φ>KΦ)−1Φ>KT nπ (Qw), (1)

where Qw = Φw. Here T nπ (·) denotes the n-step Bell-
man operator, and Πκb(·) stands for the projection operator
onto the linear sub-space Q with respect to the weighted
`2-norm with weights {κb(s, a)}(s,a)∈S×A (Tsitsiklis and
Van Roy, 1997). Let ζπ = maxs,a

π(a|s)
πb(a|s) , which measures

the mismatch between π and πb. Let λmin be the small-
est eigenvalue of the positive definite matrix Φ>KΦ. Let
ξ = maxθ ‖Qπθ − Φwπθ‖∞, where Qπθ is the Q-function
associated with the policy πθ. Note that the quantity ξ mea-
sures how powerful the function approximation architecture
is. Let ζmax = maxs,a

1
πb(a|s) , which is a uniform upper

bound of ζπ for any target policy π.

Theorem 2.1. Consider the output θT̂ of Algorithm 2.2.
Suppose that Assumptions 2.1 is satisfied, the parameter n
is chosen such that n ≥ 2 log(γc)+log(κb,min)

2 log(γ) (where γc ∈
(0, 1) is some tunable constant), and α is chosen such that
α(tα + n+ 1) ≤ 1−γc

456f(γζπ)2
. For any starting distribution

µ, we have for any K ≥ tα + n+ 1 and T ≥ 1:

V π
∗
(µ)− E [V πT̂ (µ)] ≤ 2

(1− γ)2T︸ ︷︷ ︸
A1: convergence bias in the actor

+
3ξ

(1− γ)2︸ ︷︷ ︸
A2: bias due to function approximation

+
3

(1− γ)2
c3(1− (1− γc)λminα)

K−(tα+n+1)
2︸ ︷︷ ︸

A3: convergence bias in the critic

+
33c3f(γζmax)[α(tα + n+ 1)]1/2

(1− γ)2(1− γc)1/2λ1/2min︸ ︷︷ ︸
A4: variance in the Critic

,

where c3 = 1 + 2
(1−γc)1/2(1−γ)

√
λmin

.

The term A1 represents the convergence bias of the actor,
and goes to zero at a rate of O(1/T ) as the outer loop it-
eration number T goes to infinity. The term A3 measures
the convergence bias in the critic, and goes to zero geomet-
rically fast as the inner loop iteration number K goes to
infinity. The term A4 represents the impact of the variance
in the critic, and is of the sizeO(

√
α log(1/α)), which goes

to zero as the inner loop stepsize α goes to zero.

The term A2 captures the error introduced to the system
due to function approximation, and cannot be eliminated
asymptotically. Moreover, known results in approximate
policy iteration (API) literature suggest that the 1/(1− γ)2

coefficient inside the termA2 is inevitable. Specifically, it is
shown (Bertsekas, 2011; Bertsekas and Tsitsiklis, 1996) that
when maxπ ‖V π − Φwπ‖∞ ≤ ξ, under the API algorithm

lim supk→∞ ‖V πk − V π
∗‖∞ ≤ 2γξ

(1−γ)2 , and an example is
presented in (Bertsekas and Tsitsiklis, 1996, Section 6.2.3),
where the inequality is tight. Since NAC algorithm can be
viewed as an API algorithm with a softmax policy update
(which is also weighted by the current policy), it is natural
to expect a similar function approximation bias. Therefore,
to improve the function approximation bias term A2, one
has to develop instance dependent bound, which is one of
our future direction.

2.5. Sample Complexity Analysis

In this section, we derive sample complexity of off-policy
NAC algorithm based on Theorem 2.1.

Corollary 2.1.1. In order to achieve
V π
∗
(µ) − E [V πT̂ (µ)] ≤ ε + 3ξ

(1−γ)2 , the
number of samples requires is of the size
O
(
ε−3 log2(1/ε)

)
Õ
(
f(γζmax)2n(1− γ)−8(1− γc)−3λ−3min

)
.

Remark. It was argued in (Khodadadian et al., 2021, Ap-
pendix C) that sample complexity is not well-defined when
the convergence error does not go to zero. Therefore, one
should not use sample complexity when we do not have
global convergence due to the function approximation bias.
However, we present Corollary 2.1.1 in terms of “sample
complexity” in the same sense as used in prior literature to
enable a fair comparison.

In view of the sample complexity bound, the dependency
on the required accuracy level ε is Õ(ε−3). This improves
the state-of-the-art sample complexity of off-policy NAC
with function approximation result in the literature in (Xu
et al., 2021) by a factor of ε−1. As stated in Theorem 2.1, in
order to use smaller γc in our analysis, we need to choose
larger n in executing Algorithm 2.1. An advantage of using
large n is that it leads to a lower function approximation
bias ξ. To see this, consider the projected Bellman equa-
tion Qw = ΠκbT nπ (Qw). When n tends to infinity, since
limn→∞ T nπ (Qw) = Qπ due to value iteration (Banach
fixed-point theorem for the operator Tπ(·)), the solution of
the projected Bellman equation coincides with the projec-
tion of Qπ to the linear sub-space Q, which has the best
function approximation bias. However, note that the parame-
ter n also appears in the numerator of the sample complexity
bound (which is due to the variance term in the critic), hence
there is a trade-off in the choice of n. To summarize, in-
creasing (decreasing) the parameter n leads to better (worse)
critic convergence bias and function approximation bias, but
has worse (better) critic variance.

3. Conclusion
In this paper, we establish finite-sample convergence guaran-
tees of off-policy NAC with linear function approximation.
To overcome the deadly triad in the critic, we use n-step
TD-learning, which is a one-time scale algorithm for policy
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evaluation using off-policy sampling and linear function
approximation, and has provable convergence bounds. Our
finite-sample bounds imply a sample complexity of Õ(ε−3),
which advances the state-of-the-art result in the literature.
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A convergent O(n) algorithm for off-policy temporal-
difference learning with linear function approximation.



Finite-Sample Analysis of Off-Policy Natural Actor-Critic

Advances in neural information processing systems, 21
(21):1609–1616, 2008.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shal-
abh Bhatnagar, David Silver, Csaba Szepesvári, and Eric
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