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Abstract
We consider a reinforcement learning (RL) frame-
work where the RL agent learns to adjust the ac-
curacy of the observations alongside learning to
perform the original task. We are interested in
revealing the information structure of the observa-
tion space illustrating which type of observations
are the most important (such as position versus ve-
locity) and the dependence of this on the state of
agent (such as at the bottom versus top of a hill).
We approach this problem by associating a cost
with collecting observations which increases with
the accuracy. In contrast to the existing work that
mostly focuses on sample efficiency during train-
ing, our focus is on the behaviour of the agent dur-
ing the actual task. Our results quantify how the
RL agent can learn to use the observation space
efficiently and obtain satisfactory performance
in the original task while collecting effectively
smaller amount of data.

1. Introduction
Autonomous decision making relies on collecting data, i.e.
observations, from the environment where the actions are
decided based on the observations. We are interested in re-
vealing the information structure of the observation space il-
lustrating which type of observations are the most important
(such as position versus velocity). Revealing this structure
is challenging since the usefulness of the information that
an observation can bring is a priori unknown and depends
on the environment as well as the current knowledge state
of the decision-maker, for instance, whether the agent is at
the bottom versus the top of a hill and how sure the agent
is about its position. Hence, we’re interested in questions
such as “Instead of collecting all available observations, is
it possible to skip some observations and obtain satisfactory
performance?”, “Which observation components (such as
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the position or the velocity) are the most useful when the
object is far away from (or close to) the target state?”. The
primary aim of this work is to reveal this information struc-
ture of the observation space within a systematic framework.

We approach this problem by associating a cost with col-
lecting observations which increases with the accuracy. The
agent can choose the accuracy level of its observations.
Since cost increases with the accuracy, we expect that the
agent will choose to collect only the observations which are
most likely to be informative and worth the cost. We adopt a
reinforcement learning (RL) framework where the RL agent
learns to adjust the accuracy of the observations alongside
learning to perform the original task. We consider both the
scenario where the accuracy can be adjusted continuously
and also the scenario where the agent has to choose between
given preset levels, such as taking a sample perfectly or not
taking a sample at all. In contrast to the existing work that
mostly focuses on sample efficiency during training, our
focus is on the behaviour during the actual task. Our results
quantify how the RL agent can learn to use the observation
space efficiently and obtain satisfactory performance in the
original task while collecting effectively smaller amount of
data.

An overview of related work, including active learning and
representation learning, is provided in Section 5.1.

2. Proposed Framework and The Solution
Approach

2.1. Preliminaries

Consider a Markov decision process given by
〈S,A,P, R, Ps0 , γ〉 where S is the state space, A is
the set of actions, P : S × A × S → R denotes the
transition probabilities, R : S × A → R denotes the
bounded reward function, Ps0 : S → R denotes the
probability distribution over the initial state and γ ∈ (0, 1]
is the discount factor.

The agent, i.e. the decision maker, observes the state of
the system st at time t and decides on its action at based
on its policy π(s, a). The policy mapping of the agent
π(s, a) : S × A → [0, 1] is possibly stochastic and gives
the probability of taking the action a at the state s. After the
agent implements the action at, it receives a reward r(st, at)
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and the environment moves to the next state st+1 which is
governed by P and depends on at and st. The aim of the RL
agent is to learn an optimal policy mapping π(s, a) so that
the expected return, i.e. expected cumulative discounted
reward, J(π) = Eat∼π,st∼P [

∑
t γ

tr(st, at)] is maximized.

2.2. Partial Observability

Although most RL algorithms are typically expressed in
terms of MDPs, in typical real-life applications the states
are not directly observable, i.e., the observations only pro-
vide partial, possibly inaccurate information. For instance,
consider a vehicle which uses the noisy images with limited
angle-of-view obtained from cameras mounted on the ve-
hicle for autonomous-driving decisions. In such scenarios,
the data used by the agent to make decisions is not a direct
representation of the state of the world. Hence, we consider
a partially observable Markov decision process (POMDP)
where the above MDP is augmented by O and Po where O
represents the set of observations and Po : S → O repre-
sents the observation probabilities. Accordingly, the policy
mapping is now expressed as π(o, a) : O ×A → [0, 1].

The observation vector at time t is given by ot =
[o1t ; . . . ; o

n
t ] ∈ Rn, where n is the dimension of the ob-

servation vector. The observations are governed by

ot ∼ po(ot|st;βt) (1)

where po(ot|st;βt) denotes the conditional probability dis-
tribution function (pdf) of ot given st and is parametrized
by the accuracy vector

βt = [β1
t ; . . . ;βnt ] ∈ Rn (2)

The parameter βit ≥ 0 represents the average accuracy of
the observation component i at time step t, i.e. oit. For
instance, say we have two observations, position o1 and
velocity o2. Then, β1

t denotes the accuracy of the position
and β2

t denotes the accuracy of the velocity. As βit increases,
the accuracy of the observation oit decreases. Given st and
βt, the observations are statistically independent, i.e. we
have the factorization

po(ot|st;βt) =
∏

i=1,...,n

poi(o
i
t|st;βit) (3)

where poi(oit|st;βit) denotes the conditional pdf of oit given
st and βit .

Note that βit determines the average accuracy, i.e. the accu-
racy in the statistical sense. We provide an example below:

Example: Consider the common Gaussian additive
noise model with oit = sit + vit, i = 1, . . . , n, where
st = [s1t ; . . . ; s

n
t ] ∈ Rn is the state vector and vt =

[v1t ; . . . ; vnt ] ∈ Rn is the Gaussian noise vector with

N (0,diag(σ2
vit

)). Here, vt and vt′ are statistically inde-
pendent (stat. ind.) for all t 6= t′ and also vt and st′ are
stat. ind. for all t, t′. Under this observation model, a rea-
sonable choice for βit is βit = σ2

vit
. Hence, we parametrize

pio(.) as pio(o
i
t|sit;βit) = N (sit, β

i
t = σ2

vit
). Note that the

parametrization in terms of βit can be done in multiple ways,
for instance, one may also adopt βit = σvit .

2.3. RL agent chooses the accuracy of the observations

The agent can choose βit , hence βit is a decision variable.
Observations have a cost which increases with increasing
accuracy, i.e. the cost increases with decreasing βit . We
consider two main scenarios:

Scenario A: The agent can vary βit on a continuous scale,
i.e. βit ∈ [0,∞].

Scenario B: The agent chooses between i) collecting all
the observations with a fixed level of accuracy or ii) not
getting any of them at all. This setting corresponds to the
case with βt = β̄t1, β̄t ∈ {βF ,∞}, where 1 ∈ Rn denotes
the vector of ones. Here βF ≥ 0 represents a fixed accuracy
level. Note that βF can be zero, corresponding to the case
ot = st.

Further discussions on the motivation for this setting are
provided in Section 5.2.

2.4. Reward Shaping

We want the agent not only move towards the original goal
(which is encouraged by the original reward r), we also
want it to learn to control βt. Hence, we propose reward
shaping in the following form:

r̃t = f(rt, βt) (4)

where rt is the original reward, r̃t is the new modified re-
ward and f(rt, βt) is a monotonically non-decreasing func-
tion of rt and βit , ∀i. Hence, the agent not only tries to
maximize the average of the original reward but it also tries
to maximize the “inaccuracy” of the measurements. This
can be equivalently interpreted as minimizing the cost due
to accurate measurements. In the case where there is a direct
cost function ci(.) that increases with the accuracy of the
observation oi (see, for instance, the example in Section 5.3
where transmission power can be interpreted as the direct
cost), the following additive form can be used

r̃t = rt − λ
n∑
i=1

ci(βit), (5)

where ci(βit) is a non-increasing function of βit and λ ≥ 0
is a weighting parameter. Hence, the agent’s aim is to
maximize the original reward as well as minimize the cost
of the observations.
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(a) Scenario A, noise levels vs x̃t
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(b) Scenario A, noise levels vs ˜̇xt
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Figure 1: Mountain car, noise levels or sample skip frequency versus one observation type

3. Experiments
3.1. Setting

Observation Models: We consider the following environ-
ments from the OpenAI Gym: MountainCarContinuous-
v0, Pendulum-v0, CartPole-v1. In this section, we illus-
trate how the modified environment with noisy observations
is obtained for MountainCarContinuous-v0. The details
and the parameter values for the other environments can
be found in the Appendix. We also consider a version of
MountainCarContinuous-v0 with observations of the verti-
cal position, which is presented in the Appendix.

We first explain Scenario A, and then Scenario B. The orig-
inal observations of the mountain car environment are the
position xt and the velocity ẋt. In our framework, the agent
has access to noisy versions of these original observations

x̃t = xt +Qx ×∆xt(β
1
t ), (6a)

˜̇xt = ẋt +Qẋ ×∆ẋt(β
2
t ), (6b)

where ∆xt(β
1
t ) ∼ U(−β1

t , β
1
t ), ∆ẋt(β

2
t ) ∼ U(−β2

t , β
2
t )

and U(−β, β) denotes the uniform distribution over [−β, β].
The noise variables are stat. ind., in particular ∆xt(β

1
t ) and

∆ẋt(β
2
t ) are stat. ind. from each other and also stat. ind.

over time. Here, Qx and Qẋ determine the ranges of the
noise levels and they are set as the 0.1 times of the full
range of the corresponding observation, i.e., Qx = 0.18 and
Qẋ = 0.014.

Our agent chooses βit ∈ [0, 1] in addition to the original
action of the environment, i.e. the force at that would be
exerted on the car. The original reward of the environment
per step is given by rt = −0.1× a2t . The reward is shaped
using an additive model

r̃t = rt + κA ×

(
1

n

n∑
i=1

βit

)
, (7)

where n = 2 and κA > 0 is chosen as 5 × 10−6. The
original environment has also a termination reward which
the agent gets when the car passes the target position at
0.45, which is also provided to our agent upon successful
termination.

In Scenario B, at each time instant we either have no ob-
servation or we obtain the original observation vector, i.e.
x̃t = xt and ˜̇xt = ẋt. These cases correspond to β̄t = ∞
and β̄t = 0, respectively. The reward function is given as
r̃t = rt+κB×g(β̄t) where κB = 0.5; and g(β̄t) = −1 for
β̄t = 0, and 0 otherwise. In the implementation, we have
mapped∞ to 1, i.e. β̄t ∈ {0, 1}, and β̄t = 1 corresponds
to not obtaining a sample in Scenario B.

RL algorithm: We adopt a deep RL setting, combining
reinforcement learning with deep learning using the policy-
based approach Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015; Hill et al., 2018). The parameters
are kept constant for all experiments and are provided in the
Appendix. For Scenario A, at each time step, noisy observa-
tions obtained at that time step are fed to the algorithm as the
observations. For Scenario B, the last acquired observation
is fed to the algorithm as the observation at that time step.

Plots: Unless otherwise stated, all results are reported as
averages (such as average cumulative rewards and average
βit) using 1000 episodes. For the plots, observation space
is mapped to a grid with uniform intervals. Averages are
taken with respect to the number of visits to each given
range of the observation state. For example, for Scenario A
the average of βit when x̃t ∈ [−0.1,+0.1] is shown as one
average value at the center 0. For Scenario B, we report the
sample skip frequency, i.e. the number of times the agent
decided not to acquire a new observation when the last
observed state of the agent falls into a given interval, such
as the average sample skip frequency for x̃ ∈ [−0.1,+0.1]
is reported as one value at 0. In the 2-D plots, the color pink
indicates there was no visit to that observation state.
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Table 1: Comparison of the average returns

ENVIRONMENT ORIGINAL A B

MountainCarContinuous-v0 94 94 94
Pendulum-v0 -152 -158 -170
CartPole-v1 494 482 472

3.2. Performance under Observation Cost

Overview: We benchmark our results against the perfor-
mance of the agent that use the original observations, and
trained using the same RL algorithm. The resulting average
cumulative rewards in terms of rt are presented in Table 1.
We present the reward corresponding only to the original
task so that we can evaluate the success of the agent in this
task. These results illustrate that the agent can learn to adjust
the accuracy level and still obtain successful performance.
For the Mountain car environment, all agents have the same
average return and for the others, the agents working with
the noisy/skipped observations have a slightly weaker per-
formance but still achieve the task of bringing/keeping the
pendulum/pole in a vertical position in a reasonable number
of time steps.

At first sight, it may be surprising that the agent can learn
to perform these tasks satisfactorily even if we have not
injected any memory to our algorithm, for instance when
we only use the current noisy observations for Scenario
A. On the other hand, note that in these environments the
observations are either noisy versions of hidden states which
govern the dynamics or they are closely related to them.
From the point of the agent, this can be interpreted as a
configurable MDP (Metelli et al., 2018; Silva et al., 2019)
where the agent controls the noise of the dynamics. Hence,
the task of the agent can be interpreted as adjusting the noise
level in the dynamics which does not necessarily require
usage of memory in the decision maker.

Data Collection Strategies: We now focus on the chosen
data collection strategies for the mountain car. The results
for cartpole and pendulum are provided in the Appendix.

The chosen noise levels and the sample skip frequencies
for the mountain car environment are presented in Figure 1.
Note that in Figure 1c, we present the sample skip frequency
with respect to the velocity and the position on the same
plot, where the legend also gives the corresponding x-axis
label. In the mountain car environment, the car starts ran-
domly around position −0.5 and it has to first go in the
reverse direction (corresponding to a negative velocity) to
climb the hill located around position−1.25 in order to gain
momentum and climb to hill at the right (corresponding to a
positive velocity) and reach the target location 0.45 which
is at the top of this hill. The results reflect some of the data
acquisition trade-offs in this strategy as follows:

Figure 1a shows that most noisy observations in position
and velocity (Scenario A) are preferred around−0.5 (where
the car position is initialized), and the most accurate samples
are taken when the car is around position −1.2. This is the
position where the car has to make sure that it has reached
to the top of the left hill so that it has enough momentum
to climb the right hill. In the case of the dependence of the
noise level on the velocity, Figure 1b shows that accurate
samples are preferred when the velocity has high positive
values. Note that this is not the only viable observation
strategy and there are multiple observation strategies that
give approximately the same average return in the original
task. These can be explored using different Q and κ values
in our framework.

Figure 1c shows that approximately half of the samples are
dropped in Scenario B regardless of the observation state,
suggesting a high inherent sampling rate in the environment.
This difference in the behaviour with the noisy and skipped
observations illustrates the fundamental difference in these
frameworks. In the case of noisy observations, the agent has
to discover that the observations are uncertain and counter-
act this uncertainty. On the other hand, when taking perfect
observations are possible, as in the case of Scenario B, the
agent can internalize the exact environment dynamics (since
mountain car environment has no inherent noise in its ob-
servations) and determine its exact state using the previous
observed state and its action.

4. Discussion and Conclusions
We have proposed a framework for revealing the information
structure of the observation space in a systematic manner.
We have adopted a reinforcement learning approach which
utilizes a cost function which increases with the accuracy
of the observations. Our results uncover the relative use-
fulness of different types of observations and the trade-offs
within; and provide insights for further design of active data
acquisition.

Our results suggest that inherent sampling rate of some of
the standard RL environments may be higher than needed
(for instance, see the Mountain Car environment where on
average one can skip one out of every two samples without
affecting the performance), indicating yet-another reason
why some of these are seen as unchallenging for most of the
state-of-art RL algorithms.

We have provided a quantification of the sensitivity of the
agent’s performance to noisy/skipped observations at dif-
ferent observation regions illustrating that this sensitivity
vary significantly based on the observation region. Utiliz-
ing this information for supporting robust designs as well
as preparing adversarial examples is an interesting line of
future research.
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5. Appendix
5.1. Related Work

A related setting is active learning (Settles, 2010; Donmez
et al., 2010) where an agent decides which queries to per-
form, i.e., which samples to take, during training. For in-
stance, in an active learning set-up, an agent learning to clas-
sify images can decide which images from a large dataset
it would like to have labels for in order to have improved
classification performance. In a standard active learning
approach (Settles, 2010; Donmez et al., 2010) as well as
its extensions in RL (Lopes et al., 2009), the main aim is
to reduce the size of the training set, hence the agent tries
to determine informative queries during training so that the
performance during the test phase is optimal. In the test
phase, the agent cannot ask any questions; instead, it will
answer questions, for instance, it will be given images to
label. In contrast, in our setting the agent continues to per-
form queries during the test phase, since it still needs to
collect observations during the test phase, for instance as
in the case of collecting camera images for an autonomous
driving application. From this perspective, one of our main
aims is to reduce the number of queries the agent performs
during this actual operation as opposed to number of queries
in its training phase.

Another related line of work consists of the RL approaches
that facilitate efficient exploration of state space, such as
curiosity-driven RL and intrinsic motivation (Pathak et al.,
2017; Bellemare et al., 2016; Still & Precup, 2012) or active-
inference based methods utilizing free-energy (Ueltzhöffer,
2018; Schwöbel et al., 2018); and the works that focus on
operation with limited data using a model (Chua et al., 2018;
Deisenroth & Rasmussen, 2011; Henaff et al., 2018). In
these works, the focus is either finding informative samples
(Pathak et al., 2017) or using a limited number of sam-
ples/trials as much as possible by making use of a forward
dynamics model (Boedecker et al., 2014; Chua et al., 2018;
Deisenroth & Rasmussen, 2011; Henaff et al., 2018) during
the agent’s training. In contrast to these approaches, we
would like to decrease the effective size of the data or the
number of samples taken during the test phase, i.e. operation
of the agent after the training phase is over.

Representation learning for control and RL constitutes an-
other line of related work (Watter et al., 2015; Hafner et al.,
2019; Banijamali et al., 2018). In these works, the transfor-
mation of the observation space to a low-dimensional space
is investigated so that action selection can be performed
using this low-dimensional space. Similar to these works,
our framework can be also interpreted as a transformation
of the original observation space where an effectively low-
dimensional space is sought after. Instead of allowing a
general class of transformations on the observations, here
we consider a constrained setting so that only specific oper-

ations are allowed, for instance, we allow dropping some of
the samples but we do not allow collecting observations and
then applying arbitrary transformations on them.

Our work associates a cost with obtaining observations.
Cost of data acquisition in the context of Markov deci-
sion processes (MDPs) has been considered in a number of
works, both as a direct cost on the observations (Hansen,
1997; Zubek & Dietterich, 2002) or as an indirect cost of in-
formation sharing in multiple agent settings (Melo & Veloso,
2009; De Hauwere et al., 2010). Another related line of
work is performed under the umbrella of configurable MDPs
(Metelli et al., 2018; Silva et al., 2019) where the agent can
modify the dynamics of the environment. Although in our
setting, it is the accuracy of the observations rather than the
dynamics of the environment that the agent can modify, in
some settings our work can be also interpreted as a config-
urable MDP. We further discuss this point in Section 3.2.

5.2. Further Discussions on the Setting

The primary motivation behind the proposed framework is
to reveal the inherent nature of the observation space in
terms of usefulness of information the observations provide
with respect to the task at hand. The secondary motivation
is to provide a RL framework for solving decision making
problems when the observations have a cost associated with
them.

In regard to the first task, we note the following: To re-
veal this information structure, we associate an artificial
cost with the observations that increase with the accuracy.
Hence, only the observation components (or the observation
vectors) which are mostly likely to be informative and worth
the cost will be collected. This decision heavily depends on
the state that the agent believes itself to be in. Hence, we’re
interested in questions such as “Is it possible to skip some
observations and obtain satisfactory performance?”, “Which
observation components (such as the position or the veloc-
ity) are most useful when the object is far away from (or
close to) the target state?”. The proposed framework reveals
this information structure within a systematic setting.

In regard to the second task, we note that there are many
practical problems where there is a cost associated with
acquiring observations (Hansen, 1997; Zubek & Dietterich,
2002), for instance consider the expensive medical tests
(i.e. observations) that have to performed to diagnose a
certain disease (Zubek & Dietterich, 2002) and wireless
communications where there is a cost associated with chan-
nel usage (i.e. the right to use a communication channel)
and a power cost that increases with the reliability of com-
munications (Goldsmith, 2005; Cover & Thomas, 1991),
see also Section 5.3. The proposed framework can be used
to find efficient observation strategies in such problems and
to quantify the possible performance degradation due to the
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observation cost.

5.3. Example with Accuracy Dependent Observation
Cost: Wireless Communications

We now provide a motivating example to illustrate how
observations can have a cost that is increasing with the
accuracy and the decision maker can choose this accuracy
level.

A standard model for single terminal wireless communica-
tions is the additive white Gaussian noise (AWGN) channel
(Goldsmith, 2005; Cover & Thomas, 1991)

yt = xt + vt (8)

where xt represents the channel input (i.e. message at the
transmitter ) at time t, yt represents the corresponding chan-
nel output (i.e. the observation at the receiver) and the white
Gaussian random process vt represents the channel noise.
The capacity of this channel, i.e. the maximum number of
information bits that can be sent, is determined by the signal-
to-noise ratio (SNR), i.e. the average power in xt divided by
the average power in vt. In particular, the capacity is given
by (Goldsmith, 2005; Cover & Thomas, 1991)

C = log2(1 +
Px
Pv

) (9)

where Px and Pv are the average power levels of xt and vt,
respectively. Hence, the capacity increases with Px. On the
other hand, one cannot use a very high value of Px since
broadcasting at high power levels is costly. In particular,
Px directly contributes to the actual power required by the
transmitter. Note that Px controls the accuracy of the obser-
vations. In particular, by dividing both sides by

√
Px, (8)

can be equivalently represented as

ȳt = x̄t + v̄t (10)

where ȳt , 1√
Px
yt, x̄t , 1√

Px
xt and v̄t , 1√

Px
vt. The

average power of x̄t is 1 and average power of v̄t is Pv/Px.
The SNR, and hence, the channel capacity are the same in
(8) and (10) and hence these representations are equivalent
for all relevant purposes. In particular, determining Px di-
rectly determines the effective noise level. With vt Gaussian,
we have vt ∼ N (0, Pv). Hence, the conditional distribution
of the observations ȳt is given by p(ȳt|x̄t) = N (x̄t, Pv/Px)
where Pv/Px can be chosen as βt. Hence, as the accuracy
of the observations increases (Pv/Px decreases ), the cost
of the observations (Px) increases. In this context, several
interesting questions that relates to the accuracy of the ob-
servations and the power cost can be posed, for instance
how to distribute a certain total power budget Ptotal over
channels yit = xit + vit with different intrinsic power levels
Pvi .

Table 2: Environment parameters, reward weighting for
different scenarios

ENVIRONMENT κA, κB

MOUNTAINCARCONTINUOUS-V0 5× 10−6, 0.5
PENDULUM-V0 1, 0.2
CARTPOLE-V1 0.2, 0.04

This example illustrates the basic premise of our problem
setting in a practical scenario; a decision maker who can
adjust the noise levels of the observations which has a cost
associated with them. It also suggests that the constraints
on the wireless communications constitute a general and po-
tential hindrance in remote control applications. Consider a
device that makes the observations and takes actions but gets
its commands (i.e. decisions about which actions to take)
from another decision unit, such as the control of a robot
or a drone by a remotely run RL algorithm which is con-
trolling a large number of such units. Here, it is beneficial
to consider policies that can work with inaccurate observa-
tions since sending accurate measurements are costly from
a power perspective, which will be particularly important
for a device with a limited battery, such as a drone flying at
a remote location. Similarly, if the wireless communication
channel cannot be used at all times, for instance, due to the
limited bandwidth available, RL methods that can utilize the
limited communication resources efficiently and optimize
performance under such conditions are needed.

5.4. Environment Parameters

In this section, we provide the parameters for all the en-
vironments in the experiments that are used directly from
OpenAI Gym. We also consider a vertical position ver-
sion of MountainCarContinuous-v0, which is explained in
Section 5.7.

Consider a generic environment with the observation vari-
ables oit, where oit denotes the ith observation variable at
time t. The limited-accuracy observations õtt are obtained
using

õit = oit +Qi ×∆oit(β
i
t) (11)

where ∆oit ∼ U(−βt, βt). We choose Q1 = 0.1 and
Q2 = 0.2 for the Pendulum-v0, Qi = 0.2 for the CartPole-
v1, and Qi = 0.1 for the MountainCarContinuous-v0. The
ordering of the observations is the same with the ones pro-
vided in OpenAI Gym (Brockman et al., 2016). For instance,
for MountainCarContinuous-v0, position and velocity corre-
spond to o1 and o2, respectively. Note that indices start with
i = 0 in OpenAI Gym whereas here we start with i = 1.
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Table 3: Hyperparameters of the TRPO algorithm

PARAMETER VALUE

GRADIENT DAMPENING FACTOR 2.35E-05
WEIGHT FOR THE ENTROPY LOSS 0.01118
GAMMA 0.98
GAE FACTOR 0.9
KULLBACK-LEIBLER LOSS THRESHOLD 0.000193
NO. OF TIMESTEPS TO RUN PER BATCH 1024
NO. ITERS. FOR LEARNING FOR VALUE FUNC 10
STEPSIZE OF VALUE FUNC. 0.00428

The reward function under Scenario A is given by

r̃t = rt + κA ×

(
1

n

n∑
i=1

βit

)
, (12)

where rt is the original reward and κA > 0. For Scenario
B, it is given by r̃t = rt + κB × g(β̄t) where g(β̄t) = −1
for β̄t = 0, and 0 otherwise. The associated κ values for
different environments are presented in Table 2.

The scaling factor Q’s for the noise levels and κ values for
the reward function are determined empirically by first fix-
ing Q (as a percentage of the full range of the associated
observation) and searching for κ values that provide satis-
factory performance in the original task. Note that the rest
of the values are determined by the specifications of the
environments in OpenAI Gym. The results depend on the
values of Q and κ. For instance, using larger κ puts a larger
weight on the reward due to noise. Hence, the agent prior-
itizes the reward due to noise instead of the reward from
the original environment and, for large enough κ values, the
agent cannot learn to perform the original task.

5.5. TRPO parameters

The same TRPO parameters are used in all experiments.
These are provided in Table 3.

5.6. Mountain Car - Observation Strategies

We now provide observation strategies found by the RL
agent for the Mountain Car environment as 2-D plots over
the state space. In all 2-D plots, the color pink indicates
there was no visit to that observation state. Figure 2 shows
noise levels or skip frequencies over the whole observa-
tion space for the Mountain Car environment. Comparing
Figure 2a-2b with Figure 2c, we observe that in the case
of noisy observations a larger part of observation space is
visited, which is partly due the fact that the plots are drawn
according to the observations acquired by the agent and not
the true states. Note that this does not affect the performance
in the original task, as illustrated in Table 1.

5.7. Mountain Car with Observations of the Vertical
Position

To have a better understanding of the effect of partial observ-
ability, we have investigated the following modification on
MountainCarContinuous-v0: Instead of the horizontal posi-
tion, the agent uses the vertical position as the observation.
Hence, the observations are given by

ỹt = yt +Qy ×∆yt(β
1
t ), (13a)

˜̇xt = ẋt +Qẋ ×∆ẋt(β
2
t ), (13b)

where the vertical position yt ∈ [0.1, 1] is given by
yt = 0.45 sin(3xt) + 0.55 (Brockman et al., 2016) and
∆yt(β

1
t ) ∼ U(−β1

t , β
1
t ) and ∆ẋt(β

2
t ) ∼ U(−β2

t , β
2
t ).

Note that due to sin(·) function, for most of the yt val-
ues in the range [0.1, 1], there are two possible horizontal
position (xt) values. Hence, this environment constitutes a
POMDP even without any observation noise. Similar to our
experiments with the original environment, Qy and Qẋ are
set as the 0.1 times of the full range of the corresponding
observation, i.e., Qx = 0.09 and Qẋ = 0.014. As before,
the reward is calculated with (7) with κA = 5× 10−6.

The average return due to the original task is 93, hence
the agent again learns to perform the original task success-
fully, see Table 1 for comparison. The chosen noise levels
are presented in Figure 3-4. Comparing these results with
Figure 1-2 where the agent takes the horizontal position
observation, we observe that the general trend of the ve-
locity noise with respect to the velocity are the same in
both settings, i.e. decreasing as the agent moves from the
negative velocities to positive velocities. Comparing Fig-
ure 3 with Figure 1, we observe that lower relative noise
levels are preferred for the setting with the vertical location
observations.

5.8. Additional Results -Pendulum

The results for the pendulum are presented in Figure 5-
6. Here, the task is to keep the pendulum at a vertical
position, corresponding to an angle of 0. Figure 5a and
Figure 6a show that observations with low position (i.e.
angle) noise (Scenario A) are preferred when the pendulum
is close to the vertical position and has relatively small
angular velocity. On the other hand, when the samples can
be completely skipped (Scenario B), the agent skips a large
ratio of the samples in this region, as shown in Figure 5c and
Figure 6c. Note that the agent spends most of the episode
in this target region in the vertical position. Here, the agent
prefers noiseless samples since a noisy sample may cause
the control policy to choose a wild movement which might
destabilize the pendulum. On the other hand, the agent may
safely skip some of the samples at the upright position as the
last sample is very close to current one because the angular
velocity is typically low.
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(a) Scenario A, position noise

−1.25 −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50
Car Position

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Ca
r V

el
oc

ity

Noise Level (Car Velocity)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Scenario A, velocity noise
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Figure 2: Mountain car, noise levels or skip frequencies over the whole observation space
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Figure 3: Mountain car with vertical position observation, noise levels versus one observation type
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Figure 4: Mountain car with vertical position observation, noise levels over the observation space
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Figure 5: Pendulum, noise levels or sample skip frequency versus one observation type
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(b) Scenario A, velocity noise
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Figure 6: Pendulum, noise levels or skip frequencies over the whole observation space
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5.9. Additional Results -Cart Pole

We now provide the results for the cart pole environment
in Figure 7-10, which were not included in the main text
due to page limitations. For the sake of brevity, the noise
levels over observations pairs is only provided for the po-
sition noise levels whereas averages are provided for all
observation types.

Representation learning for control and RL constitutes an-
other line of related work (Watter et al., 2015; Hafner et al.,
2019; Banijamali et al., 2018). In these works, the transfor-
mation of the observation space to a low-dimensional space
is investigated so that action selection can be performed
using this low-dimensional space. Similar to these works,
our framework can be also interpreted as a transformation
of the original observation space where an effectively low-
dimensional space is sought after. Instead of allowing a
general class of transformations on the observations, here
we consider a constrained setting so that only specific oper-
ations are allowed, for instance, we allow dropping some of
the samples but we do not allow collecting observations and
then applying arbitrary transformations on them.

Our work associates a cost with obtaining observations.
Cost of data acquisition in the context of Markov deci-
sion processes (MDPs) has been considered in a number of
works, both as a direct cost on the observations (Hansen,
1997; Zubek & Dietterich, 2002) or as an indirect cost of in-
formation sharing in multiple agent settings (Melo & Veloso,
2009; De Hauwere et al., 2010). Another related line of
work is performed under the umbrella of configurable MDPs
(Metelli et al., 2018; Silva et al., 2019) where the agent can
modify the dynamics of the environment. Although in our
setting, it is the accuracy of the observations rather than the
dynamics of the environment that the agent can modify, in
some settings our work can be also interpreted as a config-
urable MDP. We further discuss this point in Section 3.2.
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Figure 7: Cart pole, noise levels versus one observation type
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Figure 8: Cart pole, noise levels or sample skip frequency versus one observation type
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Figure 9: Cart Pole, Scenario A, noise levels for the position over the pairs of the observation variables
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Figure 10: Cart Pole, Scenario B, sample skip frequencies over the pairs of the observation variables


