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Abstract
Reinforcement learning (RL) is empirically suc-
cessful in complex nonlinear Markov decision
processes (MDPs) with continuous state spaces.
By contrast, the majority of theoretical RL liter-
ature requires the MDP to satisfy some form of
linear structure, in order to guarantee sample effi-
cient RL. Such efforts typically assume the transi-
tion dynamics or value function of the MDP are
described by linear functions of the state features.
To resolve this discrepancy between theory and
practice, we introduce the Effective Planning Win-
dow (EPW) condition, a structural condition on
MDPs that makes no linearity assumptions. We
demonstrate that the EPW condition permits sam-
ple efficient RL, by providing an algorithm which
provably solves MDPs satisfying this condition.
Our algorithm requires minimal assumptions on
the policy class, which can include multi-layer
neural networks with nonlinear activation func-
tions. Notably, the EPW condition is directly mo-
tivated by popular gaming benchmarks, and we
show that many classic Atari games satisfy this
condition. We additionally show the necessity
of conditions like EPW, by demonstrating that
simple MDPs with slight nonlinearities cannot be
solved sample efficiently.

1. Introduction
Over the past decade, reinforcement learning (RL) has
emerged as the dominant paradigm for sequential decision
making. During this time period, video games have served
as popular means to benchmark the incremental improve-
ment in state of the art RL. The Arcade Learning Environ-
ment (ALE), comprising a suite of classic Atari games, is
an archetypical example of such a benchmark (Bellemare
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et al., 2013). Agents trained by RL can surpass human level
performance in such games (Badia et al., 2020).

Motivated by these empirical accomplishments, there has
been a major thrust to theoretically characterize the con-
ditions which permit sample efficient RL. In the tabular
RL setting, where the number of states is finite and small,
sample efficiency bounds scale with cardinality of the state
space. However, in practice this cardinality is often large or
infinite. For instance, many gaming applications of RL all
have continuous state spaces (Berner et al., 2019). These
scenarios are handled in the function approximation set-
ting (Du et al., 2019; 2020). Here, each state is associated
with a known feature, and one desires a sample efficiency
bound that scales with the dimensionality of the features
(instead of the cardinality of the state space).

To understand when continuous space RL is sample efficient,
theoreticians make certain assumptions on the features or the
underlying Markov Decision Process (MDP). A prominent
assumption, which has appeared in various forms, is that the
problem satisfies some sort of linear structure. For instance,
in the linear MDP, the transitions and rewards are described
by linear functions of the features (Yang & Wang, 2019; Jin
et al., 2020; Yang & Wang, 2020; Wang et al., 2021). A
weaker, but frequently occurring, form of this assumption
is that value function of any policy is nearly linear (Du
et al., 2020; Lattimore et al., 2020), or that the optimal value
function is linear (Du et al., 2019). Such linear structure is
amenable to theoretical analysis.

To obtain a holistic understanding of RL, examining such
linear structure is important. But it is unclear whether the
aforementioned linearity conditions actually hold in practi-
cal scenarios. For instance, it has recently been shown both
theoretically and empirically that the optimal value function
and optimal policy can be very complex, even in elementary
continuous state space MDPs (Dong et al., 2020). Since
even powerful linear functions such as the Neural Tangent
Kernel are worse in terms of representation power than non-
linear neural networks (Allen-Zhu & Li, 2019; Li et al.,
2020), it is unclear whether linear functions can be used to
approximate the value function or underlying policy well.

Even in simple RL gaming benchmarks, there is no evi-
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Figure 1. An image of the Atari Pong game. The green paddle must
move up and down to hit the ball (the white dot) while playing
against the opposing orange paddle.

dence that the aforementioned linearity assumptions hold.
Indeed, nonlinear neural networks are predominant means
to approximate policies and value functions when solving
these games in practice. For instance, consider the Pong
game from the ALE benchmark, which is depicted in Fig-
ure 1. In this game, the agent must use its paddle to prevent
the ball from crossing a boundary, while playing against a
pseudorandom opposing paddle. Despite the simplicity of
Pong, state of the art methods solve this game using neural
networks (Mnih et al., 2013; 2015; Badia et al., 2020), and
it is not apparent whether this game is linear in any sense.

This reveals a significant gap between the theory and prac-
tice of RL. In theory, one usually employs some sort of
linearity assumption to ensure efficient RL. Yet, in practice,
RL appears to succeed in domains which do not satisfy such
linear structure. In an effort to resolve this discrepancy, we
ask the following question:

Which structure is typical of popular RL domains, and
does this structure permit sample efficient RL?

This question underlies the analysis of our paper. We make
the following contributions:

• We propose the Effective Planning Window (EPW)
condition, a structural condition for MDPs which goes
beyond linearity. Indeed, this condition is compati-
ble with neural network policies, and MDPs satisfying
EPW can have highly nonlinear (stochastic) transitions.
Informally, this condition requires the agent to consis-
tently plan C timesteps ahead, for a value of C signifi-
cantly smaller than the horizon length. We show that
popular Atari benchmark games satisfy this condition.

• We provide a simple algorithm, which exploits the
EPW condition to provably solve MDPs satisfying
EPW. We prove the sample efficiency of our algorithm,
and show that it requires a number of trajectories that
is a lower order polynomial of the horizon length and
other relevant problem dependent quantities.

• We argue that one must look beyond linear structure,
and further motivate the study and necessity of con-
ditions like EPW, by demonstrating that even slightly
nonlinear MDPs cannot be solved sample efficiently.

2. Problem Formulation
2.1. Problem Statement

Notation & Preliminaries. [n] denotes {0 . . . n − 1} for
any integer n ≥ 1. Recall that an undiscounted, finite hori-
zon MDPM = (S,A, T , R,H) is defined by a set of states
S, a set of actions A, a transition function T which maps
from state-action pairs to a probability density defined over
states, a reward function R which maps from state-action
pairs to non-negative real numbers, and a finite planning
horizon H . Throughout our paper, we assume that S ⊆ Rd
and A is a finite set. We assume a single initial state s0, and
that S can be partitioned intoH different levels. This means
that for each s ∈ S there exists a unique h ∈ [H] such that
it takes h timesteps to arrive at s from s0. We say that such
a state s lies on level h, and denote Sh to be the set of states
on level h. Taking any action from level H − 1 exits the
game. The notation ‖x‖2 denotes the Euclidean norm of x.

A policy maps each state to a corresponding distribution
over actions. In practice, one typically uses a policy that is
parameterized by parameters belonging to some set Θ ⊆
Rk. We study such policies, and use π(θ) to denote the
policy induced by using parameter θ ∈ Θ. When discussing
a policy which is not parameterized, we simply use π to
denote the policy. We use πas (θ) to denote the probability
of taking action a at state s when using the policy π(θ).
We use π(Θ) to denote {π(θ) s.t. θ ∈ Θ}, which is the
set of feasible policies and defines our policy class. ΘH

denotes the Cartesian product of Θ with itself H times.
Given a vector θ ∈ ΘH , we let π(θ) denote the policy
which executes π(θh) at for any state lying on level h ∈
[H], where θh denotes the hth entry of θ. The value of a
policy π(θ) in MDPMwhen initialized at state s is denoted
V sM(π(θ)).

Query Model. We adopt the standard episodic RL setup.
Given a desired solution accuracy ε and failure probability
tolerance δ, we are interested in algorithms which can suc-
cessfully solve an MDP using a number of trajectories that
is at most polynomial in H , |A|, d, k, 1

ε and 1
δ .

To permit sample efficient RL, prior theoretical work has
often assumed that MDP satisfies linear structure. However,
it is well documented that RL is empirically successful
in highly nonlinear domains. We aim to reduce this gap
between theory and practice. We now formally state the
problem that we consider throughout our paper.

Our goal is to present nonlinear characteristic conditions
which permit sample efficient RL, and argue that these

conditions are satisfied in practice by popular RL domains.

2.2. Effective Planning Window Condition

We first state basic conditions that are satisfied by most RL
problems encountered in practice. We will later refine these
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to obtain our Effective Planning Window (EPW) condition,
and then show that EPW enables sample efficient RL.

Let us begin by observing that in practice, the policy class
π(Θ) typically satisfies some mild regularity assumptions.
We formalize this in the following condition.

Condition 1 (Regular Policy Class). A policy class π(Θ)
is said to be Regular when:

(a) Bounded Domain. There exists B > 0 such that each
θ ∈ Θ satisfies ‖θ‖2 ≤ B.

(b) Lipschitz Continuous Policies. There exists φ > 0
such that for any θ, θ′ ∈ Θ and any (s, a) ∈ S × A,
we have |πas (θ)− πas (θ′)| ≤ φ‖θ − θ′‖2.

We stress that this is a very mild condition, and places
minimal restrictions on π(Θ), which can include a multi-
layer neural network with a nonlinear activation function.
We now introduce the Generic Game condition.

Condition 2 (Generic Game). An MDP and Regular pol-
icy class pair (M, π(Θ)) form a Generic Game if:

(a) Failure States. There is a set of failure states F ⊂ S,
and taking any action from a state in F exits the game.

(b) Complete Policy Class. There exists some θ? ∈ Θ such
that executing π(θ?) from s0 arrives at some state in
SH−1 \ F almost surely. We define S? to be the set of
all states s ∈ S \ F such that executing π(θ?) from s
reaches SH−1 \ F almost surely. If a state lies in S?
we call it a safe state.

(c) Binary Rewards. For any state s ∈ SH−1 \F and any
a ∈ A, R(s, a) = 1. For any other state s and any
a ∈ A, R(s, a) = 0.

Note that F describes states where the agent has lost the
game. Also, observe that in Generic Games, an optimal
policy is one that arrives at a non-failure state in level H − 1
almost surely. Hence π(θ?) is indeed an optimal policy.

Let us now describe how popular Atari games can be cast
as Generic Games. Recall the famous Pong game depicted
in Figure 1. In this (single player) game, an RL agent must
learn to move the paddle up and down to hit the ball and
prevent it from crossing its boundary. The agent loses the
game if the ball crosses its own boundary, and wins the
game if it hits the ball past the opposing paddle.

We claim that Pong, together with a neural network pol-
icy class, satisfies the Generic Game condition. The first
two conditions of Generic Games are easy to verify. Note
that the states in Pong are images, so F includes any state
where the ball has crossed the agent’s boundary, since this
corresponds to the agent failing to complete the game. It
is known that Atari can be solved using a neural network

policy (Mnih et al., 2015), so a policy class parameterized
by neural networks is complete.

To ensure that Pong satisfies the third condition, we need
to design an appropriate binary reward function. This is
handled by redefining F to include any state s ∈ SH−1
where the ball has not crossed the opposing paddle. Then
one can simply assign a reward of 1 to any state in SH−1\F ,
and 0 to all other states, as required by the Generic Game
condition. Hence, playing optimally in this Generic Game
framework ensures the ball has moved past the opposing
paddle, corresponding to winning the game. This reward
function is very close to the one already used by practition-
ers (Bellemare et al., 2013).

Beyond Pong, other Atari games (and similarly themed
video games) can be cast as Generic Games. We defer
discussion of this to the main paper, due to space constraints.

Does the Generic Game condition permit sample efficient
RL? Unfortunately, there exist Generic Games where the
MDP is only slightly nonlinear, but even approximating
an optimal policy sample efficiently is impossible, and we
defer this to the main paper. So we must further restrict this
class of games. We first state a useful definition.

Definition 1 (x-Ancestor). Given a Generic Game
(M, π(Θ)), consider any h ∈ [H] and any state s′ ∈ Sh. A
state s ∈ S is an x-ancestor of s′, if s ∈ Smax{0,h−x} and
there exists some θ ∈ Θ such that following π(θ) from s
will reach s′ with nonzero probability.

We now formally state our Effective Planning Window
(EPW) condition, which refines our notion of Generic
Games. For the statement of the condition, recall our notion
of S?, which was defined in the Generic Game condition.

Condition 3 (Effective Planning Window). A Generic
Game (M, π(Θ)) satisfies the Effective Planning Window
condition with parameter C if there exists C ∈ [H] such
that the following holds. Consider any s′ ∈ S \ F . If s is a
C-ancestor of s′, then s ∈ S?.

Before examining RL benchmark games in the context of
this condition, a few comments about the condition itself
are in order. The quantity C ensures that any C-ancestor
of a non-failure state is a safe state. So if an agent is at
timestep t and the game is not over, then at timestep t−C it
was in a state from where it could have achieved the highest
reward possible in the MDP (if it took the correct sequence
of actions). For the purposes of RL, this effectively means
that at each timestep, the agent must consistently plan over
the next C timesteps instead of the entire horizon length H .

Of course, any Generic Game satisfies the EPW condition
for a choice of C = H − 1. However, many popular RL
benchmark games satisfy the EPW property with a value of
C that is much smaller than H . Informally, C is the time
required by the agent to successfully react to scenarios in
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st′′ ∈ S? st−C ∈ S? st′ ∈ S \ (S? ∪ F) st ∈ S \ (S? ∪ F) st+1 ∈ F

Figure 2. Five states from the Pong game. Here we let t′′ < t− C < t′ < t, and the ball is progressively moving towards the lower right
corner. At timesteps t′, t, the paddle has not lost the game. However, it does not have enough time to react and reach the ball in time. At
timestep t+ 1 the game is over. At timesteps t′′, t− C, the paddle has enough time to react and reach the ball.

the game (without losing). Let us understand this in Pong.

In Pong, after the opposing paddle hits the ball, the agent
must react to the trajectory of the ball and adjust its position
accordingly. If it takes too long to react before it starts
adjusting its position, then it will be unable to reach the ball
in time. We depict this in Figure 2. More formally, assume
that at timestep t the paddle has not lost the game and the
ball is moving towards its boundary. At timestep t, the ball
may be too close to the boundary, and so the agent will
not not have enough time to move its paddle fast enough in
order to reach the ball in time. However, at timestep t− C
the ball is further away from the boundary, so the agent has
enough time to move its paddle appropriately in order to
react, reach the ball and hit it back. So at timestep t − C
the agent lies in a safe state in S?, since it has enough time
to adjust its paddle and hit the ball back, and hence play
optimally. Notably, if we let C ′ be the number of timesteps
it takes for the ball to traverse from one end of the board to
the other, then C ≤ C ′. Hence, when H is large and the
agent needs to control the paddle for many rounds, then C
is a constant independent of H .

Beyond Pong, other Atari games satisfy the EPW condition,
with a constant value of C, and we show this in the main pa-
per. We conclude this section by highlighting two important
aspects of the EPW condition.

The Magnitude Of C. We treat C as a constant that is
independent of and much smaller than H . This is certainly
reasonable given our above discussion. Furthermore, there
exist EPW games where Ω(|A|C) sample complexity is
necessary to solve the game.

The Challenge Of Solving EPW Games. A deterministic
EPW game is straightforward to solve, since an agent can
try each of the |A|C trajectories to discover which ones do
not lead to F . But when transitions are stochastic (as in
Atari), this strategy is not possible. Instead, the algorithm
must generalize beyond the trajectories it samples, to learn
something global about the MDP. Furthermore, stochastic
EPW games cannot be solved by just splitting the horizonH

intoH/C distinct planning windows, and then solving these
planning problems independently of each other. Instead, the
difficulty is that the agent must consistently planC timesteps
ahead. Indeed, if a trajectory ends in a failure state after t
timesteps, then it is unclear at which of the prior timesteps
{t − C . . . t − 1} that we took an incorrect action. And
we cannot rollback to timestep t − C and rerun the same
trajectory to discover when we made a mistake.

3. Main Results
We now formally state Theorem 1, our main result, which
shows that EPW games can be solved sample efficiently.

Theorem 1. There exists an algorithm, which given
any (M, π(Θ)) satisfying the EPW condition and
poly(|A|C , k,H, 1ε , log(φBδ )) many trajectories, outputs θ
satisfying

V s0M(π(θ)) ≥ V s0M(π(θ?))− ε

with probability at least 1− δ.

The algorithm is extremely natural, and deferred to the main
paper. Critically, the sample complexity in the above result
is independent of the number of states. Also note that we
treat C as a constant, as per our discussion while motivating
EPW. Nevertheless, as a direct corollary of the work of Du
et al. (2020), the exponential dependence on C cannot be
improved by a better algorithm or sharper analysis.

We believe that the EPW condition (or other conditions
that are similar in spirit) is the correct condition for char-
acterizing when sample efficient RL is possible, at least
in RL domains like video games. By contrast, the linear-
ity assumptions which prominently appear in prior litera-
ture, in addition to lacking clear empirical justification, are
quite brittle. To demonstrate this, we show the existence of
Generic Games where the optimal value function is a linear
combination of two Relu neurons, and the optimal policy is
softmax linear, and yet the game cannot be solved sample
efficiently. Due to space constraints, this result is deferred
to the main paper. This further motivates the importance
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of studying conditions such as EPW, instead of assuming
that the MDP has linear structure. We must look beyond lin-
earity to obtain a realistic characterization of when sample
efficient RL is possible. Our EPW condition, which makes
no linearity assumptions, is one example of this.

4. Discussion
In this paper, we studied structural conditions which permit
sample efficient RL in continuous state spaces, with a focus
on conditions that are typical in popular RL domains such
as Atari games. We introduced the EPW condition, which
in contrast to prior work, makes no linearity assumptions
about the MDP structure. We provided an algorithm which
provably solves MDPs satisfying EPW. We analyzed the
sample complexity of this algorithm, and showed it requires
a number of trajectories that is a lower order polynomial
of the horizon length and other relevant problem dependent
quantities. We also showed that MDPs which have very
slight nonlinearities (but do not satisfy EPW) cannot be
solved sample efficiently. Our analysis thus highlights the
important need to look beyond linear structure, in order to
establish the sample efficiency of RL in popular domains.

A number of open questions remain. First, while our EPW
condition is directly motivated by RL gaming domains such
as Atari, we emphasize that it is unclear whether EPW is
satisfied by other RL application domains such as robotics.
A natural direction for future work is to study these domains
more closely, and identify structure that permits sample effi-
cient RL in such domains. Second, recall that our algorithm
requires access to a particular computational oracle. As
discussed, we made this computational abstraction since we
placed minimal restrictions on the policy class, so in the
worst case obtaining such an oracle could be intractable.
Nevertheless, we suspect that when using a neural network
policy class with an appropriate architecture, one could ap-
proximate this oracle efficiently. It would be interesting to
precisely characterize when this is possible. Third, it would
be interesting to see whether a variant of our theoretically
justified algorithm can be deployed in practice. Using our
theoretical insight to design a pragmatic method, with strong
empirical performance, is an important direction for future
work.
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