Bagged Ceritic for Continuous Control

Payal Bawa !

Abstract

Actor-critic methods have been successfully ap-
plied to several high dimensional continuous con-
trol tasks. Despite their success, they are prone
to overestimation bias that leads to sub-optimal
policies and divergent behaviour. Algorithms like
TD3 and Soft Actor Critic (SAC) address overes-
timation bias by employing twin Q functions and
optimizing the policy with respect to the lower
bound of the two Q functions. Although this re-
solves the issue of overestimation bias, it inad-
vertently introduces underestimation bias. Un-
derestimation bias, though not as problematic as
overestimation bias, affects the asymptotic perfor-
mance of the algorithms. To address both overes-
timation and underestimation bias in actor critic
methods, we propose Bagged Critic for Contin-
uous Control (BC3). BC3 uses an ensemble of
independently trained Q functions as critic to ad-
dress estimation biases. We present theoretical
bounds on the biases and convergence analysis of
our method demonstrating its benefits. The empir-
ical results on several challenging reinforcement
learning benchmarks substantiate our theoretical
analysis and demonstrate reduction in biases with
overall more robust policies.

1. Introduction

Reinforcement Learning (RL) enables an agent to learn poli-
cies for sequential decision problems (Sutton and Barto,
2018) by optimising the expected long-term returns. It
does so by learning optimal actions for each state of the
environment typically encoded in policy. Over the years
several RL algorithms have been proposed to find optimal
policies. Policy gradient algorithms find widespread appli-
cations in continuous control tasks. Deterministic policy
gradient (DPG) (Silver et al., 2014) models a deterministic

!School of Computer Science, University of Sydney, Sydney,
Australia °NVIDIA, Seattle, USA. Correspondence to: Payal Bawa
<pbaw4818 @uni.sydney.edu.au>.

Presented at the ICML 2021 Workshop on Theoretical Foundations
of Reinforcement Learning. Copyright 2021 by the author(s).

Fabio Ramos

12

policy for learning within an actor critic framework. DDPG
(Deep deterministic policy gradient) (Lillicrap et al., 2016)
extends DPG to high dimensional continuous action spaces
by using neural networks to model the policy (actor) and the
Q function (critic) respectively. Even though DDPG works
well in continuous control settings, the issue of overestima-
tion persists.

Twin Delayed Deep Deterministic policy gradient algorithm
(TD3) (Fujimoto et al., 2018) addresses the overestimation
bias in DDPG. Similar to DDPG, it has a single neural net-
work for actor. For critic, TD3 employs a pair of Q functions
to estimate the Q value. The target update for learning is
the minimum of the two Q functions. Taking the minimum
prevents introduction of additional overestimation over the
standard Q-learning target but introduces underestimation.
Unlike overestimation, underestimation does not propagate
via TD updates. But consistent underestimation affects the
asymptotic performance of the policies especially in high
dimensional continuous action spaces.

An extension of policy gradient algorithms are Maxi-
mum Entropy Reinforcement Learning algorithms (MERL)
(Ziebart, 2010; Haarnoja et al., 2018). MERL algorithms
augment the standard reinforcement learning objective of
maximum reward with a maximum entropy objective. A
state-of-the-art member of maximum entropy RL algorithms
family is Soft Actor Critic (SAC) (Haarnoja et al., 2018).
SAC is well known to be extremely sample efficient and
performs better than TD3 on challenging high dimensional
tasks. Like TD3, the implementation of SAC addresses
overestimation bias by introducing underestimation.

We address both overestimation and underestimation biases
in our method Bagged Ceritic for Continuous Control (BC3)
by using an ensemble of randomly initialized critics. Each
member of the ensemble is trained independently on a dif-
ferent subset of experience samples and their outputs are
aggregated (bagging). The combined approach of bagging
and random initialization gives an extremely diverse set of
Q-functions such that the averaged prediction offsets any
overestimation and underestimation bias in the actor critic
setting. We summarise our contributions as follows:

* A novel extension to actor critic methods that stabilises
training, mitigates estimation biases and improves per-

Bagged Critic for Continuous Control

formance by using an ensemble of critics;

 Theoretical upper and lower bounds on the estimation
biases validated by empirical results;

» Experimental results on OpenAl benchmark suites that
demonstrate improved performance with robust poli-
cies.

2. Background
2.1. Estimation biases in Actor Critic methods

To motivate our method, we start with the theoretical analy-
sis of estimation bias in actor critic methods. We reiterate
the overestimation bias analysis in Fujimoto et al. (2018)
and extend it to present the underestimation bias analysis.
In actor critic methods we use function approximators for
both Q function and the policy. We consider a parameter-
ized critic Qg (s¢, a;) with parameters 6 and a parameterized
policy 74(ay | s¢) with parameters ¢. The policy is updated
with respect to the estimates of the Q function. We assume
that the policy is updated using deterministic policy gra-
dient. Given the current policy with parameters ¢, let the
updated parameters of the policy be ¢gpproz Where @approq
are obtained by updating with respect to the approximate
critic. Let ¢, be the parameters of the policy update with
respect to true Q values Q"“¢(s,a). Then the update rules
are:

[0
(bapprow = (b + ZESNPW [Vqﬁﬂ-qﬁ(s)anQ(sv a) | a:ﬂ¢(s)]

« rue
Dtruc = ¢ + ZESNPW [vdﬂ%(s)ant (s,a)| a:%(s)]v
9

where Z; and Z» are normalization constants for the gradi-
ents. Since the gradient direction is a local maximizer there
exists an €; > 0 such that for a < €1:

E[Qo(s; Tapprox(s))] = E[Qo (s, True(s))], (10)

where m,p,pr0; and .. are policies with parameters
Papproz and @iy respectively. Conversely, there exists
an ez > 0 such that for o < ey, the true value of 74pproq 15
bounded above by the true value of 7y,

E[Qtrue(s’ Wtrue(s))] Z E[Q”UC(S, ﬂ—appTOI(S))}' (11)

Therefore if E[Qg (s, Tirue(s))] > E[QC(s, Tirue(s))]
and o < min(ey, €2), then equations (10) and (11) imply
that the Q values will be overestimated.

Similarly for underestimation bias analysis, let Q. (s, a)
be the estimate of the Q function where Qu.(s,a) =
min;—; 2 Qgi (s, a) (similar to Q-function estimate in TD3
and SAC). Let ¢, be the parameters of the policy updated

with respect to Q.. (s, a). Then the update rule for ¢, is:

¢ac = ¢ + %ES’\‘PW [V¢7T¢(5)VaQac(57 a) | a:7r¢>(s)]
(12)

where Z3 is the normalization constant for the gradient. The
gradient direction is a local maximizer of the minimum of
the two Q function estimates. The policy ¢, is optimized
with respect to the lowerbound of the dual estimates of Q
function. Therefore the true Q value of an action under
policy ¢, is atleast as large as the approximate one,

E[Q"" (s, Tac(5))] = E[Quc(s, ac(s)). (13)

Then equation (13) implies that the Q values will be consis-
tently underestimated.

3. Bagged Critics for Continuous Control

TD3 and SAC address overestimation by iteratively maxi-
mizing the lower confidence bound on the Q-function. This
in return induces underestimation. Unlike overestimation
bias, underestimation bias is not propagated through policy
updates but it ultimately hurts the performance in practice.
We introduce an ensemble based approach to learning in
Bagged Critics for Continuous Control (BC3) to mitigate
both overestimation and underestimation biases. BC3 re-
places the lower bound on the Q function in TD3 and SAC
with an ensemble of critics. BC3 learns the ensemble of
critics by first randomly initializing each neural network.
Each member is then trained independently on different set
of experience samples from the buffer B and the aggregated
output of the ensemble is used as target value in the modi-
fied Bellman backup operator. The combination of random
initialization and bagging (Breiman, 1996) reduces the vari-
ance in the action value estimates and offsets the estimation
biases.

We constructed BC3 using the SAC framework but it can be
extended to any off-policy actor critic algorithm. Similar to
SAC, the critics represent estimates of the soft Q-function.
We consider a parameterized ensemble of critics Qpcs3 :

L
Qpes(st,a) = 7= > Q(st,a4; 64). (15)
k=1

The Q-functions are learned by minimizing the individual
Bellman residual J(6;) = 3(Qo, (st,ar) — (r(se,ar) +
v Es,.,[Q@zes(se,ar)])). The parameters of each Q-
function are optimized using stochastic gradient descent:

Vo J(0k) = Vo, Qo, (51, a1) Qo (51, at) — (r(s4, ar)

+ 7 (Qpez(st+1, ar1) — alog mg(aisa | si4+1)))),
(16)

Bagged Critic for Continuous Control

Walker2d Walker2d Walker2d
500 500 500
— DDPG_est — SAC est /',.---. — BC3 est
—8— DDPG_true —8— SAC true — —8— BC3_true
400 400 < 400 wer—e
E E E
2 300 2 300 23001
= = = k'
o o o
=] =] =] | b
8 8 8 \
@200 @ 200 @200 :
z z z \//
100 100 100 ‘
,,‘r
ff J‘/’
o-— T T T T T 0= T T T T T 0-—* T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Millicn steps Millicn steps Millicn steps

Figure 1. Comparison of estimation values of DDPG, SAC and BC3 on Walker2d-v2 environment. DDPG leads to overestimation. SAC
leads to an underestimation. BC3 estimates are closer to the true values.The absolute bias of BC3 is less than the absolute bias in DDPG

and SAC.

where Qpes(st,a:) is an ensemble of target soft Q-
functions with parameters 64, --,0x. The parameters
01, -, 0k are obtained from the exponentially moving av-
erage of the corresponding soft Q-function weights. Simi-
lar to SAC, we use a tractable policy and its parameters
are optimized by minimizing the KL divergence J; =
Es,~8[Ea,~p, [log mg(ar | s¢) — Qpea(se, atr)]]. Apply-
ing the reparameterization trick, the parameters are learned
using the gradient:

Vg J(¢) = Vgalog my(ay | s1)

+(VaJog mg(as|st) —Va,QBes(se, at)) Ve foler: st),
(17)

where €, is the noise sampled from a Gaussian distribu-
tion and fy(€s; ;) is the reparamaterization using neural
network transformation for the policy. The practical BC3
algorithm is presented in Algorithm 1 in appendix A.

3.1. Estimation bias reduction in BC3

We next prove that BC3 reduces the overestimation bias and
improves the underestimation bias in critics. The following
proofs follow the format presented in Pan et al. (2020).

Theorem 3.1. Let Tpppc and Tpcs; be the state ac-
tion value estimates for critics in algorithms DDPG
and BC3 respectively. Let bias in state-action value
estimates be: bias(T) E[Q(st41,at41;0)] —
E[Q(s¢41,T(St41; }); 07) where 67" are the parame-
ters of true value function. Assume that the actor is a local
maximizer with respect to the critic with a clipped action
space Ay, then bias(Tpppc) > bias(Tcs).

Proof. Proof in Appendix A a

Theorem 3.2. Let Tsuc and Tpc; be the state action value
estimates for critics in algorithms SAC and BCCC respec-

tively. Assume that the actor is a local maximizer with
respect to the critic, then bias(Tpc3) > bias(Tsac)-

Proof. Proof in Appendix A

We next present empirical results to validate our theoretical
proofs. We train DDPG, SAC and BC3 on the Walker2d
environment. At every 100000 time-steps we sample 1000
state-action pairs from the experience buffer and compute
their value estimate using the critic. We approximate the
true values for each of these 1000 state-action pair by rolling
out the current policy 10 times starting from the pair and
average the observed discounted return. Figure 1 shows the
estimated and true Q values for each algorithm. DDPG has
an overestimation bias with value estimates significantly
higher than the true values. SAC has an underestimation
bias with value estimates lower than the true values. BC3
estimates on the other hand are more accurate compared to
DDPG and SAC.

4. Experiments

To evaluate the algorithm, we measure its performance on a
suite of MuJoCo continuous control tasks (Todorov et al.,
2012), interfaced through OpenAI Gym (Brockman et al.,
2016). We use the original set of tasks without any mod-
ifications. BC3 is built on top of SAC. We use the same
hyperparameters as the author’s implementation of SAC.
The number of networks used in the ensemble is fixed to 5.
We compare our method to other off-policy deep learning
algorithms like DDPG, TD3 and the state of art off-policy al-
gorithm SAC. We compare the results using author-provided
implementations. The temperature hyperparameter is fixed
to 0.2 and the gradient step is fixed to 1 for both
BC3 and SAC. We train each algorithm with five different
random seeds. We evaluate the algorithms every 1000 envi-

Bagged Critic for Continuous Control

Humanoid-v2

HumaneidStandup-v2

250000 1

200000 1

150000

Average return

100000 4

50000 1

Ant-v2
7000 A 8000
5000 “J ol P EE RS T000
U >
5000 A I w i M 6000
w \Y ‘JH]‘IN'LL

£ 4000 i k [Ll | £ 5000

= | “ “ =
E,‘ 3000 1 . ' ’ II!H 'MI Al E,‘aooo_
§ 2000 ! | ! 5 3000

é |I’ ! ﬁ:E
1000 - d | | | 2000 4
0 1000 -
-1000 - 0+

0.0 05 10 15 20 0.0 05

Million steps

Millicn steps

T T
1.0 15 20 0.0 0.5 1.0 15 2.0
Million steps

Figure 2. Learning curves for high dimensional continuous control benchmarks. Solid curves correspond to mean and shaded region
correspond to one standard deviation. BC3 outperforms other methods in the most challenging tasks.

Hopper-v2 Walker-v2 HalfCheetah-v2
3500 A j
5000 4 12000
3000 10000 -
4000 A
£ 2500 A - -
a 5 £ 8000 1
232000 A @ 3000 4 z
u u U 6000 A
& 1500 4 il il
© @ 2000 ©
E E Z 4000 1
1000
1000 - 2000 -
500 -
j 0
o 0
T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Millicn steps

Millicn steps

Million steps

Figure 3. Learning curves for low dimensional continuous control benchmarks. Solid curves correspond to mean and shaded region
correspond to one standard deviation. BC3 performs consistently across the tasks and outperforms on HalfCheetah-v2.

ronment steps as an average of 10 rollouts. The solid curves
correspond to the mean and the shaded region corresponds
to one standard deviation over the five trials.

Figure 2 shows learning curves for various algorithms on
complex tasks. The results show that BC3 outperforms other
algorithms on high dimensional tasks: Humanoid-v2 (ac-
tion space dimensionality: 17, state space dimensionality:
376), HumanoidStandup-v2 (action space dimensionality:
17, state space dimensionality: 376) and Ant-v2 (action
space dimensionality: 8, state space dimensionality: 111).
BC3 performs better both in terms of sample efficiency and
average rewards. On the other hand, DDPG fails to make
any progress on Humanoid. Figure 3 shows the learning
curves for various algorithms on low to medium dimensional
tasks. The results show that BC3 performs on par with other
algorithms on simple tasks: Hopper-v2 (action space dimen-
sionality: 3, state space dimensionality: 11), Walker2d-v2
(action space dimensionality: 6, state space dimensionality:
17), HalfCheetah-v2 (action space dimensionality: 6, state
space dimensionality: 17).

4.1. Bagging+random initialization vs random
initialization

In most off-policy deep reinforcement learning algorithms,
the learners are trained after each time step using a subset of
samples from the experience buffer, unlike regression and
classification tasks where the entire training dataset is used.
Due to the small training dataset used at each step, random
initialization of Q functions is not enough to mitigate the
estimation biases. Combining random initialization with
bagging on the other hand helps inject additional randomiza-
tion. The combined approach encourages diversity among
the neural networks so that the averaged prediction improves
over the individual outputs. Figure 4 compares the two ap-
proaches on complex Humanoid task. Both approaches use
n = 5 neural networks. The original BC3 algorithm with
random initialization and bagging outperforms BC3 with
just random initialization of the members of the ensemble.

Bagged Critic for Continuous Control

Humanoid-v2

— BC3

0001 Be3 rand_init

6000 1

5000 1

4000 4

3000 1

Average return

2000 1

1000

T T T T T
0.0 0.2 0.4 0.6 0.8 10 12 14
Millien steps

Figure 4. Learning curves for BC3 and BC3 with only random
initialization. Solid curves correspond to mean and shaded region
correspond to one standard deviation.

4.2. Number of neural networks

We analyze the effect of the number of neural networks
in the ensemble on complex tasks. We experimented with
n € {2,5,7}. The results in Figure 5 show that larger
ensembles are better than smaller ensembles especially for
high dimensional tasks. The performance improvement
saturates at approximately n = 5.

Humanoid-v2

8000 4

7000 1

6000 1

5000 1

4000 4

3000

Average return

2000 1

1000

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
Millien steps

Figure 5. Learning curves for BC3 with different number of neural
networks in the ensemble. Solid curves correspond to mean and
shaded region correspond to one standard deviation.

5. Convergence Analysis

We next prove convergence of our method similar to the
proof of convergence for SARSA (Singh et al., 2000), Dou-
ble Q-learning (Van Hasselt, 2010) and TD3. We consider a
version of our method for finite MDP setting, with tabular
value estimates @1, Q?, ..., Q. The action selected at any
time-step is a* = arg max, QB¢““(s;, a) and is then used

to perform updates by setting target y:

QBCCC(

a* = arg max St41,@)
a

Yy=rt + v QBCCC(SIH-I)G/*)’

where r; = (8¢, a;) + argmax, H(- | s¢11) is the entropy
augmented reward. We start with lemma 5.1. The proof for
this lemma can be found in Singh et al. (2000):

Lemma 5.1. Consider a stochastic process (&, 0+, Fy),t >
0 where &, Fy : X — R satisfy the following equation:
At+1(xt) = (1—gt(l‘t))At(.’l,‘t)—f—ft(xt)Ft(l‘t), where Ty €
Xandt=1,2,.... Let P; be the sequence of increasing
sigma- fields such that &y and Ao are Py measurable and
&, Ay and Fy are P, measurable, t = 0,1,2,.... Assume
the following hold: 1) The set X is finite. 2) &(xt) €
0,1], 5", &(@e) = 00, >, (&(w))? < 0o with probability
TandVz # x : & = 0. 3) |E[Fy | P]|| < 6 ||A¢]] + ¢
where k € [0,1) and c¢; converges to 0 with probability 1.
4) Var[F,(z,) | Pi] < K(1 + k|| A|°) where K is some
constant. Here ||-|| denotes the maximum norm. Then A,
converges to 0 with probability 1.

We use the above lemma to prove convergence of BCCC.

Theorem 5.2. Given the following conditions: 1)Each
state action pair is sampled an infinite number of times.
2) The MDP is finite. 3) v € [0,1). 4) QO values are
stored in a lookup table. 5) All Q. k = 1,...k receive
an infinite number of updates. 6) The learning rate satisfy
(s, a) € [0,1], 3, au(s,a) = 00, Y, (ae(s,a))? < oo
with probability 1 and a(s,a) = 0,V(s,a) # (s¢,at). 7)
Var[r(s,a)] < o0,Vs,a. Then BCCC converges to the
optimal value function Q* with probability 1.

Proof. Proof in Appendix B O

6. Conclusion

Overestimation bias is a major impediment for value based
actor critic algorithms. Current solutions overcome over-
estimation bias by introducing underestimation bias. How-
ever, both forms of estimation biases result in sub-optimal
policies and sub-par performances especially in high dimen-
sional action spaces. In this work, we propose an ensemble-
based actor critic algorithm BC3, which uses a combined
approach of random intialization and bagging to introduce
diversity in the ensemble. Our theoretical results show that
the combined approach mitigates both overestimation and
underestimation bias and converges to the optimal policy.
The theoretical results are supported by empirical results
where BC3 outperforms state-of-the-art SAC on challeng-
ing RL tasks. Our results suggest exploring methods that
increase diversity in ensembles with quantitative bounds on
bias are an exciting avenue for future work.

Bagged Critic for Continuous Control

References

L. Breiman. Bagging predictors. In Machine learning, page
123-140, 1996.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W Zaremba. Openai gym,
2016.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning, page
1587-1596, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. In ICLR, 2016.

Ling Pan, Qingpeng Cai, and Longbo Huang. Softmax deep
double deterministic policy gradients. In NeurIPS, 2020.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In ICML, 2014.

Satinder Singh, Tommi Jaakkola, Michael Littman, and
Csaba Szepesvari. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine
Learning, 38:287-308, 03 2000.

E. Smith and R. L. Winkler. The optimizer’s curse: Skep-
ticism and post decision surprise indecision analysis. In
Management Science, page 311-322, 2006.

Richard S Sutton and Andrew G Barto, editors. Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge,
2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (IROS
2012), page 5026-5033, 2012.

H Van Hasselt. Double g-learning. In Advances in Neural
Information Processing Systems, page 2613-2621, 2010.

B. D. Ziebart. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. PhD thesis,
Carnegie Mellon University, 2010.

Bagged Critic for Continuous Control

A. Theoretical proofs for estimation bias reduction in BC3

Theorem A.1. Let Tpppg and Tpcs be the state action value estimates for critics in algorithms DDPG and BC3 respectively.
Let bias in state-action value estimates be: bias(T) = E[Q(st41, at11;0)] — E[Q(st41, T(Se41; ¢); 077"¢) where 607" are
the parameters of true value function. Assume that the actor is a local maximizer with respect to the critic with a clipped
action space A;, then bias(Tpppc) > bias(Tpcs).

Proof. By definition,we have
Toopg (St+1) = Q(St41, T(St41; 9); 0)

K
1
Tec3(st41) = 7 E Q(St41,T(St4150); 0k)
=1

The actor is a local maximizer with respect to the critic. Hence the action selected by policy m(s:41; ¢) is a local maximimum
of Q(s¢+1,;0) of any state s, for DDPG and a local maximum of the ensemble for BC3. Therefore

Tooeg (St41) = max Q(st+1,a;0)
1

K
1
7T3c3(5t+1) = 2%‘1’? ? kz:l Q(5t+17 a; Qk)-

Since each critic in the ensemble for BC3 is trained independently using different set of samples from experi-
ence buffer, the action selected by policy 7(s;y1;¢) is a local maximum of the ensemble and not of individual
critic. Hence %25:1 Q(St+1,0a;0y) is an unbiased estimator of E[Q(St+1,a;6)] (Van Hasselt, 2010). On the
other hand, max,ea, Q(St+1,a;0) is an unbiased estimator of E[maxgeca, Q(St+1,a;0)] but a biased estimator of
maxge4, E[Q(St+1,a;0)] (Smith and Winkler, 2006; Van Hasselt, 2010). Therefore:

ToopG(5i4+1) = max Q(st41,a30)
a 1
~[E 0
[max Q(se+1, a; 0)]

> maxE[Q(s1+1,a;0)]

acA;
| K
~ gréa%?;@k(sﬁumek)
= Tec3(St41)- (18)
By definition, bias(Toprc) = Toora(st+1) — E[Q(st41,m(St4150);07¢) and bias(Tecs) = Tees(se41) —
E[Q(s¢41,T(St41; ¢); 0°7¢). Hence, from equation (18) we have bias(Tpppc) > bias(Tacs). H

Theorem A.2. Let Tsac and Tpcs be the state action value estimates for critics in algorithms SAC and BC3 respectively.
Assume that the actor is a local maximizer with respect to the critic, then bias(Tgcsz) > bias(Tsac).

Proof. By definition,we have
Tsac(se+1) = min (Qi(se1, 7(se+15 0); 05)-

The state action value estimate is the minimum of the two Q functions. The action a selected by policy 7(s+1;¢)
of SAC for any state s;41 is a local maximum of the min of the two Q functions. Therefore Tsac(siy1) =
min;— 2(maxgea, Qi(s1+1,a;6;)). On the other hand, the action selected by policy m(s;41;¢) for BC3 is a local

Bagged Critic for Continuous Control

Algorithm 1 Bagged Critic for Continuous Control

Initialize K € N critic networks Q) , | g, With random parameters ¢ for k € 1,2... .,k and actor network 74 (s) with
parameters ¢
Initialize K € N, corresponding target networks with parameters H;C +— 04,
Initialize experience replay buffer B
for each iteration do
for each environment step do
Sample action from policy a; ~ mg(a; | 5¢)
Sample transition from the environment s;11 ~ p(S¢41 | S¢, at)
Store transition in replay buffer B <— B U {(s¢, at, 7(s¢, at,), S¢+1)}
end for
for each gradient step do
forke1,2....,K do
Sample mini-batches of N transitions (s, a,, s") from B
Update Q function parameters 6, < 6, — AoV, Jo(0)x
Update target network parameters 0y, < 70 + (1 — 7)0;,
end for
Update policy parameters ¢ < ¢ — Ay VJx (o)
end for
end for

maximum of the ensemble. Therefore:

1

K
Tecs(Si+1) = max ; Qr(st+1,a;0k)

2 min (max Qi(ser1,a;0;))

= Tsac(st+1)- (19)

By definition, bias(Tsac) = Tsac(st+1) — E[Q(st+1,7r(st+1;gf));@“’“e) and bias(Tecs) = Tees(si41) —
E[Q(st41, m(St41; ¢); 0°7¢). Hence bias(Tpcs) > bias(Tsac). a

Thus BC3 reduces the overestimation bias (DDPG) and improves the underestimation bias (SAC) in critics.

Bagged Critic for Continuous Control

B. Proof of Convergence

Theorem B.1. Given the following conditions: 1)Each state action pair is sampled an infinite number of times. 2) The
MDP is finite. 3) v € [0,1). 4) Q values are stored in a lookup table. 5) All Q. k = 1,...k receive an infinite number
of updates. 6) The learning rate satisfy ay(s,a) € [0,1],>, ax(s,a) = 00, >, (au(s,a))? < oo with probability 1 and
ai(s,a) = 0,V(s,a) # (st,ar). 7) Var[r(s,a)] < 00,Vs,a. Then BC3 converges to the optimal value function Q* with
probability 1.

Proof. We apply lemma 5.1 with P, = {Q},...,QF, s0,a0,71,81,...,85,a}, X =S x A, Ay = QF — Q*, & = ar.
Condition 1 and 4 of the lemma holds by condition 2 and 7 of the theorem respectively. Lemma condition 6 holds by
theorem condition 6 and with our selection of {; = a;. Defining a* = arg max, QBC3(st+1, a) we have:

Aps1(se41,ar1) = (1 — ae(se,a)) x (Q1(st, ar) — Q* (s¢, ar)) + c(se, ar) (re + 7QE (s¢, ar) — Q" (s¢, ar))

K
= (1~ 04(50,80))(Q"(s0,00) — Q" (50,00)) + (s, a0) (1 7 S0 @ (s0,00) — @ (s 1)
k=1
K
= (1= s, 00)(Q" (30 0) — @ (s, 0)) +) (43 Q¥ (50, 0) — K@ (s1,00)
k=1
= (1 — a(se, ar)) Ae(se, ar) + Wﬂ(st’ at), (20
where F} (s, a) is
K
Fi(st,a¢) = Kry + ’YZQk(Styat) — KQ (s, at)
k—
Kl
= Kry + WZQk(St, at) — KQ*(st,ar) + KQ'(sy,ar) — KQ'(st, ar)
k=1
= KF®(sy,a1) + 4, Q1)

where FtQ(st, at) = Q' (s, ar) — Q*(s¢, ay) is value of Fy under standard Q-learning and ¢; = Zfﬂ Q% (s, ar) — (K —
D)Q (s¢,a¢). AsE[FE | P] < ~ | All, is a known result, the condition 3 of lemma 5.1 holds if it can be shown that c;
converges to 0 with probability 1.

Lety = r; +vyQP%3(s4,a;) and AF (54, a;) = QF(s¢,a4) — Q' (s4, as) where k = 2, ..., K. Then ¢; converges to 0 if all
AF' k= 2...K converge to zero. The update for any A*! at time ¢ is sum of updates of Q', ..., Q. The update A*! is :
AL = A (st a0) + ar(se, a0) ((y — QF (s1,a)) — (y — Q¢ (51, 1))

= AP (st 1) + ai(se, ar)(Qf (st ar) — Qf (51, 1))
= (]. —at(st,at))Afl(st,at). (22)
As all AFL k= 2,... K converge to 0, we have satisfied condition 3 of the lemma, implying Q!(s;,a;) converges

to Q*(s¢,at). Using the same arguments we can prove that any Q¥ (s, a;) converges to Q* (s, a;) by choosing A; =
Q" (s¢,at) — Q*(s¢, ay) thus proving the theorem. a

Bagged Critic for Continuous Control

C. Hyperparameters

The table 1 lists the parameters used to implement BC3.

Table 1. Hyperparameters for BC3.

Hyperparameter BC3
Optimizer Adam
Learning rate 10~*
Discount vy 0.99
Replay buffer size 108
Number of critics 5
Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Minibatch size 256
Nonlinearity ReLU
Target smoothing coefficient 7 0.005
Target update interval 1
Gradient steps per iteration 1
Environment steps per iteration 1

Temperature coefficient o 0.02

