
A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs

Andrea Tirinzoni 1 Matteo Pirotta 2 Alessandro Lazaric 2

Abstract
1 We derive a novel asymptotic problem-
dependent lower-bound for regret minimization
in finite-horizon tabular Markov Decision Pro-
cesses (MDPs). While, similar to prior work (e.g.,
for ergodic MDPs), the lower-bound is the solu-
tion to an optimization problem, our derivation
reveals the need for an additional constraint on
the visitation distribution over state-action pairs
that explicitly accounts for the dynamics of the
MDP. We provide a characterization of our lower-
bound through a series of examples illustrating
how different MDPs may have significantly differ-
ent complexity. 1) We first consider a “difficult”
MDP instance, where the novel constraint based
on the dynamics leads to a larger lower-bound
(i.e., a larger regret) compared to the classical
analysis. 2) We then show that our lower-bound
recovers results previously derived for specific
MDP instances. 3) Finally, we show that, in
certain “simple” MDPs, the lower bound is con-
siderably smaller than in the general case and it
does not scale with the minimum action gap at
all. We show that this last result is attainable (up
to poly(H) terms, where H is the horizon) by
providing a regret upper-bound based on policy
gaps for an optimistic algorithm.

1. Introduction
There has been a recent surge of interest for problem-
dependent analyses of reinforcement learning (RL) algo-
rithms, both in the context of best policy identification (e.g.,
Zanette et al., 2019; Marjani & Proutiere, 2021) and re-
gret minimization (e.g., Simchowitz & Jamieson, 2019; He
et al., 2020; Yang et al., 2021; Xu et al., 2021). Before this
recent trend, problem-dependent bounds were limited to
regret minimization in average-reward Markov decision pro-
cesses (MDPs) (e.g. Burnetas & Katehakis, 1997; Tewari &
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Bartlett, 2007; Jaksch et al., 2010; Ok et al., 2018). Notably,
Burnetas & Katehakis (1997) derived the first problem-
dependent asymptotic lower bound for regret minimization
in ergodic average-reward MDPs and designed an algorithm
matching this fundamental limit. Their lower bound was suc-
cessively extended by Ok et al. (2018) to structured MDPs.
However, these results remain restricted to ergodic MDPs,
where the need of exploration is limited to the action space,
since states are repeatedly visited under any policy.

In finite-horizon MDPs, the literature has focused on de-
riving problem-dependent “worst-case” lower bounds for
regret minimization (Simchowitz & Jamieson, 2019; Xu
et al., 2021) with no state reachability assumption (i.e., the
counterpart of ergodicity for finite-horizon MDPs). These
results are simultaneously i) problem-dependent since they
scale with instance-specific quantities (e.g., the action-gaps);
ii) “worst-case” since they are derived only for “hard” in-
stances. Notably, Xu et al. (2021) proved that there exists a
specific MDP such that any consistent algorithm must suffer
a regret depending on the inverse of the minimum gap and
derived an algorithm with matching regret upper bound.

Despite these results, “fully” problem-dependent lower
bounds are still missing, i.e., bounds that depend on the
properties of any given MDP, instead of relying on specific
worst-case instances. In this paper, we a take step in this
direction by deriving the first “fully” problem-dependent
asymptotic regret lower bound for finite-horizon MDPs. Our
lower bound generalizes existing results and provides new
insights on the “true” complexity of exploration in this set-
ting. Similarly to average-reward MDPs, our lower-bound
is the solution to an optimization problem, but it does not
require any assumption on state reachability. Our derivation
reveals the need for a constraint on the visitation distribution
over state-action pairs that explicitly accounts for the dy-
namics of the MDP. Interestingly, we show examples where
this constraint is crucial to obtain tight lower-bounds and to
match existing results derived for specific MDP instances.
Finally, we show that, in certain “simple” MDPs, the lower
bound is considerably smaller than in the general case and it
does not scale with the minimum action-gap, and we show
that this is attainable (up to poly(H) terms) by providing a
novel regret upper-bound for an optimistic algorithm.
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2. Preliminaries
We consider a time-inhomogeneous finite-horizon MDP
M := (S,A, {ph, qh}h∈[H], p0, H) (Puterman, 1994),
where S is a finite set of S states, A is a finite set of A
actions, ph : S × A → P(S) and qh : S × A → P(R) are
the transition probabilities and the reward distribution at
stage h ∈ [H] := {1, . . . ,H}, p0 ∈ P(S) is the initial state
distribution, and H is the horizon.2 We denote by rh(s, a)
the expected reward after taking action a in state s. A (deter-
ministic) Markov policy π = {πh}h∈[H] ∈ Π is a sequence
of mappings πh : S → A. Let Π be the set of such poli-
cies. Executing a policy π onM yields random trajectories
(s1, a1, y1, . . . , sH , aH , yH), where s1 ∼ p0, ah = πh(sh),
sh+1 ∼ ph(sh, ah), and yh ∼ qh(sh, ah). We denote by
PπM,EπM the corresponding probability and expectation op-
erators, and let ρπM,h(s, a) := PπM{sh = s, ah = a} and
ρπM,h(s) := ρπM,h(s, πh(s)) be the state-action and state oc-
cupancy measures at stage h. For each s ∈ S and h ∈ [H],
we define the action-value function of a policy π inM as

QπM,h(s, a) := EπM

[
H∑

h′=h

rh(sh′ , ah′)|sh = s, ah = a

]
,

and the value function is V πM,h(s) := QπM,h(s, πh(s)). Let
V πM,0 := Es1∼p0

[V πM,1(s1)] and V ?M,0 = supπ V
π
M,0. We

define the set of return-optimal policies as

Π?(M) := {π ∈ Π | V πM,0 = V ?M,0}. (1)

By standard MDP theory (e.g., Puterman, 1994), there exists
a unique optimal action-value function Q?M,h that satisfies
the Bellman optimality equations for any h ∈ [H], s ∈
S, a ∈ A, Q?M,h(s, a) = rh(s, a) + ph(s, a)TV ?M,h+1,
where V ?M,h(s) := maxa∈AQ

?
M,h(s, a). We define the

set of Bellman-optimal actions at state-stage (s, h) as
OM,h(s) := {a ∈ A : Q?M,h(s, a) = V ?M,h(s)}, then
the set of Bellman-optimal policies is Π?

O(M) := {π ∈
Π | ∀s, h : πh(s) ∈ OM,h(s)}. A Bellman-optimal policy
is always return optimal, i.e., Π?

O(M) ⊆ Π?(M), while it
easy to construct examples where the reverse is not true (i.e.,
a return-optimal policy is not Bellman optimal). Finally, we
introduce the policy gap ΓM(π) := V ?M,0 − V πM,0 and the
sub-optimality gap of action a in state s at stage h as

∆M,h(s, a) := V ?M,h(s)−Q?M,h(s, a). (2)

These two notions of sub-optimality are related by the fol-
lowing equation (proof in the full paper1):

ΓM(π) =
∑
s∈S

∑
a∈A

∑
h∈[H]

ρπM,h(s, a)∆M,h(s, a). (3)

We consider the standard online learning protocol for
finite-horizon MDPs. At each episode k ∈ [K], the

2P(Ω) denotes the set of probability measures over a set Ω.

learner plays a policy πk and observes a random trajectory
(sk,h, ak,h, yk,h, . . . , sk,H , ak,H , yk,H) ∼ Pπk

M. The choice
of πk is made by a learning algorithm A, i.e., a measurable
function that maps the observations up to episode k − 1 to
policies. The goal is to minimize the cumulative regret,

RegretK(M) :=

K∑
k=1

ΓM(πk). (4)

This definition together with (3) reveals that a policy π can
have zero regret (i.e., being return-optimal) while selecting
actions with ∆M,h(s, a) > 0 (i.e., not Bellman-optimal) at
states that have zero occupancy measure ρπM,h(s, a).

All the proofs can be found in the extended version of the
paper1.

3. Problem-dependent lower bound
As customary in problem-dependent lower bounds, we de-
rive our result for any MDPM in a given set M of MDPs
with the same state-action space but different transition prob-
abilities and reward distributions. Formally, we derive an
asymptotic problem-dependent lower bound on the expected
regret of any “provably-efficient” learning algorithm on the
set of MDPs M.

Definition 1 (α-uniformly good algorithm). Let α ∈ (0, 1),
then a learning algorithm A is α-uniformly good on M if,
for each K ∈ N>0 andM ∈ M, there exists a constant
c(M) such that EA

M [RegretK(M)] ≤ c(M)Kα.

Note that existing algorithms with O(
√
K) worst-case re-

gret (e.g., Azar et al., 2017; Zanette & Brunskill, 2019)
are 1/2-uniformly good, while those with logarithmic regret
(e.g., Simchowitz & Jamieson, 2019; Xu et al., 2021) are
α-uniformly good for all α ∈ (0, 1). We make the following
assumption on the MDPM.

Assumption 2 (Unique optimal state distribution). There
exists ρ?M,h ∈ P(S) such that, for any optimal policy π ∈
Π?(M) and for any s ∈ S, h ∈ [H], ρ?M,h(s) = ρπM,h(s).

This assumption requires all return-optimal policies ofM
to induce the same distribution over the state space. This
is strictly weaker than assuming a unique optimal action
at each state (see full paper 1 ), as commonly done in the
contextual bandit setting (Hao et al., 2020; Tirinzoni et al.,
2020) and in MDPs (Marjani & Proutiere, 2021).

Let O?M := {s, a, h : s ∈ supp(ρ?M,h), a ∈ OM,h(s)} be
the set of state-action-stage triplets containing all optimal
actions in states that are visited by optimal policies. We
introduce the following set of alternative MDPs toM:

Λ(M) := Λwa(M) ∩ Λwc(M),



where Λwa(M) := {M′ ∈ M | Π?(M) ∩ Π?(M′) = ∅}
and3

Λwc(M) := {M′ ∈M | ∀z ∈ O?M : KLz(M,M′) = 0}.

The set of alternatives is a key component in the derivation
of information-theoretic problem-dependent lower bounds
(e.g., Lai & Robbins, 1985). Similar to (Burnetas & Kate-
hakis, 1997; Ok et al., 2018), the set of alternatives Λ(M)
is the intersection of two sets: (1) the set of weak alter-
natives Λwa(M), i.e., MDPs that have no return-optimal
policy in common withM; and (2) the set of weakly confus-
ing Λwc(M), i.e., MDPs whose dynamics and rewards are
indistinguishable fromM on the state-action pairs observed
while executing any return-optimal policy forM. Notice
that the set Λwc(M) differs from the set of confusing MDPs
considered in (Burnetas & Katehakis, 1997; Ok et al., 2018).
In their case, the zero-KL condition is imposed over all
states since the MDPM is assumed ergodic, which implies
that any optimal policy visits all the states with positive
probability. In our case, since we do not make any ergodic-
ity assumption, optimal policies may not visit some states
at some stages. Therefore, even if the kernels of M and
M′ differ at some optimal action in any such state, the two
MDPs remain indistinguishable by playing return-optimal
policies. With these notions in mind, we are now ready to
state our problem-dependent lower bound.

Theorem 3. Let A be any α-uniformly good learning algo-
rithm on M with α ∈ (0, 1). Then, for anyM ∈ M that
satisfies Assumption 2,

lim inf
K→∞

EA
M [RegretK(M)]

log(K)
≥ v?(M),

where v?(M) is the value of the optimization problem

inf
η∈RSAH

≥0

∑
h,s,a

ηh(s, a)∆M,h(s, a) subject to

inf
M′∈Λ(M)

∑
h,s,a

ηh(s, a)KLs,a,h(M,M′) ≥ 1− α,

∑
a∈A

ηh(s, a) =
∑
s′,a′

ph(s|s′, a′)ηh−1(s′, a′) ∀s, h > 1,

∑
a∈A

η1(s, a) = 0 ∀s /∈ supp(p0).

The lower bound is the solution to a constrained optimiza-
tion problem that defines an optimal exploration strategy
η ∈ RSAH , where ηh(s, a) is proportional to the number of
visits allocated to each state s and action a at stage h. Such
optimal exploration strategy must minimize the resulting

3The KL divergence is defined as KL(s,a,h)(M,M′) =
KL(ph(s, a), p′h(s, a)) + KL(qh(s, a), q′h(s, a)).

regret (written as a weighted sum of local sub-optimality
gaps), while satisfying three constraints. First, the KL
constraint, which is common in this type of information-
theoretic lower bounds, requires that the exploration strat-
egy allocates sufficient visits to relevant state-action-stage
triplets so as to discriminate M from all its alternatives
M′ ∈ Λ(M). The last two constraints, taken as a whole,
form what we refer to as the dynamics constraint. This
requires the optimal exploration strategy to be realizable
according to (i.e., compatible with) the MDP dynamics. As
we shall see in our examples later, the dynamics constraint
is a crucial component to introduce MDP structure into the
optimization problem. Without it, an exploration strategy
would be allowed to allocate visits to certain state-action
pairs regardless of the probability to reach them (i.e., as if
a generative model were available), thus resulting in a non-
realizable allocation in most cases and loose lower bounds.

The policy-based perspective. Note that, by definition,
we can realize any allocation η that satisfies the dynamics
constraint by playing some stochastic policy. Moreover, we
can always express the occupancy measure of any stochas-
tic Markov policy as a mixture of deterministic Markov
policies (e.g., Altman, 1999, Remark 6.1, page 64). This
implies that an allocation η satisfies the dynamics constraint
in the optimization problem of Thm. 3 if, and only if, there
exists a vector ω ∈ R|Π|≥0 of “mixing coefficients” such that
ηh(s, a) =

∑
π∈Π ωπρ

π
h(s, a) for all s, a, h. This allows us

to rewrite the optimization problem in a simpler form.

Proposition 4. The optimization problem of Thm. 3 can be
rewritten in the following equivalent form

inf
ω∈R|Π|≥0

∑
π∈Π

ωπΓM(π) subject to

inf
M′∈Λ(M)

∑
π∈Π

ωπKLπ(M,M′) ≥ 1− α,

where KLπ(M,M′) :=
∑
h,s,a ρ

π
M,h(s, a)KLs,a,h(M,M′).

While computationally harder than its counterpart in Thm. 3
(we moved from optimizing over SAH variables to |Π| =
ASH variables), this policy-based perspective is convenient
to interpret and instantiate the lower bound in specific cases.

4. Discussion
We briefly recall existing lower bounds. In ergodic average-
reward MDPs, Burnetas & Katehakis (1997); Tewari &
Bartlett (2007); Ok et al. (2018) showed that the optimal
problem-dependent regret scales as the sum of the inverse
sub-optimality gaps4. In finite-horizon MDPs, Simchowitz
& Jamieson (2019) first showed that the sum of the inverse

4More precisely, it scales with the sum of local complexity
measures which are related to the gaps (Tewari & Bartlett, 2007).
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Figure 1. Variant of the example in (Xu et al., 2021). The MDP
is binary tree with S = 2H − 1 states, A = m ≥ 2 actions,
and deterministic transitions. The figure shows an instance with
H = 3. The agent starts from the root state s11 and descends the
tree using only two actions (L and R). In the leaf states, all the m
actions are available. The rewards follow a Gaussian distribution
with unit variance and mean equal to zero everywhere except for
at most two leaf state-action pairs (whose values are ε and κ).

gaps is a loose lower bound for a specific family of opti-
mistic algorithms, which in the worst-case may suffer from
a regret of at least S/∆min. Xu et al. (2021) later refined
this result showing that there exists a “hard” MDP where
any α-good algorithm (Def. 1) suffers a regret proportional
to SA/∆min, which is (exponentially) larger than the sum
of inverse gaps and it is proportional to Zmul

∆min
, where Zmul

is the total number of optimal actions in states where the
optimal action is not unique. This suggests that the number
of non-unique optimal actions may be key to characterize
the “worst-case” complexity in finite-horizon MDPs.

On the importance of the dynamics constraint to match
existing lower bounds. We consider the MDP M intro-
duced by Xu et al. (2021) (see Fig. 1 with κ = 0) and we
define M as the set of MDPs with exactly the same dynam-
ics asM but arbitrary Gaussian rewards. In this problem
∆min = ε > 0. We instantiate our lower bound in this case
with and without the dynamics constraints.

Corollary 5. LetM be the MDP of Fig. 1 with κ = 0. Let
ṽ(M) the value of the optimization problem of Thm. 3 with-
out dynamics constraints, then ṽ(M) = 2(1−α)(log2(S+
1) +A− 2)/∆min. On the other hand, the lower bound in
Thm. 3 yields v?(M) ≥ (1− α)SA/∆min.

This result shows that ignoring the dynamics constraints
leads to an exponentially smaller (and thus looser) bound
w.r.t. v?(M). On the other hand, when computing the lower
bound of Thm. 3, we match the lower bound of Xu et al.
(2021) for this configuration.

On the dependence on the sum of inverse gaps. While the
lower bound of Xu et al. (2021) shows that there exists an
MDP where the regret is significantly larger than the sum of
inverse gaps whenever multiple equivalent optimal actions
exist, in the following we derive a result that is somewhat

complementary: we show that there exists a large class
of MDPs where the lower bound scales as the sum of the
inverse gaps, even when Zmul > 0.

Proposition 6. LetM be an MDP satisfying Asm. 2 such
that ρ?M is full-support (i.e., ρ?M,h(s) > 0, ∀s, h). Then,

v?(M) = (1− α)
∑
h,s,a

∆M,h(s, a)

Ks,a,h(M)
≤
∑
h,s,a

2(H − h)2

∆M,h(s, a)
,

where Ks,a,h(M) := inf p̄,q̄∈Λs(M)

{
KL(ph(s, a), p̄) +

KL(qh(s, a), q̄)
}

and Λs(M) := {p̄ ∈ P(S), q̄ ∈
P([0, 1]) : Ey∼q̄[y] + p̄TV ?M,h+1 > V ?M,h(s)}.

Note that the full-support condition for ρ?M,h is weaker than
ergodicity for average-reward MDPs since it is required
only for the optimal policy. For MDPs with this property,
the lower bound is obtained by a decoupled exploration
strategy similar to the one for ergodic MDPs, where the
optimal allocation focuses on exploring sub-optimal actions
regardless of how to reach the corresponding state, while
the exploration of the state space comes “for free” from
trying to minimize regret w.r.t. the optimal policy itself.
Interestingly, this result holds even forZmul > 0, suggesting
that the dependency Zmul

∆min
derived in (Xu et al., 2021) may

be relevant only under specific reachability properties (e.g.,
when the optimal occupancy measure is not full support).

On the dependence on the minimum gap. Let us consider
again the MDP of Fig. 1 under the same setting as before
except that κ ≥ 2ε > 0. In this problem, ∆min = ε and
∆max = κ are the minimum and maximum action gap,
respectively. Perhaps surprisingly, despite we only added a
single positive reward (κ) to the original hard instance of Xu
et al. (2021), we now show that the lower bound of Thm. 3
does not scale with the minimum gap at all.

Proposition 7. Let M be the MDP of Fig. 1 with κ ≥
2ε > 0, then the lower bound of Thm. 3 yields v?(M) ≤
12(1−α) SA

∆max
. On the other hand, the sum of inverse gaps

ofM is at least (log2(S + 1) +A− 3)/∆min.

This result shows that, for given S,A,H , one can always
construct an MDP where the lower bound of Thm. 3 is
smaller than the sum of inverse gaps by an arbitrarily large
factor. The intuition is as follows. In order to learn an
optimal policy, any consistent algorithm must figure out
which among actions L and R is optimal at the root state
s1

1. Action L leads to a return of ε, while action R yields
a (possibly much larger) return κ. Suppose the agent has
estimated all the rewards in the MDP up to an error of κ/2.
This is enough for it to “prune” the whole left branch of the
tree since its return is certainly smaller than the one in the
right branch. This is better illustrated using the policy view:
each policy in this MDP has a gap Γ(π) ≥ κ/2. Thus, an
estimation error below the minimum policy gap suffices to



discriminate all sub-optimal policies w.r.t. the optimal one.
Notably, this means that the left branch need not be explored
to gain ε-accurate estimates, which would translate into a
much larger O(1/∆min) regret. In other words, the agent
is not required to explore until it learns a Bellman optimal
policy (i.e., one that correctly chooses action a1 in state
sH1 ); any return optimal policy suffices to minimize regret,
and this can be obtained by simply learning to take the right
path while playing arbitrary actions at all other states.

To confirm that this result is not an artifact of our lower
bound, we provide a novel problem-dependent regret bound
for the optimistic algorithm UCBVI (Azar et al., 2017) that
scales with the minimum policy gap Γmin.5

Theorem 8. LetM be any MDP with rewards in [0, 1] and
K ≥ 1, then the expected regret of UCBVI with Chernoff-
Hoeffding bonus (ignoring low-order terms in log(K)) is

EM[Regret(K)] .
4H4SA

Γmin
log(4SAHK2).

This shows that 1) UCBVI attains the result in Prop. 7 (up
to poly(H) factors) where Γmin = ∆max, even when dy-
namics are unknown; 2) Prop. 7 is tight w.r.t. the gaps; 3) it
is possible to achieve regret not scaling with ∆min.

Outlook. While Thm. 3 provides the first “fully” problem-
dependent lower bound for finite-horizon MDPs, it opens a
number of interesting directions. 1) As all existing problem-
dependent lower bounds for this setting, the result is asymp-
totic in nature. A more refined finite-time analysis could be
obtained following Garivier et al. (2019). 2) For the case
studied in Cor. 5, Xu et al. (2021) provide an algorithm with
matching upper bound (up to poly(H) factors), while we
provide a matching upper bound (Thm. 8) for Prop. 7. It
remains an open question how to design an algorithm to
match the bound of Thm. 3. 3) Most of the ingredients in de-
riving Thm. 3 could be adapted to the average-reward case
to obtain a lower bound with no ergodicity assumption.
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