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Abstract

Linear fixed point equations in Hilbert spaces nat-
urally arise from the policy evaluation problem in
reinforcement learning. We study methods that
use a collection of random observations to com-
pute approximate solutions by searching over a
known low-dimensional subspace of the Hilbert
space. First, we prove an instance-dependent
upper bound on the mean-squared error for a
linear stochastic approximation scheme that ex-
ploits Polyak–Ruppert averaging. This bound con-
sists of two terms: an approximation error term
with an instance-dependent approximation fac-
tor, and a statistical error term that captures the
instance-specific complexity of the noise when
projected onto the low-dimensional subspace. Us-
ing information-theoretic methods, we also estab-
lish lower bounds showing that the approximation
factor cannot be improved, again in an instance-
dependent sense. A concrete consequence of our
characterization is that the optimal approximation
factor in this problem can be much larger than a
universal constant. We show how our results pre-
cisely characterize the error of a class of temporal
difference learning methods for the policy evalua-
tion problem with linear function approximation,
establishing their optimality.

1. Introduction
Estimating the value function of a Markov reward pro-
cess (MRP) from data is a fundamental task in reinforce-
ment learning (RL) and approximate dynamic program-
ming (ADP). The estimation problem involves solving the
Bellman equation, and when the underlying MRP is time-
homogeneous, this problem becomes that of solving a linear
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fixed-point equation in a given Hilbert space X:

v = Lv + b, (1)

For example, the Bellman equation in a discounted MRP is
an instantiation of Eq (1) with L = γP and b = r, where
γ is the discount factor, P is the Markov transition kernel,
and r is the reward function. The Hilbert space X is usually
chosen to be L2(S, ξ), where S is the state space of the
MRP, and ξ is a suitably chosen probability measure on S.
See the discussion and examples in the following section
for a more detailed formulation of this problem.

For most practical problems, the cardinality of the state
spaceD := |S| is very large, or even infinite. This poses sta-
tistical and computational hurdles to learning the value func-
tion. The amount of data available in practice is usually far
from sufficient to estimate the transition kernel and reward
accurately. This motivates the method of function approx-
imation, the workhorse of modern RL algorithms. Value
learning methods with function approximation attempt to
approximate the solution to the Bellman equation (1) using
a given class of functions in the Hilbert space X.

A commonly-used value learning method is linear function
approximation. This method chooses a subspace S of the
Hilbert space, of dimension d � D, and searches for so-
lutions within this subspace. This paper treats the general
problem in which n observations {(Li, bi)}ni=1 are drawn
i.i.d. from some distribution with mean (L, b). Letting v∗

denote the solution to the fixed point equation (1), our goal
is to use these observations in order to produce an estimate
v̂n of v∗ that satisfies an oracle inequality of the form

E‖v̂n − v∗‖2 ≤ α · inf
v∈S
‖v − v∗‖2 + εn. (2)

Here we use ‖ · ‖ to denote the Hilbert norm associated with
X. The three terms appearing on the RHS of inequality (2)
all have concrete interpretations. The term

A(S, v∗) := inf
v∈S
‖v − v∗‖2 (3)

defines the approximation error; this is the error incurred by
an oracle procedure that knows the fixed point v∗ in advance
and aims to output the best approximation to v∗ within the
subspace S. The term α is the approximation factor, which
indicates how poorly the estimator v̂n performs at carrying
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out the aforementioned approximation; note that α ≥ 1 by
definition, and it is most desirable for α to be as small as
possible. The final term εn is a proxy for the statistical error
incurred due to our stochastic observation model; indeed,
one expects that as the sample size n goes to infinity, this
error should tend to zero for any reasonable estimator, indi-
cating consistent estimation when v∗ ∈ S. More generally,
we would like our estimator to also have as small a statis-
tical error as possible in terms of the other parameters that
define the problem instance. In an ideal world, we would
like both desiderata to hold simultaneously: the approxi-
mation factor should be as close to one as possible while
the statistical error stays as small as possible. Indeed, such
a “best-of-both-worlds” guarantee can indeed be obtained
in many canonical statistical problems, and “sharp” oracle
inequalities—meaning ones in which the approximation fac-
tor is equal to 1—are known (Rakhlin et al., 2017; Dalalyan
& Salmon, 2012; Tsybakov, 2004)

A standard approach in value learning with linear func-
tion approximation is the family of temporal difference
(TD) methods (Sutton, 1988; Boyan, 2002). Borrowing
ideas from Galerkin approximation in differential equa-
tions (Galerkin, 1915), the method uses the solution to the
projected linear equation as a proxy to the original one. In
particular, letting ΠS denote the orthogonal projection onto
this subspace, the method seeks (approximate) solutions to
the projected fixed point equation

v = ΠS
(
Lv + b

)
. (4)

The projected equation can be solved in time that depends
only on the dimension of the subspace d, and when v∗ ∈ S,
the statistical error εn = O(d/n) can be achieved via
stochastic approximation procedures (Bhandari et al., 2018).
It is also known that the projected fixed-point approach
enjoys a bounded approximation factor under natural as-
sumptions. In particular, Tsitsiklis & Van Roy (1997) show
that if the operator L is γmax-contractive in the norm ‖ · ‖,
then the (deterministic) solution v to the projected fixed
point equation (4) satisfies the bound

‖v − v∗‖2 ≤ 1

1− γ2
max

inf
v∈S
‖v − v∗‖2. (5)

The finite nature of the approximation factor notwithstand-
ing, it should be noted that the bound (5) has a potentially
large approximation factor that can be quite far from unity
(as would be the case for a “sharp” oracle inequality). In-
deed, and as will be discussed shortly, the approximation
factor for discounted MRPs grows with the effective horizon
of the problem, which can often be quite large.

The primary motivating question for our work is whether or
not this bound can be improved, and if so, to what extent.
Our work is also driven by the complementary question of

whether a sharp bound can be obtained on the statistical
error of an estimator that, unlike v, has access only to the
samples {(Li, bi)}ni=1. In particular, we would like the
statistical error εn to depend on some notion of complexity
of our specific instance.

2. Problem Setup
Let us fix some orthogonal basis {φj}j≥1 of the full space
X such that S = span{φ1, . . . , φd}. In terms of this basis,
we can define the projection operator Φd : X → Rd via
Φd(x) :=

(
〈x, φj〉

)d
j=1

. Using these operators, we can
define the projected operator associated with L—namely

M := ΦdLΦ∗d. (6)

Note that M is simply a d-dimensional matrix, one which
describes the action of L on S according to the basis that we
have chosen. As we will see in the main theorems, our re-
sults do not depend on the specific choice of the orthonormal
basis, but it is convenient to use a given one, as we have done
here. Consider the quantity κ(M) := 1

2λmax

(
M+M>

)
, cor-

responding to the maximal eigenvalue of the symmetrized
version of M . We assume κ(M) throughout, which guaran-
tees the existence and uniquess of the solution to Eq (4).

Stochastic observation model: As noted in the introduc-
tion, this paper focuses on an observation model in which
we observe i.i.d. random pairs (Li, bi) for i = 1, . . . , n that
are unbiased estimates of the pair (L, b) so that

E[Li] = L, and E[bi] = b. (7)

In addition to this unbiasedness, we also assume that our
observations satisfy a certain second-moment bound.

Assumption 1 (Second-moment bound in projected space)
There exist scalars σL, σb > 0 such that for any unit-norm
vector u ∈ S and any basis vector in {φj}dj=1 we have the
bounds

E〈φj , (Li − L)u〉2 ≤ σ2
L‖u‖2, and (8a)

E〈φj , bi − b〉2 ≤ σ2
b . (8b)

In words, Assumption 1 guarantees that the random variable
obtained by projecting the “noise” onto any of the basis
functions φ1, . . . , φd in the subspace S has bounded second
moment. In Section 3.2, we show that this assumption is
satisfied under mild conditions for MRP and associated
feature vectors.

2.1. Policy evaluation in discounted MRPs

Now we introduce the problem of estimating the long-term,
discounted value function in a Markov reward process. We
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will introduce basic setup and notations, and show that
LSTD method is a special case of the projected fixed point
equation (4).

Consider a Markov chain on a state space S and an ergodic
transition kernelP : S×S → R, with stationary distribution
ξ. The associated (discounted) Markov reward process is
given by introducing a reward function r : S → R, and
discount factor γ ∈ (0, 1). The goal of the policy evaluation
problem to estimate the value function, which is given by
the solution to the Bellman equation v∗ = γPv∗ + r. We
define X to be the Hilbert space L2(S, ξ).

We consider the i.i.d. observation model in this paper. For
each i = 1, 2, · · · , n, suppose that we observe an indepen-
dent tuple (si, s

+
i , Ri(si)), such that

si ∼ ξ, s+
i ∼ P (si, ·), and E[Ri(si)|si] = r(si). (9)

The i-th observation (Li, bi) is then obtained by plugging
in these observations to compute unbiased estimates of P
and r, respectively.

In the setting with linear function approximation, we search
for the solution to the Bellman equation within a linear sub-
space spanned by a number of given basis functions. In par-
ticular, consider a set {ψ1, ψ2, · · · , ψd} of basis functions
in X, and suppose that they are linearly independent on the
support of ξ. We are interested in projections onto the sub-
space S = span(ψ1, . . . , ψd), and in solving the population-
level projected fixed point equation (4), which takes the
formv̄ = ΠS(γP v̄ + r). By writing v̄(s) = ψ(s)>ϑ̄ for
a vector of coefficients ϑ̄ ∈ Rd, the projected fixed-point
equation can be equivalently written in terms of the coeffi-
cient vector ϑ̄ as

Es∼ξ[ψ(s)ψ(s)>]ϑ̄ = γEs∼ξ
[
Es+∼P (s,·)[ψ(s)ψ(s+)>]

]
ϑ̄

+ Es∼ξ[r(s)ψ(s)]. (10)

Equation (10) is the population relation underlying the
canonical least squares temporal difference (LSTD) learn-
ing method (Bradtke & Barto, 1996; Boyan, 2002).

3. Main results and their consequences
3.1. Upper bounds

In this section, we describe a standard stochastic approxima-
tion scheme for the problem based on combining ordinary
stochastic updates with Polyak–Ruppert averaging (Polyak,
1990; Polyak & Juditsky, 1992; Ruppert, 1988). In par-
ticular, given an oracle that provides observations (Li, bi),
consider the stochastic recursion parameterized by a positive
stepsize η:

vt+1 = (1− η)vt + ηΠS
(
Lt+1vt + bt+1

)
, for t = 1, 2, . . ..

(11a)

For a given sample size n ≥ 2, our final estimate v̂n is
given by taking the average of these iterates from time n0

to n—that is

v̂n :=
1

n− n0

n∑
t=n0+1

vt. (11b)

Here the “burn-in” time n0 is an integer parameter to be
specified.

The stochastic approximation procedure (11) is defined in
the entire space X; note that it can be equivalently written
as iterates in the projected space Rd, via the recursion

ϑt+1 = (1− η)ϑt + η(ΦdLt+1Φ∗dϑt + Φdbt+1). (12)

The original iterates can be recovered by applying the ad-
joint operator—that is, vt = Φ∗dϑt for t = 1, 2, . . ..

Having introduced the algorithm itself, we are now ready
to provide a guarantee on its error. Two matrices play a
key role in the statement of our upper bound. The first is
the d-dimensional matrix M := ΦdLΦ∗d. We show that the
mean-squared error is upper bounded by the approximation
error infv∈S ‖v − v∗‖2 along with a pre-factor of the form

α(M, s) = 1 + λmax

(
(I −M)−1(s2 Id −MMT )(I −M)−T

)
,

for s = |||L|||op. Our bounds also involve the quantity
κ(M) = 1

2λmax

(
M + MT

)
, which we abbreviate by κ

when the underlying matrix M is clear from the context.

The second matrix is a covariance matrix, capturing the
noise structure of our observations, given by

Σ∗ := cov (Φd(b1 − b)) + cov (Φd(L1 − L)v) .

This matrix, along with the constants (σL, σb) from As-
sumption 1, arise in the definition of two additional error
terms, namely

En(M,Σ∗) :=
trace

(
(I −M)−1Σ∗(I −M)−>

)
n

,

Hn(σL, σb, v) :=
σL

(1− κ)3

(
d

n

) 3
2 (
‖v‖2σ2

L + σ2
b

)
.

As suggested by our notation, the error Hn(σL, σb, v) is a
higher-order term, decaying as n−3/2 in the sample size,
whereas the quantity En(M,Σ∗) is the dominant source of
statistical error. With this notation, we have the following:

Theorem 1 Suppose that we are given n i.i.d. observations
{(Li, bi)}ni=1 that satisfy the noise conditions in Assump-
tion 1. Then there are universal constants (c0, c) such that

for any sample size n ≥ c0σ
2
Ld

(1−κ)2 log2
(
‖v0−v‖2d

1−κ

)
, then run-

ning the algorithm (11) with

stepsize η = 1
c0σL

√
dn
, and burn-in period n0 = n/2
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yields an estimate v̂n such that

E‖v̂n − v∗‖2 ≤ (1 + ω) · α(M, |||L|||X) inf
v∈S
‖v − v∗‖2

+ c
(
1 + 1

ω

)
·
{
En(M,Σ∗) +Hn(σL, σb, v)

}
,

(13)

valid for any ω > 0.

The leading statistical error term En(M,Σ∗) matches the
Cramér-Rao lower bound, and is known to be asymptotically
optimal. A more in-depth discussion of the approximation
factor α(M, |||L|||X), including comparison to prior works
and useful upper bounds in particular settings, can be found
in Appendix B. A useful upper bound is that α(M, s) ≤

2
1−κ(M) if s ≤ 1.

3.2. Consequences to value function estimation

Now we turn to the consequence of the general oracle in-
equality in Theorem 1 to the specific model of value func-
tion estimation in Section 2.1. Recall the i.i.d. observation
model (9). Also recall the equivalent form of the projected
fixed point equation (10), and note that the population-level
operator L satisfies the norm bound

|||L|||X = γ · sup
‖v‖≤1

‖Pv‖ ≤ γ.

since ξ is the stationary measure of the transition kernel P .

Under the setup of Section 2.1, the temporal difference
method is a variant of SA iterates (11a). The proof of Theo-
rem 1 can be then applied to this case. To state the result,
we define the matrix B ∈ Rd×d by Bij := 〈ψi, ψj〉 for
i, j ∈ [d], and define the following quantities:

M := γB−1/2Eξ[ψ(s)ψ(s+)>]B−1/2,

ΣL := covξ

[
B−1/2ψ(s)

(
ψ(s)− γψ(s+)

)>
ϑ̄
]
,

Σb := covξ

[
R(s)B−1/2ψ(s)

]
.

It can be shown that the averaged TD iterates satisfy the
bound (13) with an approximation factor α(M,γ), a sta-
tistical error term En(M,ΣL + Σb), and a high-order term
depending on suitable moment assumptions and the condi-
tion number ofB. See Appendix D for a complete statement
and the proof of this corollary.

In the worst case, the approximation factor α(M,γ) scales
as 1

1−γ2 , recovering the classical result (5), but more gener-
ally gives a more fine-grained characterization of the approx-
imation factor depending on the one-step auto-covariance
matrix for the feature vectors.

3.3. Minimax lower bound on the approximation factor

Now we turn to the minimax lower bound for the value
function estimation problem in MRPs, under an i.i.d. obser-
vation model from the stationary distribution.

To set the stage, we say that a Markov reward process
(P, γ, r) and associated basis functions {ψj}dj=1 are in the
canonical set-up if the following conditions hold:

• The stationary distribution ξ of P exists and is unique.

• The reward function and its observations are uniformly
bounded. In particular, we have ‖r‖∞ ≤ 1, and ‖R‖∞ ≤
1 almost surely.

• The basis functions are orthonormal, i.e.,
Eξ[ψ(s)ψ(s)>] = Id.

The three conditions are standard assumptions in Markov
reward processes.

Now given scalars ν ∈ (0, 1] and γ ∈ (0, 1), integer D > 0
and scalar δ ∈ (0, 1/2), we consider the following class of
MRPs and associated feature vectors:

CMRP (ν, γ,D, δ)

:=

(P, γ, r, ψ)
∣∣∣ (P, γ, r, ψ) is in the canonical setup,

|S| = D, A(S, v∗) ≤ δ2,
κ
(
Eξ[ψ(s)ψ(s+)>]

)
≤ ν.

 .

Note that under the canonical set-up, we have M =
γEξ[ψ(s)ψ(s+)>], and consequently, a problem instance
in the class CMRP(ν, γ,D, δ) satisfies κ(M) ≤ νγ
in the set-up of previous section. The condition
κ
(
Eξ[ψ(s)ψ(s+)>]

)
≤ ν can be seen as a “mixing” condi-

tion in the projected space: when ν is bounded away from
1, the feature vector cannot have too large a correlation with
its next-step transition in any direction.

We have the following minimax lower bound for this class,
where we use the shorthand CMRP ≡ CMRP (ν, γ,D, δ) for
convenience.

Theorem 2 There are universal positive constants (c, c1)
such that if D ≥ c1(n2 + d), then for all scalars ν ∈ (0, 1]
and γ ∈ (0, 1), we have

inf
v̂n∈V̂X

sup
(P,γ,r,ψ)∈CMRP

‖v̂n − v∗‖2 ≥
c

1− νγ
δ2 ∧ 1. (14)

In conjunction with the results from previous section, we can
conclude that the TD algorithm for policy evaluation with
linear function approximation attains the minimax-optimal
approximation factor over the class CMRP, up to universal
constants. It is also worth noting that Theorem 2 also shows
that the worst-case upper bound (5) due to Tsitsiklis &
Van Roy (1997) is indeed sharp up to a universal constant.
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Observe that Theorem 2 requires the state space sizeD to be
larger than n2. As mentioned in the introduction, we should
not expect any non-trivial approximation factor when n ≥
D, but this leaves open the regime n� D � n2. Finally, it
is worth noticing that Theorem 2 holds true only for the i.i.d.
observation models. If we are given the entire trajectory of
the Markov reward process, the approximation factor can be
made arbitrarily close to 1, using TD(λ) methods (Tsitsiklis
& Van Roy, 1997). The trade-off inherent to the Markov
observation model is left for our companion paper.
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Appendix

A. Additional related works
Our paper touches on various lines of related work, including oracle inequalities for statistical estimation, stochastic
approximation and its application to reinforcement learning, and projected linear equation methods. We provide a brief
discussion of these connections here.

Oracle inequalities: There is a large literature on misspecified statistical models and oracle inequalities (e.g., see the
monographs (Massart, 2007; Koltchinskii, 2011) for overviews). Oracle inequalities in the context of penalized empirical
risk minimization (ERM) are quite well-understood (e.g., (Bartlett et al., 2005; Koltchinskii, 2006; Massart & Nédélec,
2006)). Typically, the resulting approximation factor is exactly 1 or arbitrarily close to 1, and the statistical error term
depends on the localized Rademacher complexity or metric entropy of this function class. Aggregation methods have been
developed in order to obtain sharp oracle inequalities with approximation factor exactly 1 (e.g. (Tsybakov, 2004; Bunea
et al., 2007b; Dalalyan & Salmon, 2012; Rakhlin et al., 2017)). Sharp oracle inequalities are now available in a variety of
settings including for sparse linear models (Bunea et al., 2007a), density estimation (Dalalyan & Sebbar, 2018), graphon
estimation (Klopp et al., 2017), and shape-constrained estimation (Bellec, 2018). As previously noted, our setting differs
qualitatively from the ERM setting, in that as shown in this paper, sharp oracle inequalities are no longer possible. There is
another related line of work on oracle inequalities of density estimation. Yatracos (1985) showed an oracle inequality with
the non-standard approximation factor 3, and with a statistical error term depending on the metric entropy. This non-unit
approximation factor was later shown to be optimal for the class of one-dimensional piecewise constant densities (Chan
et al., 2014; Bousquet et al., 2019; Zhu et al., 2020). The approximation factor lower bound in these papers and our work
both make use of the birthday paradox to establish information-theoretic lower bounds.

Stochastic approximation: Stochastic approximation algorithms for linear and nonlinear fixed-point equations have
played a central role in large-scale machine learning and statistics (Robbins & Monro, 1951; Lai, 2003; Nemirovski et al.,
2009). See the books (Benveniste et al., 2012; Borkar, 2009) for a comprehensive survey of the classical methods of analysis.
The seminal works by Polyak (1990); Polyak & Juditsky (1992); Ruppert (1988) propose taking the average of the stochastic
approximation iterates, which stabilizes the algorithm and achieves a Gaussian limiting distribution. This asymptotic
result is also known to achieve the local asymptotic minimax lower bound (Duchi & Ruan, 2016). Non-asymptotic
guarantees matching this asymptotic behavior have also been established for stochastic approximation algorithms and their
variance-reduced variants (Moulines & Bach, 2011; Khamaru et al., 2020; Mou et al., 2020; Li et al., 2020).

Stochastic approximation is also a fundamental building block for reinforcement learning algorithms, wherein the method is
used to produce an iterative, online solution to the Bellman equation from data; see the books (Szepesvári, 2010; Bertsekas,
2019) for a survey. Such approaches include temporal difference (TD) methods (Sutton, 1988) for the policy evaluation
problem and the Q-learning algorithm (Watkins & Dayan, 1992) for policy optimization. Variants of these algorithms
also abound, including LSTD (Boyan, 2002), SARSA (Rummery & Niranjan, 1994), actor-critic algorithms (Konda &
Tsitsiklis, 2000), and gradient TD methods (Sutton et al., 2009). The analysis of these methods has received significant
attention in the literature, ranging from asymptotic guarantees (e.g., (Bradtke & Barto, 1996; Tsitsiklis & Van Roy, 1997;
1999)) to more fine-grained finite-sample bounds (e.g., (Bhandari et al., 2018; Srikant & Ying, 2019; Lakshminarayanan
& Szepesvári, 2018; Pananjady & Wainwright, 2021; Wainwright, 2019a;b)). Our work contributes to this literature by
establishing finite-sample upper bounds for temporal difference methods with Polyak–Ruppert averaging, as applied to the
policy evaluation problem with linear function approximation.

Projected methods for linear equations: Galerkin (1915) first proposed the method of approximating the solution to a
linear PDE by solving the projected equation in a finite-dimensional subspace. This method later became a cornerstone
of finite-element methods in numerical methods for PDEs; see the books (Fletcher, 1984; Brenner & Scott, 2007) for a
comprehensive survey. A fundamental tool used in the analysis of Galerkin methods is Céa’s lemma (Céa, 1964), which
corresponds to a special case of the approximation factor upper bounds that we establish. As mentioned before, projected
linear equations were also considered independently by Tsitsiklis & Van Roy (1997) in the context of reinforcement learning;
they established the worst-case upper bound (5) on the approximation factor under contractivity assumptions. These
contraction-based bounds were further extended to the analysis of Q-learning in optimal stopping problems (Tsitsiklis &
Van Roy, 1999). The connection between the Galerkin method and TD methods was discovered by Yu & Bertsekas (2010);
Bertsekas (2011), and the former paper shows an instance-dependent upper bound on the approximation factor. This analysis
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was later applied to Monte–Carlo methods for solving linear inverse problems (Polydorides et al., 2009; 2012).

We note that the Bellman equation can be written in infinitely many equivalent ways—by using powers of the transition kernel
and via the formalism of resolvents—leading to a continuous family of projected equations indexed by a scalar parameter λ
(see, e.g., Section 5.5 of Bertsekas (2019)). Some of these forms can be specifically leveraged in other observation models;
for instance, by observing the trajectory of the Markov chain instead of i.i.d. samples, it becomes possible to obtain unbiased
observations for integer powers of the transition kernel. This makes it possible to efficiently estimate the solution to the
projected linear equation for various values of λ, and underlies the family of TD(λ) methods (Sutton, 1988; Boyan, 2002).
Indeed, Tsitsiklis & Van Roy (1997) also showed that the worst-case approximation factor in equation (5) can be improved
by using larger values of λ. Based on this observation, a line of work has studied the trade-off between approximation error
and estimation measure in model selection for reinforcement learning problems (Bertsekas, 2016; Scherrer, 2010; Munos &
Szepesvári, 2008; Van Roy, 2006). However, unlike this body of work, our focus in the current paper is on studying the i.i.d.
observation model; we postpone a detailed investigation of the Markov setting to a companion paper.

B. Detailed discussion of the approximation error
As mentioned in the introduction, upper bounds on the approximation factor have received significant attention in the
literature, and it is interesting to compare our bounds.

B.1. Past results

In the case where γmax := |||L|||X < 1, the approximation-factor bound (5) was established by Tsitsiklis & Van Roy (1997),
via the following argument. Letting ṽ := ΠS(Lv∗ + b), we have

‖v − v∗‖2 (i)
= ‖v − ṽ‖2 + ‖ṽ − v∗‖2 = ‖ΠS(Lv + b)−ΠS(Lv∗ + b)‖2 + ‖ṽ − v∗‖2

(ii)

≤ ‖Lv − Lv∗‖2 + ‖ṽ − v∗‖2

(iii)

≤ γ2
max‖v − v∗‖2 + ‖ṽ − v∗‖2. (15)

Step (i) uses Pythagorean theorem; step (ii) follows from the non-expansiveness of the projection operator; and step (iii)
makes use of the contraction property of the operator L. Note that by definition, we have α(M, |||L|||X) ≤ (1− |||L|||X)−2,
and so the approximation factor in Theorem 1 recovers the bound (5) in the worst case. In general, however, the factor
α(M, |||L|||X) can be significantly smaller.

Yu & Bertsekas (2010) derived two fine-grained approximation factor upper; in terms of our notation, their bounds take the
form

α
(1)
YB := 1 + |||L|||2X · λmax

(
(I −M)−1(I −M)−>

)
,

α
(2)
YB := 1 + |||(I −ΠSL)−1ΠSLΠS⊥ |||2X.

It is clear from the definition that α(M, |||L|||X) ≤ α
(1)
YB , but α(M, |||L|||X) can often provide an improved bound. This

improvement is indeed significant, as will be shown shortly in Lemma 1. On the other hand, the term α
(2)
YB is never larger

than α(M, |||L|||X), and is indeed the smallest possible bound that depends only on L and not b. However, as pointed out
by Yu and Bertsekas, the value of α(2)

YB is not easily accessible in practice, since it depends on the precise behavior of the
operator L over the orthogonal complement S⊥. Thus, estimating the quantity α(2)

YB requires O(D) samples. In contrast,
the term α(M, |||L|||X) depends only on the projected operator M and the operator norm |||L|||X. The former can be easily
estimated using d samples and at smaller computational cost, while the latter is usually known a priori. The discussion about
LSTD methods in Section 3.2 fleshes out these distinctions.

B.2. Some useful bounds on α(M, |||L|||X)

We conclude our discussion of the approximation factor with some bounds that can be derived under different assumptions
on the operator L and its projected version M . The following lemma is useful in understanding the behavior of the
approximation factor as a function of the contractivity properties of the operator L; this is particularly useful in analyzing
convergence rates in numerical PDEs.
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Lemma 1 Consider a projected matrix M ∈ Rd×d such that (I −M) is invertible and κ(M) < 1.

(a) For any s > 0, we have the bound

α(M, s) ≤ 1 + |||(I −M)−1|||2op · s2 ≤ 1 +
s2

(1− κ(M))2
. (16a)

(b) For s ∈ [0, 1], we have

α(M, s) ≤ 1 + 2|||(I −M)−1|||op ≤ 1 +
2

1− κ(M)
. (16b)

See Appendix B.2.1 for the proof of this lemma.

A second special case, also useful, is when the matrix M is symmetric, a setting that appears in least-squares regression,
value function estimation in reversible Markov chains, and self-adjoint elliptic operators. The optimal approximation factor
α(M,γmax) can be explicitly computed in such cases.

Lemma 2 Suppose that M is symmetric with eigenvalues {λj(M)}dj=1 such that λmax(M) < 1. Then for any s > 0, we
have

α(M, s) = 1 + max
j=1,...,d

s2 − λ2
j

(1− λj)2
. (17)

See Appendix B.2.2 for the proof of this lemma.

In the study of Galerkin approximation methods for differential equations, the bound of the form (a) in Lemma 1 is known
as Céa’s lemma (Céa, 1964), which plays a central role in the convergence rate analysis of the Galerkin methods for
numerical differential equations. However, the instance-dependent approximation factor α(M, |||L|||X) can often be much
smaller: the global coercive parameter needed in Céa’s estimate is replaced by the bounds on the behavior of the operator
L in the finite-dimensional subspace. The part (b) in Lemma 1 generalizes Céa’s energy estimate from the symmetric
positive-definite case to the general non-expansive setting.

B.2.1. PROOF OF LEMMA 1

Recall that

α(M, s) = 1 + λmax

(
(I −M)−1(s2Id −MM>)(I −M)−>

)
. (18)

In the following, we prove upper bounds for the two different cases separately.

Bounds in the general case: By assumption, we have |||M |||op ≤ s, and consequently,

0 � s2Id −MM> � s2.

Thus, we have the sequence of implications

α(M, s)− 1 = λmax

(
(I −M)−1(s2I −MM>)(I −M)−>

)
= |||(I −M)−1(s2I −MM>)(I −M)−>|||op

≤ |||(I −M)−1|||op · |||s2Id −MM>|||op · |||(I −M)−1|||op

≤ |||(I −M)−1|||2op · s2,

which proves the bound.
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Bounds under non-expansive condition: When s ≤ 1, we have

s2I −MM> � I −MM> =
1

2
(I −M)(I +M>) +

1

2
(I +M)(I −M>).

Consequently, we have the chain of bounds

α(M, s)− 1 ≤ λmax

(
(I −M)−1(I −MM>)(I −M)−>

)
=

1

2
λmax

(
(I +M)>(I −M>)−1 + (I −M)−1(I +M)

)
≤ 1

2
|||(I +M)>(I −M>)−1|||op +

1

2
|||(I −M)−1(I +M)|||op

≤ |||(I −M)−1|||op + |||(I −M>)−1|||op

= 2|||(I −M)−1|||op.

Finally, we note that if κ(M) < 1, then for any u ∈ Rd, we have

(1− κ(M))‖u‖22 ≤ 〈(I −M)u, u〉 ≤ ‖(I −M)u‖2 · ‖u‖2.

Consequently, we have |||(I −M)−1|||op ≤ 1
1−κ(M) , which completes the proof of this lemma.

B.2.2. PROOF OF LEMMA 2

Once again, recall the definition

α(M, s) = 1 + λmax

(
(I −M)−1(s2Id −MM>)(I −M)−>

)
.

Since M is symmetric, let M = PΛP> be its eigen-decomposition, where Λ = diag(λ1, λ2, · · · , λd), and note that

α(M, s) = 1 + λmax

(
P (I − Λ)−1(s2 − Λ2)(I − Λ)−1P>

)
= 1 + λmax

(
(I − Λ)−2(s2 − Λ2)

)
= 1 + max

1≤i≤d

(
γ2

max − λ2
i

(1− λi)2

)
,

which completes the proof.

C. Proof of Theorem 1
We divide the proof into two parts, corresponding to the two components in the mean-squared error of the estimator v̂n. The
first term is the approximation error ‖v − v∗‖2 that arises from the difference between the exact solution v∗ to the original
fixed point equation, and the exact solution v to the projected set of equations. The second term is the estimation error
E‖v̂n − v‖2, measuring the difficulty of estimating v on the basis of n noisy samples.

In particular, under the conditions of the theorem, we prove that the approximation error is upper bounded as

‖v − v∗‖2 ≤ α(M, |||L|||X) inf
v∈S
‖v − v∗‖2, (19a)

whereas the estimation error is bounded as

E‖v̂n − v‖2 ≤ c
trace

(
(I −M)−1Σ∗(I −M)−>

)
n

+ c
σL

(1− κ)3

(
d

n

)3/2 (
‖v‖2σ2

L + σ2
b

)
. (19b)

Given these two inequalities, it is straightforward to prove the bound (13) stated in the theorem. By expanding the square,
we have

E‖v̂n − v∗‖2 = E‖v̂n − v‖2 + ‖v − v∗‖2 + 2E〈v̂n − v, v − v∗〉
(i)

≤ E‖v̂n − v‖2 + ‖v − v∗‖2 + 2
√
E‖v̂n − v‖2 · ‖v − v∗‖2

(ii)

≤ E‖v̂n − v‖2 + ‖v − v∗‖2 + 1
ωE‖v̂n − v‖

2 + ω‖v − v∗‖2

= (1 + ω)‖v − v∗‖2 + (1 + 1
ω )E‖v̂n − v‖2
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where step (i) follows from the Cauchy–Schwarz inequality; and step (ii) follows from the arithmetic-geometric mean
inequality, and is valid for any ω > 0. Substituting the bounds from equations (19a) and (19b) yields the claim of the theorem.

The remainder of our argument is devoted to the proofs of the bounds (19a) and (19b).

C.1. Proof of approximation error bound (19a)

We begin with some decomposition relations for vectors and operators. Note that S is a finite-dimensional subspace, and
therefore is closed. We use

S⊥ := {u ∈ X | 〈u, v〉 = 0 | for all v ∈ S.
}

to denote its orthogonal complement. The pair (S,S⊥) forms a direct product decomposition of X, and the projection
operators satisfy ΠS + ΠS⊥ = I . Also define the operators LS,S = ΠSLΠS and LS,⊥ = ΠSLΠS⊥ . With this notation, our
proof can be broken down into two auxiliary lemmas, which we state here:

Lemma 3 The error ‖v − v∗‖ between the projected fixed point v and the original fixed point v∗ is bounded as

‖v − v∗‖2 ≤
(
1 + |||(I − LS,S)−1LS,⊥|||2X

)
inf
v∈S
‖v − v∗‖2. (20)

Lemma 4 Under the set-up above, we have

|||(I − LS,S)−1LS,⊥|||2X ≤ λmax

(
(Id −M)−1

(
|||L|||2XId −MM>

)
(Id −M)−>

)
.

The claimed bound (19a) on the approximation error follows by combining these two lemmas, and recalling our definition
of α(M,L). We now prove these two lemmas in turn.

C.1.1. PROOF OF LEMMA 3

For any vector v ∈ X, we perform the orthogonal decomposition v = vS + v⊥, where vS := ΠS(v) is a member of the set S,
and v⊥ := ΠS⊥,ξ is a member of the set S⊥. With this notation, the operator L can be decomposed as

L = (ΠS + ΠS⊥)L(ΠS + ΠS⊥) = ΠSLΠS︸ ︷︷ ︸
=:LS,S

+ ΠSLΠS⊥︸ ︷︷ ︸
=:LS,⊥

+ ΠS⊥LΠS︸ ︷︷ ︸
=:L⊥,S

+ ΠS⊥LΠS⊥︸ ︷︷ ︸
=:L⊥,⊥

.

The four operators LS,S, LS,⊥, L⊥,S, L⊥,⊥ defined in the equation above are also bounded linear operators. By the properties
of projection operators, we note that LS,S and L⊥,S both map each element of S⊥ to 0, and LS,⊥ and L⊥,⊥ both map each
element of S to 0.

Decomposing the target vector v∗ in an analogous manner yields the two components

ṽ := ΠS(v∗), and v⊥ := v∗ − ṽ.

The fixed point equation v∗ = Lv∗ + b can then be written using S and its orthogonal complement as

ṽ
(a)
= LS,Sṽ + LS,⊥v

⊥ + bS, and v⊥
(b)
= L⊥,Sṽ + L⊥,⊥v

⊥ + b⊥. (21)

For the projected solution v, we have the defining equation

v = LS,Sv + bS. (22)

Subtracting equation (21)(a) from equation (22) yields

(I − LS,S)(ṽ − v) = LS,⊥v
⊥.

Recall the quantity M = ΦdLΦ∗d, and our assumption that κ(M) = 1
2λmax(M + MT ) < 1. This condition implies that

I − LS,S is invertible on the subspace S. Since this operator also maps each element of S⊥ to itself, it is invertible on all of
X, and we have ṽ − v = (I − LS,S)−1LS,⊥v

⊥.
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Applying the Pythagorean theorem then yields

‖v − v∗‖2 = ‖v − ṽ‖2 + ‖ṽ − v∗‖2 = ‖(I − LS,S)−1LS,⊥v
⊥‖2 + ‖v⊥‖2

≤
(
1 + |||(I − LS,S)−1LS,⊥|||2X

)
· ‖v⊥‖2, (23)

as claimed.

C.1.2. PROOF OF LEMMA 4

By the definition of operator norm for any vector v ∈ X such that ‖v‖ = 1, we have

|||L|||2X ≥ ‖Lv‖2 = ‖LS,SvS + LS,⊥v⊥‖2 + ‖L⊥,SvS + L⊥,⊥v⊥‖2 ≥ ‖LS,SvS + LS,⊥v⊥‖2.

Noting the fact that LS,Sv⊥ = 0 = LS,⊥vS, we have the following norm bound on the linear operator LS,S + LS,⊥:

|||LS,S + LS,⊥|||X = sup
‖v‖=1

‖(LS,S + LS,⊥)v‖

= sup
‖v‖=1

‖LS,SvS + LS,⊥v⊥‖ ≤ |||L|||X.

By definition, the operator L∗S,⊥ = ΠS⊥L
∗ΠS maps any vector to S⊥, and the operator LS,S maps any element of S⊥ to 0.

Therefore, we have the identity LS,SL
∗
S,⊥ = 0. A similar argument yields that LS,⊥L

∗
S,S = 0. Consequently, we have

|||L|||2X ≥ |||LS,S + LS,⊥|||2X = |||(LS,S + LS,⊥)(LS,S + LS,⊥)∗|||X
= |||LS,SL

∗
S,S + LS,⊥L

∗
S,⊥︸ ︷︷ ︸

=:G

|||X. (24)

Note that the operator G can be expressed as G = ΠS (LΠSL
∗ + LΠS⊥L

∗) ΠS. From this representation, we see that:

• For any vector x ∈ X, we have Gx ∈ S.

• For any vector y ∈ S⊥, we have Gy = 0.

Consequently, there exists a matrix G̃ ∈ Rd×d, such that G = Φ∗dG̃Φd. Since G is a positive semi-definite operator, the
matrix G̃ is positive semi-definite. Equation (24) implies that

λmax(G̃) = |||G̃|||op = |||G|||X ≤ |||L|||2X. (25)

Now defining τ := |||(I − LS,S)−1LS,⊥|||X, note that

τ2 = ||| (I − LS,S)−1LS,⊥L
∗
S,⊥(I − L∗S,S)−1︸ ︷︷ ︸

=:H

|||X. (26)

Moreover, the operator H is self-adjoint, and we have the following properties:

• The operator LS,⊥ maps any vector to S, and (I − LS,S)−1 maps S to itself. Consequently, for any x ∈ X, the vector

Hx = (I − LS,S)−1LS,⊥

(
L∗S,⊥(I − L∗S,S)−1

)
x is a member of the set S.

• The operator L∗S,⊥ = ΠS⊥L
∗ΠS maps any vector from S⊥ to 0. Consequently, for any y ∈ S⊥, we have Hy =

(I − LS,S)−1LS,⊥

(
L∗S,⊥(I − L∗S,S)−1

)
y = 0.

Owing to the facts above, there exists a matrix H̃ ∈ Rd×d, such that H = Φ∗dH̃Φd. Since the operator H is positive
semi-definite, so is the matrix H̃ . Consequently, by equation (26), we obtain the identity τ2 = |||H|||X = |||H̃|||op = λmax(H).
In particular, letting u ∈ Sd−1 be a maximal eigenvector of H̃ , we have

H̃ � τ2uu>. (27)
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Since M = ΦdLS,SΦ∗d by definition, combining the above matrix inequalities (25) and (27), we arrive at the bound:

|||L|||2XId � G̃
= Φd

(
LS,SL

∗
S,S + LS,⊥L

∗
S,⊥
)

Φ∗d

= ΦdLS,SL
∗
S,SΦ∗d + (Φd(I − LS,S)Φ∗d) ·

(
Φd(I − LS,S)−1LS,⊥L

∗
S,⊥(I − L∗S,S)−1Φ∗d

)
·
(
Φd(I − L∗S,S)Φ∗d

)
= MM> + (I −M)H̃(I −M>)

�MM> + τ2(I −M)uu>(I −M>).

Re-arranging and noting that u ∈ Sd−1, we arrive at the inequality

τ2 ≤ u>
[
(I −M)−1(|||L|||2XId −MM>)(I −M)−>

]
u ≤ λmax

(
(I −M)−1(|||L|||2XId −MM>)(I −M)−>

)
,

which completes the proof of Lemma 4.

C.2. Proof of estimation error bound (19b)

We now turn to the proof of our claimed bound on the estimation error. Our analysis relies on two auxiliary lemmas. The
first lemma provides bounds on the mean-squared error of the standard iterates {vt}t≥0—that is, without the averaging step:

Lemma 5 Suppose that the noise conditions in Assumption 1 hold. Then for any stepsize η ∈
(
0, 1−κ

4σ2
Ld+1+|||L|||2X

)
, we have

the bound

E‖vt − v‖2 ≤ e−(1−κ)ηt/2E‖v0 − v‖2 +
8η

1− κ
(‖v‖2σ2

Ld+ σ2
bd) valid for t = 1, 2, . . .. (28)

See Section C.2.1 for the proof of this claim.

Our second lemma provides a bound on the PR-averaged estimate v̂n based on n observations in terms of a covariance term,
along with the error of the non-averaged sequences {vt}t≥1:

Lemma 6 Under the setup above, we have the bound

E‖v̂n − v‖2 ≤
6

n− n0
trace

(
(I −M)−1Σ∗(I −M)−>

)
+

6

(n− n0)2

n∑
t=n0

E‖(I −M)−1Φd(Lt+1 − L)(vt − v)‖22 +
3E‖vn − vn0

‖2

η2(n− n0)2(1− κ)2
. (29)

See Section C.2.2 for the proof of this claim.

Equipped with these two lemmas, we can now complete the proof of the claimed bound (19b) on the estimation error.
Recalling that n0 = n/2, we see that the first term in the bound (29) matches a term in the bound (19b). As for the remaining
two terms in equation (29), the second moment bounds from Assumption 1 combined with the assumption that κ(M) < 1
imply that

E‖(I −M)−1Φd(Lt+1 − L)(vt − v)‖22 ≤
1

(1− κ)2
E‖Φd(Lt+1 − L)(vt − v)‖22

≤ 1

(1− κ)2

d∑
j=1

E〈φj , (Lt+1 − L)(vt − v)〉2

≤ σ2
Ld‖vt − v‖2

(1− κ)2
.
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On the other hand, we can use Lemma 5 to control the third term in the bound (29). We begin by observing that

‖vn − vn0
‖2 ≤ 2‖vn − v‖2 + 2‖vn0

− v‖2 ≤ 4 sup
n0≤t≤n

E‖vt − v‖2.

If we choose a burn-in time n0 >
c0

(1−κ)η log
(
‖v0−v‖2d

1−κ

)
, then Lemma 5 ensures that

sup
n0≤t≤n

E‖vt − v‖2 ≤
16η

1− κ
(
‖v‖2σ2

Ld+ σ2
bd
)
.

Finally, taking the step size η = 1
24σL

√
dn

, recalling that n0 = n/2, and putting together the pieces yields

E‖v̂n − v‖2 ≤
12

n
trace

(
(I −M)−1Σ∗(I −M)−>

)
+

1

(1− κ)2

(
12σ2

Ld

n
+

48

η2n2

)
sup

n0≤t≤n
E‖vt − v‖2

≤ 12

n
trace

(
(I −M)−1Σ∗(I −M)−>

)
+

48σL
(1− κ)3

(
d

n

)3/2 (
‖v‖2σ2

L + σ2
b

)
,

as claimed.

It remains to prove our two auxiliary lemmas, which we do in the following subsections.

C.2.1. PROOF OF LEMMA 5

We now prove Lemma 5, which provides a bound on the error of the non-averaged iterates {vt}t≥1, as defined in
equation (11a). Using the form of the update, we expand the mean-squared error to find that

E‖vt+1 − v‖2 = E‖(I − ηI + ηΠSL)(vt − v) + ηΠS(Lt+1 − L)vt + ηΠS(bt+1 − b)‖2

(i)
= E‖(I − ηI + ηΠSL)(vt − v)‖2 + η2E‖ΠS(Lt+1 −A)vt + Πφ(bt+1 − b)‖2

(ii)

≤ (1− η(1− κ))E‖vt − v‖2 + 2η2E‖ΠS(Lt+1 − L)(vt − v)‖2

+ 2η2E‖ΠS(Lt+1 − L)v + ΠS(bt+1 − b)‖2. (30)

In step (i), we have made use of the fact that the noise is unbiased, and in step (ii), we have used that for any ∆ in the
subspace S and any stepsize η ∈

(
0, 1−κ

1+|||L|||2X

)
, we have

‖(I − ηI + ηΠSL)∆‖2 = (1− η)2‖∆‖2 + η2‖ΠSL∆‖2 + 2(1− η)η〈∆, ΠSL∆〉

≤
{

1− 2η + η2 + η2|||L|||2X + 2(1− η)ηκ
}
‖∆‖2

≤
(
1− η(1− κ)

)
‖∆‖2.

Turning to the second term of equation (30), the moment bounds in Assumption 1 imply that

E‖ΠS(Lt+1 − L)(vt − v)‖2 =

d∑
j=1

E〈φj , (Lt+1 − L)(vt − v)〉2 ≤ E‖vt − v‖2σ2
Ld.

Finally, the last term of equation (30) is also handled by Assumption 1, whence we obtain

E‖ΠS(Lt+1 − L)v + ΠS(bt+1 − b)‖2 ≤ 2

d∑
j=1

E〈φj , (Lt+1 − L)v〉2

+ 2

d∑
j=1

E〈φj , bt+1 − b〉2 ≤ 2‖v‖2σ2
Ld+ 2σ2

bd.
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Putting together the pieces, we see that provided η < 1−κ
4σ2
Ld+1+|||L|||2X

, we have

E‖vt+1 − v‖2 ≤ (1− η(1− κ) + 2η2σ2
Ld)E‖vt − v‖2 + 4η2(‖v‖2σ2

Ld+ σ2
bd)

≤
(

1− η(1− κ)

2

)
E‖vt − v‖2 + 4η2(‖v‖2σ2

Ld+ σ2
bd).

Finally, rolling out the recursion yields the bound

E‖vn − v‖2 ≤ e−(1−κ)ηn/2E‖v0 − v‖2 +
8η

1− κ
(‖v‖2σ2

Ld+ σ2
bd),

which completes the proof.

C.2.2. PROOF OF LEMMA 6

Recall that v satisfies the fixed point equation v = ΠSLv + ΠSb. Using this fact, we can derive the following elementary
identity:

vn0
− vn

η(n− n0)
=

1

n− n0

n−1∑
t=n0

(vt −ΠSLt+1vt −ΠSbt+1)

= (I −ΠSL)(v̂n − v) +
1

n− n0

n−1∑
t=n0

ΠS(Lt+1 − L)vt︸ ︷︷ ︸
=:Ψ

(1)
n

+
1

n− n0

n−1∑
t=n0

ΠS(bt+1 − b)︸ ︷︷ ︸
=:Ψ

(2)
n

. (31)

Re-arranging terms and applying the Cauchy–Schwarz inequality, we have

‖v̂n − v‖2 ≤
3

(n− n0)2

(
1

η2
‖(I −ΠSL)−1(vn − vn0

)‖2 + ‖(I −ΠSL)−1Ψ(1)
n ‖2 + ‖(I −ΠSL)−1Ψ(2)

n ‖2
)
.

Note that the quantities Ψ
(1)
n and Ψ

(2)
n are martingales adapted to the filtration Fn := σ({Li, bi}ni=1), so that

E‖v̂n − v‖2 ≤
3

(n− n0)2

n−1∑
t=n0

E‖(I −ΠSL)−1ΠS(Lt+1 − L)vt‖2

+
3

(n− n0)2

n−1∑
t=n0

E‖(I −ΠSA)−1ΠS(bt+1 − b)‖2

+
3

(n− n0)2η2
E‖(I −ΠSL)−1(vn − vn0

)‖2.

We claim that for any vector v ∈ X, we have

(I −ΠSL)−1ΠSv = Φ∗d
(
(I −M)−1Φdv

)
. (32)

Taking this claim as given for the moment, by applying equation (32) with v = (Lt+1−L)vt and v = bt+1− b, we find that

E‖(I −ΠSL)−1ΠS(Lt+1 − L)vt‖2 = E‖(I −M)−1Φd(Lt+1 − L)vt‖22
≤ 2E‖(I −M)−1Φd(Lt+1 − L)v‖22 + 2E‖(I −M)−1Φd(Lt+1 − L)(vt − v)‖22,

and

E‖(I − L)−1ΠS(bt+1 − b)‖2 = E‖(I −M)−1Φd(bt+1 − b)‖22.
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Putting together the pieces, we obtain

E‖v̂n − v‖2 ≤
3

n− n0
trace

(
(I −M)−1 · cov(Φd(b1 − b)) · (I −M)−>

)
+

6

n− n0
trace

(
(I −M)−1 · cov(Φd(L1 − L)v) · (I −M)−>

)
+

6

(n− n0)2

n∑
t=n0

E‖(I −M)−1Φd(Lt+1 − L)(vt − v)‖22 +
3E‖vn − vn0‖2

η2(n− n0)2(1− κ)2
,

as claimed.

It remains to prove the identity (32).

Proof of claim (32): Note that for any vector v ∈ X, the vector z := (I − ΠSL)−1ΠSv is a member of S, since
z = ΠSLz + ΠSv. Furthermore, since {φj}dj=1 is a standard basis for S, we have z = ΠSz = Φ∗dΦdz, and consequently,

Φdz = ΦdLz + Φdv = (ΦdLΦ∗d)Φdz + Φdv = MΦdz + Φdv.

Since the matrix M is invertible, we have Φdz = (Id −M)−1Φdv. Consequently, we have the identity z = Φ∗dΦdz =
Φ∗d(Id −M)−1Φdv, which proves the claim.

D. Proof of the corollary for TD learning
We start by formally introducing the assumptions and stating the result. First, we recall that the Polyak-Ruppert-averaged
TD(0) algorithm takes the form:

ϑt+1 = ϑt − η
(
ψ(st+1)ψ(st+1)>ϑt − γψ(st+1)ψ(s+

t+1)>ϑt −Rt+1(st+1)ψ(st+1)
)
. (33a)

The Polyak–Ruppert averaged estimator is then given by the relations

ϑ̂n =
2

n

n−1∑
t=n/2

ϑt, and v̂n := ϑ̂>nψ. (33b)

Recall our definition of the positive definite matrix B, with Bij = 〈ψi, ψj〉. This defines an orthonormal basis given by[
φ1 φ2 · · · φd

]
:=
[
ψ1 ψ2 · · · ψd

]
B−1/2.

Let β := λmax(B) and µ := λmin (B), so that β/µ is the condition number of the covariance matrix of the features.

Having set up this transformation, we are now ready to state the implication of our main theorem to the case of LSTD
problems. We assume the following fourth-moment condition:

∀u ∈ Sd−1, Eξ
(
u>B−1/2ψ(s)

)4

≤ ς4, and Eξ
[
R4(s)

]
≤ ς4. (34)

As verified in the proof of Corollary 1 to follow, equation (34) suffices to guarantee that Assumption 1 is satisfied with
parameters (σL, σb) = (2ς2, ς2/

√
β).

The following corollary then provides a guarantee on the Polyak–Ruppert averaged TD(0) iterates.

Corollary 1 Under the set-up above, there are universal positive constants (c, c0) such that given a sample size n ≥
c0ς

4β2d
µ2(1−κ(M))2 log2

(
‖v0−v‖22βd
µ(1−κ(M))

)
, then when the stochastic approximation scheme (33a) is run with step size η = 1

c0ς2β
√
dn

,
then the averaged iterates satisfy the bound

E‖v̂n − v∗‖2 ≤ (1 + ω)α(M,γ)A(S, v∗) + c

(
1 +

1

ω

)En(M,ΣL + Σb) +
(
1 + ‖v̄‖2

)( ς2β

(1− κ(M))µ

√
d

n

)3

(35)

for any ω > 0.
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Letting θt := B1/2ϑt, the iterates (33a) can be equivalently written as

θt+1 = θt − ηB ·
(
φ(st+1)φ(st+1)>θt − γφ(st+1)φ(s+

t+1)>θt +Rt+1(st+1)φ(st+1)
)
, (36)

and the Polyak–Ruppert averaged iterate is given by θ̂n := 2
n

∑n−1
t=n/2 θt. We also define θ̄ := Φdv, which is the solution to

projected linear equations under the orthogonal basis. Clearly, we have θ̄ = B1/2ϑ̄.

We now claim that if n ≥ c0ς
4β2

µ2(1−κ(M))2 d log2
(
‖ϑ0−ϑ̄‖2dβ
µ(1−κ(M))

)
, then

‖Φ∗dθ̄ − v∗‖2 ≤ α(M,γ)A(S, v∗), and (37a)

E‖θ̂n − θ̄‖22 ≤ cEn(M,ΣL + Σb) + c
(
1 + ‖v̄‖2

)( ς2β

(1− κ(M))µ

√
d

n

)3

. (37b)

Taking both inequalities as given for now, we proceed with the proof of this corollary. Combining equation (37a) and
equation (37b) via Young’s inequality, we arrive at the bound

E‖v̂n − v∗‖2 ≤ (1 + ω)‖Φ∗dθ̄ − v∗‖2 +

(
1 +

1

ω

)
E‖θ̂n − θ̄‖22

≤ (1 + ω)A(S, v∗) + c

(
1 +

1

ω

)En(M,ΣL + Σb) +
(
1 + ‖v̄‖2

)( ς2β

(1− κ(M))µ

√
d

n

)3
 ,

which completes the proof of this corollary.

D.1. Proof of equation (37a)

By equation (10) and the definition of θ̄, we have

θ̄ = γMθ̄ + Eξ[R(s)φ(s)].

It is easy to see that Φ∗dθ̄ solves the projected Bellman equation. Note furthermore that the projected linear operator is given
by

ΦdLΦ∗d = γΦdPΦ∗d = M.

Invoking the bound in equation (19a), we complete the proof of this inequality.

D.2. Proof of equation (37b)

Following the proof strategy for the bound (19b), we first show an upper bound on the iterates E‖ϑt − ϑ̄‖2 under the
non-orthogonal basis (ψj)j∈[d], and then use this bound to establish the final estimation error guarantee under ‖ · ‖-norm.

Recall the stochastic approximation procedure under the non-orthogonal basis:

ϑt+1 = ϑt − η
(
ψ(st+1)ψ(st+1)>ϑt − γψ(st+1)ψ(s+

t+1)>ϑt −Rt+1(st+1)ψ(st+1)
)
.

Let M̃ := Id − 1
βB

1/2 (Id −M)B1/2 and h̃ := 1
βE[R(s)ψ(s)]. We can view equation (33a) as a stochastic approximation

procedure for solving the linear fixed-point equation ϑ̄ = M̃ϑ̄+ h̃, with stochastic observations

M̃t := Id − β−1
(
ψ(st)ψ(st)

> − γψ(st)ψ(s+
t )>

)
, and h̃t := β−1R(st)ψ(st).

To verify Assumption 1, we note that for p, q ∈ Sd−1, the following bounds directly follows from the condition (34):

E
(
p>
(
M̃t − M̃

)
q
)2

≤ 2β−2E
(
(p>ψ(st)) · (ψ(st)

>q)
)2

+ 2β−2E
(
(p>ψ(st)) · (ψ(s+

t )>q)
)2

≤ 2β−2

√
E (p>ψ(st))

4 · E (ψ(st)>q)
4

+ 2β−2

√
E (p>ψ(st))

4 · E
(
ψ(s+

t )>q
)4

≤ 4ς4

β2
‖B1/2p‖22 · ‖B1/2q‖22 ≤ 4ς4,
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and

E
(
p>
(
h̃t − h̃

))2

≤ β−2E
(
R(st) · p>ψ(st)

)2
≤ β−2

√
E [R(st)4] · E

(
p>B1/2φ(st)

)4 ≤ ς4/β.
Consequently, for the stochastic approximation procedure in equation (33a), Assumption 1 is satisfied with σL = 2ς2 and
σb = ς2/

√
β.

To establish an upper bound on κ(M̃), we note that

1− κ(M̃) =
1

β
λmin

(
B −B1/2M +M>

2
B1/2

)
=

1

β
inf

u∈Sd−1
(B1/2u)>

(
Id −

M +M>

2

)
(B1/2u)

≥ µ

β
inf

u∈Sd−1
u>
(
Id −

M +M>

2

)
u ≥ µ

β
(1− κ(M)) .

Invoking Lemma 5, for η < c0(1−κ(M))µ
(ς4d+1)β2 , we have

E‖ϑt − ϑ̄‖22 ≤ e−
µ
2 (1−κ(M))ηtE‖ϑ0 − ϑ̄‖22 +

8ηβ

(1− κ(M))µ

(
‖ϑ‖22ς4d+ ς4d/β

)
. (38)

On the other hand, applying Lemma 6 to the stochastic approximation procedure (36) under the orthogonal coordinates, we
have the bound

E‖v̂n − v‖2 ≤
6

n− n0
trace

(
(I −M)−1Σ∗(I −M)−>

)
+

6

(n− n0)2

n∑
t=n0

E‖(I −B1/2M̃B−1/2)−1B1/2(M̃t+1 − M̃)B−1/2(θt − θ̄)‖22

+
3E‖

(
Id −B1/2M̃B−1/2

)−1
(θn − θn0

)‖22
η2β2(n− n0)2

. (39)

Straightforward calculation yields

E‖(I −B1/2M̃B−1/2)−1B1/2(M̃t+1 − M̃)B−1/2(θt − θ̄)‖22 = β2E‖(I −M)−1B−1/2(M̃t+1 − M̃)(ϑt − ϑ̄)‖22.

For any vector p ∈ Rd, using condition (34), we note that

E‖B−1/2(M̃t − M̃)p‖22 ≤ 2β−2E‖φ(st)φ(st)
>B1/2p‖22 + 2β−2E‖φ(st)φ(s+

t )>B1/2p‖22

≤ 2β−2
√

E‖φ(st)‖42 ·
√

E
(
φ(st)>B1/2p

)4
+ 2β−2

√
E‖φ(st)‖42 ·

√
E
(
φ(s+

t )>B1/2p
)4

≤ 4β−1ς4d.

Substituting into the identity above, we obtain

E‖(I −B1/2M̃B−1/2)−1B1/2(M̃t+1 − M̃)B−1/2(θt − θ̄)‖22 ≤
4βς4d(

1− κ(M)
)2E‖ϑt − ϑ̄‖22.

For the third term in equation (39), we note that

E‖
(
Id −B1/2M̃B−1/2

)−1
(θn − θn0

)‖22 = β2E‖(I −M)−1B−1/2(ϑn − ϑn0
)‖22

≤ 2β2

µ
(
1− κ(M)

)2 (E‖ϑn − ϑ̄‖22 + E‖ϑn0
− ϑ̄‖22

)
.
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Putting together the pieces and invoking the bound (38), we see that if n0 ≥ c0 1
µη(1−κ) log

(
dβ

µ(1−κ)

)
, then

E‖v̂n − v‖2 ≤ 6En(M,Σ∗) +

[
24βς4d(

1− κ(M)
)2
n

+
48

µ
(
1− κ(M)

)2
η2n2

]
· sup
n0≤t≤n

E‖ϑt − ϑ̄‖22

≤ 6En(M,Σ∗) + c
β3

µ2
(
1− κ(M)

)3 [ ς4ηdn +
1

ηβ2n2

] (
‖ϑ̄‖22ς4d+ ς4d/β

)
.

Now note that ‖ϑ̄‖22 = ‖B−1/2θ̄‖22 ≤ µ−1‖v‖2, and so choosing the step size η := 1
c0ς2β

√
dn

yields

E‖v̂n − v‖2 ≤ 6En(M,Σ∗) + c
β3ς6

µ3
(
1− κ(M)

)3 ( dn
)3/2

.

This completes the proof of equation (37b), and thus the corollary.

E. Proof of Theorem 2
Letting D and d be integer multiples of four without loss of generality, we denote the state space by S = {1, 2, · · · , D}.
We decompose the state space into S = S0 ∪ S1 ∪ S2, with S0 := {1, 2, · · · , 2d}, S1 := {2d + 1, · · · , d + D

2 }, and
S2 := {d+ D

2 + 1, · · · , D}. Define the scalars ρ = min(γ, ν) ∈ (0, 1) and τ := δ√
2(1−ρ)

∧ 1.

Figure 1. A graphical illustration of the MRP instance constructed above. For this instance, we let d = 1, |S1| = 4 and |S2| = 4, so
that the total number of states is D = 10. In the graph, solid rounds stand for states, and arrows stand for the possible transitions. The
numbers associated to the arrows stand for the probability of the transitions, and the equations r = · · · standard for the reward at a state.
The sets S0, S1 and S2 are separated by red dotted lines, and the sets Γ1, Γ̄1, Γ2, and Γ̄2 are marked by transparent rectangles. A blue
round stands for a state with positive value function, and an orange round stands for a state with negative value function.

Given a sign z ∈ {−1, 1} and subsets Γ1 ⊆ S1 and Γ2 ⊆ S2 such that |Γi| = 1
2 |Si| for each i ∈ {1, 2}, we let Γ̄i := Si \Γi

for i ∈ {1, 2}. We then construct Markov reward processes (P (Γ1,Γ2,z), r(Γ1,Γ2,z)) and feature vectors (ψ(Γ1,Γ2,z)(si))
D
i=1,
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indexed by the tuple (Γ1,Γ2, z). Entry (i, j) of the transition matrix is given by

P (Γ1,Γ2,z)(i, j) :=



ρ i = j ∈ S0,
1−ρ

2 i, j ∈ S0, |i− j| = d,
1−ρ
|S1| (i, j) ∈ ({1, · · · , d} × Γ1) ∪

(
{d+ 1, · · · , 2d} × Γ̄1

)
,

2
|S2| (i, j) ∈ (Γ1 × Γ2) ∪

(
Γ̄1 × Γ̄2

)
,

1
d (i, j) ∈ (Γ2 × {1, 2, · · · , d}) ∪

(
Γ̄2 × {d+ 1, · · · , 2d}

)
0 otherwise.

(40a)

The reward function at state i is given by

r(Γ1,Γ2,z)(i) :=


zτ i ∈ Γ1,

−zτ i ∈ Γ̄1,

0 otherwise.
(40b)

This MRP is illustrated in Figure 1 for convenience. It remains to specify the feature vectors, and we use the same set of
features for each tuple (Γ1,Γ2, z). The i-th such feature vector is given by

ψ(i) :=


√

3−ρ
2 dei i ∈ {1, 2, · · · , d},

−
√

3−ρ
2 dei−d i ∈ {d+ 1, · · · , 2d},

0 otherwise.

(40c)

It is easy to see that for any tuple (z,Γ1,Γ2), the Markov chain is irreducible and aperiodic, and furthermore, that the
stationary distribution of the transition kernel P (Γ1,Γ2,z) is independent of the tuple (Γ1,Γ2, z), and given by

ξ =
[
︸ ︷︷ ︸

2d

1
(3−ρ)d · · · 1

(3−ρ)d ︸ ︷︷ ︸
D − 2d

1−ρ
(3−ρ)(D−2d) · · · 1−ρ

(3−ρ)(D−2d)

]
.

Clearly, we have Eξ[ψ(s)ψ(s)>] = Id under the stationary distribution. For the projected transition kernel, we have

E[ψ(s)ψ(s+)>] =
3− ρ

2
·
(
ρ− 1− ρ

2

)
Id � ρId � νId. (41)

Given the discount factor γ ∈ (0, 1), let c0 := (1−ρ)/2
1−γ(ρ−(1−ρ)(1−γ2)/2) for convenience. Straightforward calculation then

yields that the value function for the problem instance
(
P (Γ1,Γ2,z), r(Γ1,Γ2,z)

)
at state i is given by

v∗Γ1,Γ2,z(i) =



c0zτ i ∈ {1, 2, · · · , d},
−c0zτ i ∈ {d+ 1, · · · , 2d},
(1 + γ2c0)zτ i ∈ Γ1,

−(1 + γ2c0)zτ i ∈ Γ̄1,

γc0zτ i ∈ Γ2,

−γc0zτ i ∈ Γ̄2.

For ρ > 1/2, we have the bounds

c0 ≥
1

4
· 1− ρ

1− γρ
≥ 1− ρ

4(1− ρ2)
≥ 1

8
, and c0 ≤

1− ρ
1− γρ

≤ 1.

Consequently, we have |v∗Γ1,Γ2,z
(i)| � |v∗Γ1,Γ2,z

(j)| for each pair (i, j).

Note that by our construction, the subspace S spanned by the basis functions ψ(1), ψ(2), · · · , ψ(2d) is given by

S =
{
v ∈ L2(S, ξ) : v(s) = 0 for s /∈ S0, and v(i+ d) = −v(i) for all i ∈ [d]

}
.
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Consequently, we have

inf
v∈S
‖v − v∗Γ1,Γ2,z‖

2 =
1− ρ
3− ρ

·
(

1

2
(1 + γ2c0)2τ2 +

1

2
γ2c20τ

2

)
≤ 2(1− ρ)τ2 = δ2. (42)

Putting the equations (41) and (42) together, for any tuple (Γ1,Γ2, z), we conclude that the problem instance
(P (Γ1,Γ2,z), r(Γ1,Γ2,z), γ, ψ((Γ1,Γ2,z))) belongs to the class CMRP(ν, γ,D, δ).

In order to apply Le Cam’s lemma, we define the following mixture distributions for each z ∈ {−1, 1}:

P(n)
z :=

(
|S1|
|S1|/2

)−2 ∑
Γ1⊆S1,Γ2⊆S2

|Γ1|=|Γ2|= 1
2 |S1|

P⊗nΓ1,Γ2,z
,

where PΓ1,Γ2,z is the law of an observed tuple (si, s
+
i , r(si)) under the MRP

(
P (Γ1,Γ2,z), γ, r(Γ1,Γ2,z)

)
, and P⊗nΓ1,Γ2,z

denotes its n-fold product. Our next result gives a bound on the total variation distance.

Lemma 7 Under the set-up above, we have dTV

(
P(n)

1 ,P(n)
−1

)
≤ Cn2

D−2d .

Taking this lemma as given, we now turn to the proof of the proposition. Consider any estimator v̂ for the value function.
For any pair Γ1,Γ2 and Γ′1,Γ

′
2, we have

‖v̂ − v∗Γ1,Γ2,1‖
2 + ‖v̂ − v∗Γ′1,Γ′2,−1‖2 ≥

1

2
‖v∗Γ1,Γ2,1 − v

∗
Γ′1,Γ

′
2,−1‖2 ≥

1

2
c20τ

2 ≥ δ2

64(1− ρ)
.

Invoking Le Cam’s lemma, for D > 2C(n2 + d), we have

inf
v̂n

sup
(P,γ,r,ψ)∈CMRP

≥ c

1− ρ
δ2
(

1− dTV(P(n)
1 ,P(n)

−1 )
)
≥ c′

1− νγ
δ2,

which completes the proof. �

E.1. Proof of Lemma 7

The high-level idea behind the proof is by recursive application of a one-step birthday argument combined with bounds on
the bias induced by drawing without replacement.

To prove the lemma, we construct a probability distribution Q(n) and bound the total variation distance between Q(n) and
P(n)
z for each z ∈ {−1, 1}. In particular, for k ∈ [n], we let Q(k) be the law of k independent samples drawn from the

following observation model:

• (Initial state:) Generate the state si ∼ ξ.

• (Next state:) If si ∈ S1, then generate s+i ∼ U(S2). If si ∈ S2, then generate s+i ∼ U(S0). On the other hand, if si ∈ S0, then
generate S ∼ U(S1) and let1

s+i =


si w.p. ρ,

(si + d) mod 2d w.p. 1−ρ
2
,

S w.p. 1−ρ
2
.

(43)

• (Reward:) If si ∈ S1, randomly draw Ri = ζ(i) ∼ U({−1, 1}), and output ζ(i)τ as the reward. Otherwise, output the reward Ri = 0.

To bound the total variation distance dTV(Q(n),P(n)
z ), we use the following recursive relation, which holds for each

k = 0, 1, · · · , n− 1:

dTV

(
Q(k+1),P(k+1)

z

)
≤ dTV

(
Q(k),P(k)

z

)
+ sup

(si,s
+
i ,Ri)

k
i=1

dTV

(
Q(k+1)|(si, s+

i , Ri)
k
i=1,P(k+1)

z |(si, s+
i , Ri)

k
i=1

)
. (44)

1The expression a mod b denotes the remainder of a divided by b, when a and b are integers.
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Owing to the i.i.d. nature of the sampling model for Q(k+1), note that we have the equivalence
(sk+1, s

+
k+1, Rk+1)|(si, s+

i , Ri)
k
i=1

d
= (sk+1, s

+
k+1, Rk+1).

At this juncture, it is helpful to view the probability distributions P(k)
1 and P(k)

−1 via the following two-step sampling
procedure: First, for j ∈ {1, 2}, sample the subsets Γj ⊆ Sj uniformly at random from the collection of all subsets of size
|Sj |/2. Then, generate k i.i.d. samples (si, s

+
i , Ri)

k
i=1 according to the observation model (40a)-(40b). Consequently, for

the rest of this proof, we view Γ1 and Γ2 as random sets. With this equivalence at hand, the following technical lemma
shows that the posterior distribution of the subsets (Γ1,Γ2) conditioned on sampling the tuple (si, s

+
i , Ri)

k
i=1 is very close

to the distribution of subsets chosen uniformly at random.

Lemma 8 There is a universal positive constant c such that for each bit z ∈ {±1} and indices j ∈ {1, 2} and k ∈ [n], the
following statement is true almost surely. For each tuple (si, s

+
i , Ri)

k
i=1 in the support of P(k)

z , the posterior distribution of
Γj conditioned on (si, s

+
i , Ri)

k
i=1 ∼ P(k)

z satisfies

max
s∈Sj\∪ki=1{si,s

+
i }

∣∣∣∣P (Γj 3 s | (si, s+
i , Ri)

k
i=1

)
− 1

2

∣∣∣∣ ≤ ck

D − d
.

In words, for any “observable” tuple (si, s
+
i , Ri)

k
i=1 and each state s ∈ Sj \ ∪ki=1{si, s

+
i }, the posterior probability of

the event {Γj 3 s} conditioned on observing the tuple (si, s
+
i , Ri)

k
i=1 is close to 1/2 provided D − d is large relative

to k. In addition to the sets Γj , j = 1, 2 being close to uniformly random, we also require the following analog of a
“birthday-paradox” argument in this setting. For convenience, we let Tk :=

⋃k
i=1{si, s

+
i } denote the subset of states seen up

until sample k.

Lemma 9 There is a universal positive constant c such that for each k ∈ [n] and each distribution M(k+1) ∈{
P(k+1)
−1 ,P(k+1)

−1 ,Q(k+1)
}

, the following statement holds almost surely. For each tuple (si, s
+
i , Ri)

k+1
i=1 in the support

of M(k+1), the probability the tuple of states
{
sk+1, s

+
k+1

}
conditioned on (si, s

+
i , Ri)

k
i=1 ∼M(k) satisfies

P
({

sk+1, s
+
k+1

}
∩ Tk ∩ (S1 ∪ S2) 6= ∅︸ ︷︷ ︸
:=E

(1)
k+1

| (si, s+
i , Ri)

k
i=1

)
≤ ck

D − d
. (45)

In words, Lemma 9 ensures that if D − d is large relative to k, then the states seen in sample k + 1 are different from those
seen up until that point (provided we only count states in the set S1 ∪ S2). Lemmas 8 and 9 are both proved at the end of
this section; we take them as given for the rest of this proof.

Now consider tuples (sk+1, s
+
k+1, Rk+1) ∼ P(k+1)

z |(si, s+
i , Ri)

k
i=1 and (s̃k+1, s̃

+
k+1, R̃k+1) ∼ Q(k+1)|(si, s+

i , Ri)
k
i=1; we

will now construct a coupling between these two tuples in order to show that the total variation between between the
respective laws is small. First, note that under both P(k+1)

z and Q(k+1), the initial state is drawn from the stationary
distribution, i.e., sk+1, s̃k+1 ∼ ξ, regardless of the sequence (si, s

+
i , Ri)

k
i=1. We can therefore couple the two conditional

laws together so that sk+1 = s̃k+1 almost surely. To construct the coupling for the rest, we consider the following three
cases:

Coupling on the event sk+1 ∈ S0: We begin by coupling the reward random variables; we have Rk+1 = R̃k+1 = 0
under both conditional distributions, so this component of the distribution can be coupled trivially. Next, we couple the next
state: By construction of the observation models (40a) and (43), we have

P
(
s+
k+1 = sk+1|sk+1

)
= P

(
s̃+
k+1 = s̃k+1|s̃k+1

)
= ρ, and

P
(
s+
k+1 = sk+1 + d mod 2d | sk+1

)
= P

(
s̃+
k+1 = s̃k+1 + d mod 2d | s̃k+1

)
=

1− ρ
2

,

and so these two components of the distribution can be coupled trivially. It remains to handle the case where sk+1 ∈ S0 and
s+
k+1 ∈ S1. By the symmetry of elements within set S1, we note that on the event

(
E

(1)
k+1

)C
, both random variables s̃+

k+1

and s+
k+1 are uniformly distributed on the set S1 \ Tk. Consequently, on the event

(
E

(1)
k+1

)C
, we can couple the conditional

laws so that s+
k+1 = s̃+

k+1 almost surely.
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Coupling on the event sk+1 ∈ S1: As before, we begin by coupling the rewards, but first, note that on the event
(
E

(1)
k+1

)C
,

we have sk+1 ∈ S1 \ Tk. Invoking Lemma 8, under P(k)
z and conditionally on the value of sk+1, we have the bound∣∣∣∣P (sk+1 ∈ Γ1 | (si, s+

i , Ri)
k
i=1

)
− 1

2

∣∣∣∣ ≤ ck

D − d
.

Now the reward function (40b) satisfies r(s) = zτ for s ∈ Γ1 and r(s) = −zτ for s ∈ Γ̄1. On the other hand, under Q(k+1),
the reward R̃k+1 takes value of τ and −τ , each with probability half. Consequently, there exists a coupling between Rk+1

and R̃k+1, such that

P
(
Rk+1 6= R̃k+1, sk+1 ∈ S1︸ ︷︷ ︸

:=E
(2)
k+1

| (si, s+
i , Ri)

k
i=1

)
≤ ck

D − d
.

Next, we construct the coupling for next-step transition conditionally on the current step. By the symmetry of elements
within set S2, we note that under

(
E

(1)
k+1

)C
, both random variables s̃+

k+1 and s+
k+1 are uniformly distributed on the set

S2 \ Tk. Consequently, on the event
(
E

(1)
k+1

)C
, we can couple the conditional laws so that s+

k+1 = s̃+
k+1 almost surely.

Coupling on the event sk+1 ∈ S2: In this case, we have Rk+1 = R̃k+1 = 0 under both conditional distributions, so this
coupling is once again trivial. It remains to construct a coupling between next-step transitions s+

k+1 and s̃+
k+1. On the event(

E
(1)
k+1

)C
, we have sk+1 ∈ S2 \ Tk. Under P(k)

z and conditionally on the value of sk+1, Lemma 8 leads to the bound∣∣∣∣P (sk+1 ∈ Γ2 | (si, s+
i , Ri)

k
i=1

)
− 1

2

∣∣∣∣ ≤ ck

D − d
.

By definition, under P(n)
z , we have that s+

k+1 ∼ U({1, 2, · · · , d}) when sk+1 ∈ Γ2, and s+
k+1 ∼ U({d+ 1, · · · , 2d}) when

sk+1 ∈ Γ̄2. Under Q(n), we have s̃+
k+1 ∼ U({1, 2, · · · , 2d}). Consequently, there exists a coupling such that

P
(
s+
k+1 6= s̃+

k+1, sk+1 ∈ S2︸ ︷︷ ︸
:=E

(3)
k+1

| (si, s+
i , Ri)

k
i=1

)
≤ ck

D − d
.

Putting together our bounds from the three cases, note that for any sequence (si, s
+
i , Ri)

k
i=1 on the support of Q(k) and P(k)

z ,
we almost surely have

dTV

(
L
[
(sk+1, s

+
k+1, Rk+1)

∣∣ (si, s
+
i , Ri)

k
i=1

]
,L
[
(s̃k+1, s̃

+
k+1, R̃k+1)

∣∣ (si, s
+
i , Ri)

k
i=1

])
≤

3∑
j=1

P
(
E

(j)
k+1 | (si, s

+
i , Ri)

k
i=1

)
≤ c′k

D − d
,

where the final inequality follows from applying Lemma 9. Substituting into the recursion (44), we conclude that for any
z ∈ {−1, 1}, we have

dTV

(
Q(n),P(n)

z

)
≤
n−1∑
k=0

3∑
j=1

sup
(si,s

+
i ,Ri)

k
i=1

P
(
E

(j)
k+1 | (si, s

+
i , Ri)

k
i=1

)
≤ c′n2

D − d
,

which completes the proof of this lemma. �

It remains to prove the two helper lemmas.
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E.1.1. PROOF OF LEMMA 8

Given z ∈ {±1}, we define the sets

Z1 := {si : i ∈ [k], si ∈ S1, Ri = zτ} , Z̄1 :=
(
{si}i∈[k] ∩ S1

)
\ Z1, and

Z2 :=
{
si : i ∈ [k], si ∈ S2, s

+
i ∈ [d]

}
, Z̄2 :=

(
{si}i∈[k] ∩ S2

)
\ Z2

By the reward model (40b) in our construction, for any valid pair of subsets (Γ1,Γ2), under the law P⊗kΓ1,Γ2,z
, the observations

(si, s
+
i , Ri)

k
i=1 have positive probability if and only if Z1 ⊆ Γ1 and Γ1 ∩ Z̄1 = ∅. Furthermore, by the symmetry between

the elements in Γ1, for any Γ1 such that Z1 ⊆ Γ1 and Γ1 ∩ Z̄1 = ∅, the probability of observing (si, s
+
i , Ri)

k
i=1 under

P⊗kΓ1,Γ2,z
is independent of the choice of Γ1. Consequently, the probability under the mixture distribution P(k)

z can be
calculated as

P
(
Γ1 3 s | (si, s+

i , Ri)
k
i=1

)
=

∑
s∈Γ′

|Γ′|=|S1|/2

P
(
(si, s

+
i , Ri)

k
i=1 | Γ1 = Γ′

)
· P(Γ1 = Γ′)

P
(
(si, s

+
i , Ri)

k
i=1

)
=

∣∣{Γ′ ⊆ S1 : |Γ′| = 1
2 |S1|, Z1 ⊆ Γ′, Z̄1 ∩ Γ′ = ∅, s ∈ Γ′

}∣∣∣∣{Γ′ ⊆ S1 : |Γ′| = 1
2 |S ′|, Z1 ⊆ Γ′ Z̄1 ∩ Γ′ = ∅

}∣∣
=

(
|S1| − |Z1| − |Z̄1|
|S1|/2− |Z1|

)−1(|S1| − |Z1| − |Z̄1| − 1

|S1|/2− |Z1| − 1

)
=

|S1|/2− |Z1|
|S1| − |Z1| − |Z̄1|

.

By definition, we have |Z1|+ |Z̄1| ≤ k, and |S1| = D−2d
2 . For D ≥ d+ 8k, this yields∣∣∣∣P (Γ1 3 s | (si, s+

i , Ri)
k
i=1

)
− 1

2

∣∣∣∣ ≤ 4k

D − 2d
≤ 8k

D − d
.

Similarly, by the transition model (40a) in our construction, for any Γ2 ⊆ S2 with |Γ2| = 1
2 |S2|, under the law P⊗kΓ1,Γ2,z

, the
observations (si, s

+
i , Ri)

k
i=1 have positive probability if and only if Z2 ⊆ Γ2 and Γ2 ∩ Z̄2 = ∅. Following exactly the same

calculation as above, we arrive at the bound∣∣∣∣P (Γ2 3 s | (si, s+
i , Ri)

k
i=1

)
− 1

2

∣∣∣∣ ≤ 8k

D − d
,

as desired. �

E.1.2. PROOF OF LEMMA 9

Under the conditional distribution M(k+1)|(si, s+
i , Ri)

k
i=1, for each s ∈ S1 ∪ S2, we have

P (sk+1 = s) ≤ 2

|S1|
, and P

(
s+
k+1 = s

)
≤ 2

|S1|
.

Applying a union bound, we arrive at the inequality

P
(
E

(1)
k+1 | (si, s

+
i , Ri)

k
i=1

)
≤

∑
i∈[k]

si∈S1∪S2

(
P (sk+1 = si) + P

(
s+
k+1 = si

))
+

∑
i∈[k]

si∈S1∪S2

(
P
(
sk+1 = s+

i

)
+ P

(
s+
k+1 = s+

i

))
≤ 8k

|S1|
≤ 32k

D − d
,

which completes the proof. �


