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Abstract
Optimism in the face of uncertainty is a princi-
pled approach for provably efficient exploration
for reinforcement learning in tabular and linear
settings. However, such an approach is challeng-
ing in developing practical exploration algorithms
for Deep Reinforcement Learning (DRL). To ad-
dress this problem, we propose an Optimistic Ex-
ploration algorithm with Backward Bootstrapped
Bonus (OEB3) for DRL. We construct an UCB-
bonus indicating the uncertainty of Q-functions.
The UCB-bonus is further utilized to estimate an
optimistic Q-value, which encourages the agent
to explore the scarcely visited states and actions
to reduce uncertainty. In the estimation of Q-
function, we adopt an episodic backward update
strategy to propagate the future uncertainty to the
estimated Q-function consistently. Experiments
show that OEB3 outperforms several state-of-the-
art exploration approaches 49 Atari games.

1. Introduction
In Reinforcement learning (RL) (Sutton & Barto, 2018), an
agent aims to maximize the long-term return by interacting
with an unknown environment. To find the optimal policy,
the agent is required to sufficiently explore the unknown en-
vironment and exploit in depth along the optimal trajectory.
Devising efficient exploration algorithms thus becomes an
attractive topic in recent years of RL research. The theo-
retical achievements in RL offer various provably efficient
exploration methods in tabular and linear Markov Decision
Processes (MDPs) based on the fundamental value iteration
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algorithm Least-Squares Value Iteration (LSVI). Among
these, optimism in the face of uncertainty (Auer & Ortner,
2007; Jin et al., 2018) is a principled approach for efficient
exploration with well theoretical guarantees. In tabular
cases, the optimism-based methods incorporate the Upper
Confidence Bound (UCB) into the value function as bonus
and attain the optimal worst-case regret (Azar et al., 2017;
Jaksch et al., 2010; Dann & Brunskill, 2015). Randomized
value function based on posterior sampling chooses actions
according to the randomly sampled statistically plausible
value function and is known to achieve near-optimal worst-
case and Bayesian regrets (Osband & Van Roy, 2017; Russo,
2019). Recently, the theoretical analyses in tabular cases
have been extended to linear MDPs where the transition and
reward function are assumed to be linear. In linear cases,
LSVI-UCB (Jin et al., 2020) has been demonstrated to enjoy
a near-optimal worst-case regret using a provably efficient
bonus. Randomized LSVI (Zanette et al., 2020) also obtains
a near-optimal worst-case regret.

Although the analyses in tabular and linear cases have in-
duced attractive approaches for efficient exploration, it is
still challenging in developing a practical exploration algo-
rithm that is essentially suitable for Deep Reinforcement
Learning (DRL) (Mnih et al., 2015), which is necessary to
achieve human-level performance in large-scale tasks such
as Atari games and robotic tasks. A simple evidence is that,
in linear case, the bonus in LSVI-UCB (Jin et al., 2020) and
nontrivial noise in randomized LSVI (Zanette et al., 2020)
are specifically designed for linear models (Abbasi-Yadkori
et al., 2011), without generalizations to fit powerful function
approximations such as neural networks.

In this paper, we propose an Optimistic Exploration algo-
rithm with Backward Bootstrapped Bonus (OEB3) for DRL.
OEB3 is an instantiation of LSVI-UCB (Jin et al., 2020)
in DRL by using a general-purpose UCB-bonus to provide
an optimistic Q-value and a randomized value function to
perform temporally-extended exploration. This general-
purpose UCB-bonus represents the disagreement of boot-
strapped Q-functions (Osband et al., 2016) to measure the
epistemic uncertainty of the unknown optimal value func-
tion. Importantly, this proposed UCB-bonus can also be the-
oretically demonstrated to be equivalent to the bonus-term
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Algorithm 1 LSVI-UCB in linear MDP
1: Initialize: ⇤t  � · I and wh  0
2: for episode m = 0 to M � 1 do
3: Receive the initial state s0
4: for step t = 0 to T � 1 do
5: Take action at = argmaxa Qt(st, a) and observe st+1

6: end for
7: for step t = T � 1 to 0 do
8: ⇤t  
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11: end for
12: end for

in LSVI-UCB (Jin et al., 2020), when moving back in linear
MDPs. In our case, the Q-value plus the general-purpose
UCB-bonus is shown to be an optimistic Q+ function that
is higher than the Q-value for scarcely visited state-action
pairs and remains close to the Q-value for frequently visited
pairs. Furthermore, we propose an extension of the Episodic
Backward Update (EBU) technique (Lee et al., 2019) to
propagate future uncertainties to the estimated action-value
function consistently within an episode. The backward up-
date exploits the theoretical advantage of LSVI-UCB and
empirically improves the sample-efficiency significantly.
Extensive evaluations show that OEB3 outperforms several
strong exploration methods in 49 Atari games.

2. Background
Considering an MDP represented as (S,A, T,P, r), where
T 2 Z+ is the episode length, S is the state space, A is
the action space, r is the reward function, and P is the
unknown dynamics. In each timestep, the agent observes
the current state st and takes an action at, and then it re-
ceives a reward rt and the next state st+1. The action-value
function Q⇡(st, at) := E⇡

⇥PT�1
i=t �i�tri] represents the

expected cumulative reward starting from state st by tak-
ing action at and following policy ⇡(at|st) until the end
of the episode. � 2 [0, 1) is the discount factor. The opti-
mal value function Q⇤ = max⇡ Q⇡ , and the optimal action
a⇤ = argmaxa2A Q⇤(s, a).

LSVI-UCB (Jin et al., 2020) uses an optimistic Q-value
with LSVI in linear MDP. We denote the feature map of
the state-action pair as � : S ⇥ A ! Rd. Furthermore,
the transition kernel and reward function are assumed to
be linear in �. The LSVI-UCB algorithm is shown in
Algorithm 1. For lines 3-6, the agent executes the pol-
icy to collect data in an episode. For lines 7-11, the pa-
rameter wt of Q-function is updated in closed-form by
following the regularized least-squares problem as wt  

argminw2Rd
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ber of episodes, and ⌧ is the episodic index. The
least-squares problem has the explicit solution wt =
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(line 9), where ⇤t is the Gram matrix. The value func-
tion is estimated by Qt(s, a) ⇡ w>

t �(s, a). LSVI-UCB
uses an UCB-bonus (Abbasi-Yadkori et al., 2011) in line 10

rucb = [�(s, a)>⇤�1
t �(s, a)]

1/2 (1)

to measure the uncertainty of state-action pairs. The term
u := (�>⇤�1

t �)�1 can be intuitively considered as a
pseudo count of the state-action pair in the representation
space of �. Thus, the bonus rucb = 1/pu represents the un-
certainty along the direction of �. By adding the bonus to the
Q-value, we obtain an optimistic value function Q+, which
serves as an upper bound of Q to encourage exploration. The
bonus in each step is propagated from the end of the episode
by the backward update of the Q-value (lines 7-11), which
follows the principle of dynamic programming. Theoreti-
cal analysis shows that LSVI-UCB achieves a near-optimal
worst-case regret of Õ(

p
d3T 3L3) with proper selection of

↵ and �, where L is the total number of steps.

3. Proposed Method
We utilize bootstrapped DQN to construct a general-purpose
UCB-bonus, which is theoretically consistent with LSVI-
UCB for linear MDPs. We also integrate bootstrapped Q-
functions and UCB-bonus into the backward update, which
follows the principle of dynamic programming.

3.1. General-Purpose UCB-Bonus

Optimistic exploration uses an optimistic action-value func-
tion Q+ to encourage exploration by adding a bonus term
to the standard Q-value. Thus Q+ serves as an upper bound
of the standard Q. The bonus term represents the epis-
temic uncertainty that results from lacking experiences of
the corresponding states and actions. For DRL with deep Q
network, it is impractical to derive a closed-form optimistic
bonus like (1). Instead, we propose a general-purpose UCB-
bonus B(st, at) by measuring the disagreement of multiple
bootstrapped Q-values {Qk(st, at)}Kk=1 of the state-action
pair (st, at) in a bootstrapped DQN. That is,

B(st, at) :=

vuut 1

K

KX

k=1

⇣
Qk(st, at)� Q̄(st, at)

⌘2
, (2)

where Q̄(st, at) is the mean of the bootstrapped Q-values.
A similar uncertainty measurement was used in Chen et al.
(2017). We surprisingly find that this simple form in (2)
is also provably efficient for linear MDPs. Indeed, the
following theorem establishes the connection between the
general-purpose UCB-bonus defined in (2) and the bonus in
LSVI-UCB defined in (1).
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Figure 1. Illustration of the general-purpose UCB-bonus in a simple regression task. Green markers indicate there are 60 data points. (a)
Regression curves of 20 neural networks. (b) Mean estimation (black curve) and uncertainty measurement (shadow region). (c) The
optimistic value (red) and mean value (black).

Theorem 1. In linear MDPs, the UCB-bonus B(st, at) in
OEB3 is equivalent to the bonus-term [�>

t ⇤
�1
t �t]

1/2 in LSVI-
UCB, where ⇤t  
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m is the current episode.

In Theorem 1, we cast the variance that defines the UCB-
bonus of OEB3 as the posterior variance of value functions
under the Bayesian learning regime. We remark that the
bootstrapped distribution of value functions coincides with
the posterior under a Bayesian setting where the prior is un-
informative (Friedman et al., 2001). We refer to Appendix A
for the details and complete statement. Theorem 1 shows
that the general-purpose UCB-bonus in (2) is provably effi-
cient and equivalent to bonus-term in LSVI-UCB for linear
cases. Importantly, (2) is a general form for arbitrary Q
functions such as deep neural networks.

The optimistic Q+ is obtained by summing up B(st, at) and
the estimated Q-function, which takes the form as

Q+(st, at) := Q(st, at) + ↵B(st, at), (3)

where ↵ is a tuning parameter. We use a simple regres-
sion task with neural networks to illustrate the proposed
UCB-bonus, as shown in Figure 1. We use 20 neural net-
works with the same network architecture to solve the same
regression problem.

According to Osband et al. (2016), the differences among
the outcomes of fitting the 20 neural networks is a result of
random initializations. For a given input x, the networks
yield different estimations {gi(x)}20i=1. It follows from Fig-
ure 1(a) that the estimations {gi(x)}20i=1 behave similar in
the region with large amount of observations, resulting in
small disagreement of the estimations. However, for re-
gions with less observations, the disagreement of the esti-
mations inflates a lot. In Figure 1(b), we illustrate the confi-
dence bound of the regression results ḡ(x)± �̃(gi(x)) and
ḡ(x) ± 2�̃(gi(x)), where ḡ(x) and �̃(gi(x)) are the mean
and standard deviation of the estimations. The standard
deviation �̃(gi(x)) captures the epistemic uncertainty of
regression results. Figure 1(c) shows the optimistic estima-
tion g+(x) = ḡ(x) + �̃(gi(x)) plus the standard deviation.

Clearly, the optimistic estimation g+ is close to ḡ in the
region with dense observations, and it is larger than ḡ in the
region with fewer observations.

In DRL, the bootstrapped Q-functions {Qk(st, at)}Kk=1, es-
timated by fitting the target Q-function, perform similarly
as {gi(x)}20i=1 in the above regression task. A higher UCB-
bonus B(st, at) := �̃(Qk(st, at)) indicates a higher epis-
temic uncertainty of the action-value function with (st, at).
Therefore, Q+ produces optimistic estimation for novel
state-action pairs and behaves similar to the Q-function in
areas that are well explored by the agent. Hence, the opti-
mistic estimation Q+ encourages the agent to explore the
potentially informative state-action pairs efficiently.

3.2. Backward Update of Uncertainty

OEB3 adopts BEBU for backward update when updating the
action-value function. BEBU collects a complete trajectory
from the replay buffer for each update. Such an approach
allows OEB3 to infer the long-term effect in an episode for
decision making. In contrast, DQN and Bootstrapped DQN
sample one-step transitions, which loses the information
containing long-term effects.

It has to be mentioned that BEBU is required to propagate
future uncertainty to the estimated action-value function
consistently via UCB-bonus. For instance, let t2 > t1 be in-
dices of two steps in an episode. If Qt2 updates after that of
Qt1 , then the uncertainty propagated to Qt1 is inconsistent
with that propagated to Qt2 .

To integrate the general-purpose UCB-bonus into boot-
strapped Q-learning, we propose a novel Q-target by adding
the bonus in both the immediate reward and the next-Q
value. The proposed Q-target needs to be suitable for BEBU
in training. Formally, the Q-target for updating Qk is de-
fined as

ykt :=
⇥
r(st, at) + ↵1B(st, at; ✓)

⇤
+ �

⇥
Qk(st+1, a

0; ✓k�) + ↵21a0 6=at+1 B̃
k(st+1, a

0; ✓�)
⇤
,

(4)

where a0 = argmaxa Q
k(st+1, a; ✓k�). The choice of a0 is
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Table 1. Summary of human-normalized scores in 49 games. BEBU, BEBU-UCB, BEBU-IDS and OEB3 are trained for 20M frames.

Frames 200M 20M
DQN UBE BootDQN NoisyNet BootDQN-IDS Bayesian-DQN BEBU BEBU-UCB BEBU-IDS OEB3

Mean 241% 440% 553% 651% 757% 224% 553% 610% 622% 765%
Median 93% 126% 139% 172% 187% 27% 36% 38% 44% 50%

determined by the target Q-value without considering the
bonus. The immediate reward is added by B(st, at; ✓) with
a factor ↵1, where the bonus B is computed by bootstrapped
Q-network with parameter ✓. The next-Q value is added by
1a0 6=at+1 B̃

k(st+1, a0; ✓�) with factor ↵2, where the bonus
B̃
k is computed by the target network with parameter ✓�.

We assign different bonus B̃k of next-Q value to different
heads, since the choices of a0 are different among the heads.
Meanwhile, we assign the same bonus B of immediate re-
ward for all the heads. We introduce an indicator function
1a0 6=at+1 to control backward update of Q-values. More
specifically, in the t-th step, the action-value function Qk is
updated optimistically at the state-action pair (st+1, at+1)
due to the backward update. Thus, we ignore the bonus of
next-Q value in the update of Qk when a0 is equal to at+1.

3.3. Comparison with LSVI-UCB

We remark that both LSVI-UCB and OEB3 constructs the
confidence interval of value functions based on the frequen-
tist approaches. Specifically, LSVI-UCB constructs the
confidence intervals explicitly based on the linear model,
whereas OEB3 constructs the confidence interval based on
the non-parametric bootstrapped approach. In OEB3, we
adopt Bootstrapped Q-values to calculate the standard devi-
ation of Q-functions with neural network parameterization,
which coincides with the bonus in LSVI-UCB on linear
MDPs. When the sample size increases, the distribution
of bootstrapped Q-values converges asymptotically to the
posterior under a Bayesian setting where the prior is unin-
formative (Friedman et al., 2001). Hence, in Theorem 1, we
use the Bayesian setting as a simplification to motivate our
algorithm while this is not necessary. A recent approach
also uses a similar way to motivate the worst-case regret of
randomized value functions (Russo, 2019).

4. Experimental Results
We evaluate the algorithms in 49 Atari games. Directly
comparing OEB3 with baselines using Bootstrapped DQN
is not fair, since OEB3 uses backward update for train-
ing. To achieve fair comparison, we reimplement all Boot-
strapped DQN-based baselines with BEBU. We compare
the following methods. (1) OEB3: the proposed princi-
pled exploration method. (2) BEBU: a reimplementation
of Bootstrapped DQN (Osband et al., 2016) with BEBU.

(3) BEBU-UCB: BEBU with optimistic actions selected by
the upper bound of Q (Chen et al., 2017; Lee et al., 2020).
(4) BEBU-IDS: integrating homoscedastic IDS (Nikolov
et al., 2019) into BEBU without distributional RL.

We additionally compare the performance of DQN (Mnih
et al., 2015), NoisyNet (Fortunato et al., 2018), Boot-
strapped DQN (BootDQN) (Osband et al., 2016), BootDQN-
IDS (Nikolov et al., 2019), UBE (O’Donoghue et al., 2018)
in 200M training frames, and Bayesian DQN (Azizzade-
nesheli et al., 2018) in 20M training frames. We choose
NoisyNet as a baseline since it has been evaluated on
the entire Atari suite (instead of several hard exploration
games) such that it performs substantially better than ex-
isting bonus-based methods (Taiga et al., 2020), includ-
ing CTS-counts (Bellemare et al., 2016), PixelCNN-counts
(Ostrovski et al., 2017), RND (Burda et al., 2019), and
ICM (Pathak et al., 2017). An ensemble policy by a major-
ity vote of Q-heads is used for 30 no-op evaluation.

Table 1 reports the overall performance of all the meth-
ods on 49 Atari games. According to Table 1, BootDQN-
IDS performs better than UBE, BootDQN, and NoisyNet.
Thus, BootDQN-IDS outperforms popular bonus-based ex-
ploration methods that perform worse than NoisyNet (Taiga
et al., 2020). We then reimplement BootDQN-IDS with
BEBU, and we refer this version to as BEBU-IDS. We ob-
serve that OEB3 outperforms BEBU-IDS in both mean and
medium scores, as well as outperforming all other bonus-
based methods in the backward update setting. We report
the detailed raw scores in Appendix B. OEB3 outperforms
BEBU, BEBU-UCB, and BEBU-IDS in 36, 34, and 35
games out of all 49 games, respectively.

5. Conclusion
In this work, we have proposed a principled exploration
method, i.e., OEB3, that shares nice theoretical properties
as LSVI-UCB. By integrating with backward update, the
sample efficiency is further enhanced. As far as we see,
our work seems to establish the first empirical attempt of
uncertainty propagation in deep RL, which exploits the core
benefit of theoretical analysis. Moreover, we observe that
the connection between theoretical analysis and practical
algorithm provides strong empirical performance, which
hopefully raises insights on combining theory and practice
to the community.



Optimistic Exploration with Backward Bootstrapped Bonus

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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