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Abstract

Actor-critic methods are widely used in offline
reinforcement learning practice but are under-
studied theoretically. In this work we show that
the pessimism principle can be naturally incor-
porated into actor-critic formulations. We create
an offline actor-critic algorithm for a linear MDP
model more general than the low-rank model.
The procedure is both minimax optimal and com-
putationally tractable.

1. Introduction

Learning a near-optimal policy is a core reinforcement
learning (RL) task. Oftentimes, we need to find a good
policy using the available data and without the possibility
of further interaction with the environment; this is called
the policy learning problem in offline RL. Offline RL has
unique challenges due to the incomplete information about
the Markov decision process (MDP) encoded in the avail-
able dataset. For example, due to the maximization bias, a
naive offline algorithm can settle for a policy with a dan-
gerously high estimated value even if such value is highly
uncertain. To avoid this phenomenon, researchers have in-
troduced the idea of pessimism in offline RL (Liu et al.,
2020; Jin et al., 2020b; Buckman et al., 2020; Kumar et al.,
2019; Kidambi et al., 2020; Yu et al., 2020). Additional
literature is presented in Appendix A.

Pessimism prevents algorithms from settling down on un-
certain policies whose value might be misleadingly high
under the current dataset due to statistical errors. By using
pessimism, uncertain policies are penalized and only those
robust to statistical errors are returned. The principle can
be implemented in two different ways: 1) by penalizing
policies that are far from the one that generated the dataset
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or 2) by penalizing the value functions of policies not well
covered by the dataset. We adopt the second view in this
work.

Challenges Implementing pessimism with function ap-
proximation brings several challenges. First, the uncer-
tainty must be carefully estimated: underestimating it may
not lead to an effective algorithm and overestimating it
leads to policies that are too conservative and thus un-
derperform. Second, pessimism may introduce complex,
higher order perturbations into the value function class
handled by the algorithm (similar to adding optimistic
bonuses in the exploration setting). Increasing the com-
plexity of the function class often requires additional as-
sumptions on the model, because the new class needs to in-
teract ‘nicely’ with the Bellman operator. Prior art on pes-
simism with function approximation bypassed this problem
by making strong model assumptions, like low rank transi-
tions (Jin et al., 2020b) or algorithm-specific assumptions
(Liu et al., 2020).

Actor-critic methods Moreover, most of these
theoretically-justified algorithms are either model or
value based (Liu et al., 2020; Jin et al., 2020b; Buckman
et al., 2020; Kidambi et al., 2020; Yu et al., 2020), but
in practice, actor-critic methods are widely used (Levine
et al., 2020; Wu et al., 2019; 2021; Kumar et al., 2019;
2020). An actor-critic method generally consists of an
actor that changes the policy in order to maximize its
value as estimated by the critic. In relation to value and
model-based methods we ask:

Do actor-critic methods provably
offer any advantage in offline RL?

We give a positive answer: by separating the policy op-
timization from the policy evaluation, both tasks become
simpler to design and the pessimism principle can be in-
corporated more naturally.

Contributions We consider the linear function approxi-
mation setting and assume that a batch dataset D of states,
actions, rewards and successor states is available. Using D
we can construct the set M of statistically plausible MDPs
subject to the linearity assumption.



Our objective is then to find the policy that performs the
best in the face of uncertainty, namely the policy 7 with the
highest minimum value function V}; across all plausible
MDPs M in the set M of statistically plausible MDPs (e.g.,
(Mannor et al., 2012)):

sup ]V}Ielgw V- (1

Actor-critic methods fit naturally in this framework: the
actor solves the outer maximization problem over policies
which are evaluated in the inner minimization problem by
a pessimistic critic. This way, each algorithm solves a sim-
ple task: 1) the critic provides a pessimistic value function
estimate for a fixed policy (the one currently examined by
the actor) while 2) the actor ensures online learning-style
guarantees with respect to a sequence of pessimistic MDPs
implicitly identified by the critic. This is the first algorith-
mic idea and leads to a computationally tractable imple-
mentation.

The second algorithmic idea is to introduce pessimism
without altering the prescribed function class. This is
achieved by perturbing the value function (in the critic)
within its prescribed functional space without adding pes-
simistic bonuses or absorbing states. This has two core ad-
vantages:

e There are no additional model assumptions compared
to the vanilla (i.e., without pessimism) version of our
actor-critic method; this is because the original value
function class is not modified by the injection of pes-
simism.

e The algorithm operates on value functions with the
original statistical complexity, enabling the construc-
tion of tight confidence intervals and ultimately mini-
max statistical rates.

2. Preliminaries and Assumptions

We consider an undiscounted finite-horizon MDP (Puter-
man, 1994) M = (S, A,p,r, H) with state space S, ac-
tion space A, and horizon length H € N¥. For every
h € [H] = {1,..., H}, every state-action pair is charac-
terized by an expected reward 7, (s, a) with an associated
reward distribution Ry, (s,a) and a transition kernel py, (- |
s,a) over next state. For any (s,a,h) € S x A X [H],
the state-action value function of a non-stationary policy
m = (m,...,my) is defined as Q} (s,a) = r4(s,a) +
Eg,~r|(s,a) Zfihﬂ ri(s1,m(s1)), where the expectation
is over the trajectories induced by 7 upon starting from
(s,a). When we omit the starting state-action (s,a),
the expectation is intended to start from a fixed state
denoted by s;. The value function associated to 7 is
Vir(s) = Qf(s,mn(s)). Under some regularity condi-
tions, e.g., (Shreve & Bertsekas, 1978), there always exists

an optimal policy 7* whose value and action-value func-
tions are defined as V;*(s) = V;™ (s) = sup, V;"(s) and
Q1 (s,a) = QF (s,a) = sup, Q7 (s,a). We define the
Bellman evaluation operator

7-hﬂ(Qh+1)(sv a) = rh(sa a) + Es’wph(s,a)Ea/NﬂQh+1(5la a,)'

We let By(r) = {z € R? | ||z||2 < r} denote the Eu-
clidean ball of radius » € R in dimension d; sometime we
simply write 3 when there is no possibility of confusion.
We use the O notation to suppress log factors in the input
parameters (%,d, H,)), and the O and ) notation to ig-
nore constants in the upper and lower bound. The notation
< means < up to a constant while 5, ~, £, < are used to
highlight dominant terms in the proof sketch without rigor-
ous mathematical definitions. For a vector z € R? we let

[x]; denote its ¢ component.

2.1. Assumptions on Data Generation

operates on a dataset D =

The algorithm
{(Shis Qhks Thic, $7) ngg of state-action-reward-

next states generated by the underlying MDP, possibly in
an adaptive fashion.

Assumption 1 (Data Generation). Assume that for ev-
ery (s,a) the reward random variable with distribution
Ry, (s, a) is 1-subgaussian. The dataset D is such that

Thi ~ R(Shk, ank), i ~ pn(Snksank)  (2)

where each sy, any is allowed to depend on the previously
sampled (s;j, a;j,7ij, s;;)

This allows considerable freedom: 1) the dataset may be
generated from (mixture) policies or by another mecha-
nism that collects information at different state-actions; 2)
the dataset may be generated by an adversarial procedure
that changes the data acquisition strategy as feedback is re-
ceived.

2.2. Policy and Value Function Class

Next, we define the policy space II and the action value
function space Q where we seek solutions. For a fixed
timestep h (which we omit here for brevity), consider a
fixed feature extractor ¢ : S x A+ R%, ||¢(-,-)||2 < 1and
two radii, r, € (0,1], rg > 0 for the value function pa-
rameter w and for the policy parameter 6.

Definition 1 (Functional Spaces).
Qrw) = {(s,a) = ¢(s,a) "w | [Jw]|2 < ru},

ex S, a T
T(ry) </ {Za/ i)iﬁ[(gb,(&)a/?]w] [16ll2 <o}

The policy radius can be large 79 > 1 but we constrain
7w < 180 that sup(, 4 ) [Quw(s,a)| < 1. In finite hori-
zon problems one can select different feature extractors




¢, in every step h; this generates H functional spaces
Q1,...,Qp and IIy,...,IIy. We drop the dependence
on the radii when referring to the functional spaces and im-
plicitly assume that the terminal value function is zero.

2.3. Assumptions on Function Class

If we seek to find the policy 7 € II with the highest value
function, it seems reasonable to require that the follow-
ing representation condition (approximately) holds. We as-
sume a common feature extractor ¢ : SX.A, [|¢(-,)]|2 <1
throughout this section.

Assumption 2 (Linear Q™). We say the MDP admits a lin-
ear action-value function representation for all policies in
ITif Q™ is linear, i.e.,

Vi € I, h € [H], 3w} such that Q7 (s,a) = ¢n(s,a) w}.

3)

Unfortunately, Corollary 1 in (Zanette, 2020) or Theorem
4.1 in (Wang et al., 2020a) establish that even under such
assumption, we might need exponentially many samples to
do better than a random policy. This suggests we need even
stronger conditions. One such condition is the assumption
we make in this work, which allows a classical temporal-
difference critic to evaluate the policies in II.

Assumption 3 (Restricted Closedness). The policy and
value function spaces (11, Q) are closed up to €™ € R
error in 0o norm with respect to a finite horizon MDP if
Vh € [H]:

sup inf ||Qn— ’Th""'“QhHHoo < e’f{”ss eR.
Qn+1€Qn+1 Yn€Cn
Tha1E€Mp 41
4)

The restricted closedness assumption measures how well
we can fit the action-value function resulting from the ap-
plication of the Bellman evaluation operator to an action
value function in @ and for a policy in IT. It enables the
analysis of the classical Least Square Policy Evaluation
(LSPE) (Nedi¢ & Bertsekas, 2003), which will be our start-
ing point when constructing the critic.

A related model assumption is the low-rank or linear MDP
model (Jin et al., 2020a; Yang & Wang, 2020) used by the
state of the art for offline RL with pessimismistic guaran-
tees (Jin et al., 2020b) and much of the online RL literature
(Agarwal et al., 2020a; Modi et al., 2021; Zanette et al.,
2020a). It is possible to show that the restricted closendess
assumption is more general than low rank; details in ap-
pendix.

3. Main Result

Due to space reason, the algorithm is reported here but is
described in Appendix B in appendix.

Algorithm 1 ACTOR (MIRROR DESCENT)
1: Input: Dataset D, starting state sq
2: Setf = (6,,6)
3: fork=1,2,...,K do
4 w,, < CRITIC(D, 7y, , 51)
5: Op+1 = O + Ny,
6
7

: end for

: Mixture policy 7y, , ..., 7o,

Algorithm 2 CRITIC (PLSPE)
1: Input: Dataset D, target policy m, starting state s;
2: Solve the optimization program (7)
3: Return w

Let us introduce the optimization error R(K), func-
tion of the number of actor’s iterations KX, and the un-
certainty function U(w) for a policy m where /o, =
6(\/dh +dpy1) + ezmss\/f + /X is fully defined in

Lemma 5 and Definition 6 in appendix:

"
def i
Um) =2y [eﬁmss + \/ah||E(sh,an)~7r¢(5h’ah)”EEl]
h=1

)

(6)

The amount of information from the dataset D is fully en-
coded in the uncertainty function U through the cumula-
tive covariance matrix ;. The more data are available, the
more positive definite ¥, is and the smaller the uncertainty
function U(7) becomes for a fixed policy 7. If the sam-
pling distribution is fixed, then U(w) < C/+/n where C
can be interpreted as the condition number of E,:l and n is
the number of samples.

Our main result holds under Assumption 1, when the learn-
ing rate is n = /In |.A|/K, the radii for the action value
function! parameters are in (0,1], the regularization is
A > 1 and the number of iterations is K > In|A|; I,y
is the class of all stochastic policies.

Theorem 1 (Main Result). Algorithms 1 and 2 return a

policy ma.g such that

]P)(Vlﬂ'Al.(;(sl) Z sup

mellan

Vi (s1) — U(w)} - R(K)) >1-4.
IThis represents a setting where both the reward and the value
function can be as large as 1 in absolute value. One easily re-

covers the setting with value functions in [0, H] using a rescaling
argument.



The result provides a lower bound on the quality of
the returned policy and highlights a tradeoff between the
suboptimality of the comparator 7 and its uncertainty
U(w). Note that the optimization error R(K) goes to
zero as K — oo; different choices of the learning rate
are possible and they only affect the optimization er-
ror R(K) (i.e, the computational cost). Thus, ignor-
ing the optimization error, regularization and misspeci-
fication and assuming dj, = d,Vh € [H| we obtain
with high probability V™% (s1) & sup,ep,,, Vi"(51) —

~

H
\/azhzl ”]E(sh,ah)wrrh (ZS(Shv ah) ”2;1'

The result is complemented by a matching worst-case up-
per bound on the quality of the returned policy, excluding
constants and log factors. The upper bound already arises
in a setting that is easier for the learner, as it holds (1)
when the MDP is low-rank (thus it applies when Assump-
tion 3 holds), and (2) when the mechanism that generates
the dataset is non-adaptive (thus it applies when Assump-
tion 1 holds).

We assume dj, = d, Vh € [H] and €7** = 0 for simplicity,
as well as A = 1 when referring to the uncertainty func-
tion U; Ej indicates that the expectation is with respect to
MDP M.

Theorem 2 (Information-Theoretic Upper Bound). Fix any
choice of horizon H, of dimension d and of number of sam-
ples n collected at each timestep. There exists an MDP
class M such that

Q(1)
sup inf E/ V"¢ < su [V” S —7><U7r}
ALEJ)MEM Mo TrEHI(zu 1M( 1) IOg (%7K) ( )
Comparison with literature Theorem 1
automatically implies the typical bound
P[Vi™¢(s1) > Vi*(s1) = U(n*)] >1—6  when the

comparator policy is the optimal policy 7*, e.g., (Jin et al.,
2020b; Rashidinejad et al., 2021; Kidambi et al., 2020;
Kumar et al., 2019; Buckman et al., 2020). The guarantee
can be written as V"™ (s1) £ V{*(s1) — C/y/n where n
is the number of samples and C' is the (scaled) condition
number of E;l. One could interpret C' as a concentrability
coefficient that expresses the coverage of dataset —
through Y;, — with respect to the average direction in
feature space E(sh’ah)wﬂgqﬁ(sh, ap,) of the optimal policy
7*. As in (Jin et al., 2020b), such factor C' can be small
even when traditional concentrability coefficients are large
because they depend on state-action visit ratios (see the
literature in Appendix A, e.g., (Chen & Jiang, 2019)).

Even ignoring the concentrability coefficient, the form of
our result is significantly stronger as our algorithm com-
petes with all comparator policies simultaneously; these
policies are not necessarily in the prescribed policy class
II. To highlight the strength of our formulation (see also

(Yu et al., 2020; Liu et al., 2020) for results in a simi-
lar form), suppose that the optimal policy is not well cov-
ered, i.e., U(7*) infinite, but there exists a near-optimal
policy mt ie., such that V{7 (sy) > Vi*(sy) — € for
some small €, which is well covered by the dataset, i.e.,
U(rt) ~ 0. In this case, Theorem 1 ensures with high
probability V;*'%(s1) 2 Vi*(s1) — €. In contrast, tradi-
tional analyses that use only 7* as comparator cannot re-
turn meaningful guarantees.

The work closest to ours is (Jin et al., 2020b); our work
directly improves on theirs by closing the dH gap between
their upper and lower bound while working under the more
permissive Assumption 3 which includes low-rank MDPs.
A V/d-improvement is due to the algorithm we use and the
remaining is due to a more refined analysis and construc-
tion to certify optimality in Theorem 2 (notice that our up-
per and lower bounds differ from theirs by a factor of H
due to a different normalization in the value function). The
result of (Liu et al., 2020) can be specialized to the low-
rank MDP setting but would give a suboptimal bound while
additionally requiring density estimates.

Deriving a computationally tractable model-free algorithm
without low-rank dynamics but subject to value function
perturbations (e.g., optimistic or pessimistic perturbations)
is an open problem even in the more heavily studied ex-
ploration setting: there the current state of the art (Zanette
et al., 2020b; Jin et al., 2021; Du et al., 2021; Jiang et al.,
2017) only present computationally intractable algorithms
with the exception of (Zanette et al., 2020c) for a PAC set-

-ting with low inherent Bellman error which however re-

quires an additional ‘explorability’ condition.

4. Discussion

A key idea of this paper is to introduce pessimism while
remaining in the prescribed function class. Doing so al-
lows us to avoid making additional model assumptions,
and achieves minimax optimality. Similar ideas have ap-
peared before in the exploration setting (e.g., (Zanette et al.,
2020b; Jin et al., 2021; Du et al., 2021)) with similar advan-
tages (batch-style assumptions + minimax regret) but at the
expense of computational tractability.

Fortunately, the offline RL setting differs from the online
setting and we are able to maintain computational tractabil-
ity by clearly separating the actor’s update from the critic
evaluation. In this way, each algorithm solves a simpler
task, and computational tractability is retained.

The numerical evaluation of this procedure and the exten-
sion to more general function classes are important next
steps, and it will be interesting to see if any of these ideas
can be translated to the more challenging exploration set-
ting.
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