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Abstract
Reward-Weighted Regression (RWR) belongs to
a family of widely known iterative Reinforcement
Learning algorithms based on the Expectation-
Maximization framework. In this family, learning
at each iteration consists of sampling a batch of
trajectories using the current policy and fitting a
new policy to maximize a return-weighted log-
likelihood of actions. Although RWR is known to
yield monotonic improvement of the policy under
certain circumstances, whether and under which
conditions RWR converges to the optimal pol-
icy have remained open questions. In this paper,
we provide for the first time a proof that RWR
converges to a global optimum when no func-
tion approximation is used. For the latest itera-
tion of this work, see https://arxiv.org/
abs/2107.09088.

1. Introduction
Reinforcement learning (RL) is a branch of artificial intel-
ligence that considers learning agents interacting with an
environment (Sutton & Barto, 2018). RL has enjoyed sev-
eral notable successes in recent years. These include both
successes of special prominence within the artificial intelli-
gence community—such as achieving the first superhuman
performance in the ancient game of Go (Silver et al., 2016)—
and successes of immediate real-world value—such as pro-
viding autonomous navigation of stratospheric balloons to
provide internet access to remote locations (Bellemare et al.,
2020).

One prominent family of algorithms that tackle the RL prob-
lem is the Reward-Weighted Regression (RWR) family (Pe-
ters & Schaal, 2007). RWR works by transforming the RL
problem into a form solvable by well-studied expectation-
maximization (EM) methods (Dempster et al., 1977). EM
methods are, in general, guaranteed to converge to a point
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whose gradient is zero with respect to the parameters. How-
ever, these points could be both local minima or saddle
points (Wu, 1983). These benefits and limitations transfer
to the RL setting, where it has been shown that an EM-
based return maximizer is guaranteed to yield monotonic im-
provements in the average reward (Dayan & Hinton, 1997).
However, it has been challenging to assess under which
conditions—if any—RWR is guaranteed to converge to the
optimal policy. This paper presents a breakthrough in this
challenge.

The EM probabilistic framework requires that the reward
obtained by the RL agent is strictly positive, such that it
can be considered as an improper probability distribution.
Several reward transformations have been proposed, e.g.,
Peters & Schaal (2007; 2008); Peng et al. (2019); Abdol-
maleki et al. (2018b). Frequently these involve an expo-
nential transformation. In the past, it has been claimed
that a positive, strictly increasing transformation uτ (s) with∫∞

0
uτ (r) dr = const would not alter the optimal solution

for the MDP (Peters & Schaal, 2007). Unfortunately, as
demonstrated in Appendix C, this is not the case. The con-
sequence of this is that we cannot rely on those transforma-
tions if we want prove convergence. Therefore, we restrict
ourselves here to only linear transformation of the reward.
A possible disadvantage of relying on linear transformations
is that it is necessary to know a lower bound on the reward
to construct such a transformation.

In this work, we provide the first proof of RWR’s global
convergence in a setting without function approximation or
reward transformations1. The paper is structured as follows:
Section 2 introduces the MDP setting and other preliminary
material; Section 3 presents a closed-form update for RWR
based on the state and action-value functions and Section 4
shows that the update induces monotonic improvement re-
lated to the variance of the action-value function with respect
to the action sampled by the policy; Section 5 proves global
convergence of the algorithm; Section 6 illustrates exper-
imentally that—for a simple MDP—the presented update
scheme converges to the optimal policy; Section 7 discusses
related work; and Section 8 concludes.

1Note that—without loss of generality—we do assume here
that a linear reward transformation is already provided, such that
the reward is positive.
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2. Background
Here we consider a Markov Decision Process
(MDP) (Stratonovich, 1960; Puterman, 2014)
M = (S,A, pT , R, γ, µ0). We assume that the state
and action spaces S ⊂ RnS , A ⊂ RnA are compact
sub-spaces 2 (equipped with subspace topology), with mea-
surable structure given by measure spaces (S,B(S), µS),
(A,B(A), µA) where B(·) denotes the Borel σ-algebra after
completion, and reference measures µS , µA are assumed
to be finite and strictly positive on S,A respectively. The
distributions of state (action) random variables (except in
Section 5 where greedy policies are used) are assumed to be
dominated by µS (µA), thus having a density with respect to
µS (µA). Therefore, we reserve symbols ds,da in integral
expression not to integration with respect to Lebesgue
measure, as usual, but to integration with respect to µS
and µA respectively, e.g.

∫
S

(·)ds :=
∫
S

(·)dµS(s). Let
(Ω,F , µ) be a measure space and f : Ω→ R+ measurable.
We denote by f · µ the measure arising from density f and
reference measure µ.

In the MDP framework, at each step, an agent observes a
state s ∈ S, chooses an action a ∈ A, and subsequently
transitions into state s′ with probability density pT (s′|s, a)
to receive a deterministic reward R(s, a). The transition
probability kernel is assumed to be continuous in total vari-
ation in (s, a) ∈ S ×A, and thus the density pT (s′|s, a) is
continuous (in ‖ · ‖1 norm) for all (s, a) ∈ S ×A. R(s, a)
is assumed to be a continuous function on S × A. The
agent starts from an initial state (chosen under a probability
density µ0(s)) and is represented by a stochastic policy π:
a probability kernel which provides the conditional proba-
bility distribution of performing action a in state s.3 The
policy is deterministic if, for each state s, there exists an
action a such that π({a}|s) = 1. The return Rt is de-
fined as the cumulative discounted reward from time step
t: Rt =

∑∞
k=0 γ

kR(st+k+1, at+k+1) where γ ∈ (0, 1) is a
discount factor.

The agent’s performance is measured by the cumulative
discounted expected reward (i.e., the expected return),
defined as J(π) = Eπ[R0]. The state-value function
V π(s) = Eπ[Rt|st = s] of a policy π is defined as
the expected return for being in a state s while follow-
ing π. The maximization of the expected cumulative re-
ward can be expressed in terms of the state-value func-
tion by integrating it over the state space S: J(π) =∫
S µ0(s)V π(s) ds. The action-value function Qπ(s, a)—

defined as the expected return for performing action a
in state s and following a policy π—is Qπ(s, a) =

2This allows for state and action vectors that have discrete,
continuous, or mixed components.

3In Sections 3 and 4, a policy is given through its conditional
density with respect to µA. We also refer to this density as a policy.

Eπ[Rt|st = s, at = a]. State and action value functions are
related by V π(s) =

∫
A π(a|s)Qπ(s, a) da. We define as

dπ(s′) the discounted weighting of states encountered start-
ing at s0 ∼ µ0(s) and following the policy π: dπ(s′) =∫
S
∑∞
t=1 γ

t−1µ0(s)pst|s0,π(s′|s) ds, where pst|s0,π(s′|s)
is the probability density of transitioning to s′ after t time
steps, starting from s and following policy π. We assume
that the reward function R(s, a) is strictly positive4, so that
state and action value functions are also bounded V π(s) ≤

1
1−γ ||R||∞ = BV < +∞. We define the operatorW :

L∞(S) → C(S × A) as [W (V )](s, a) := R(s, a) +
γ
∫
S
V (s′)pT (s′|s, a)ds′ and the Bellman’s optimality op-

erator T : L∞(S × A) → C(S × A) as [T (Q)](s, a) :=
R(s, a) + γ

∫
S

maxa′ Q(s′, a′)pT (s′|s, a)ds′. An action-
value function Qπ is optimal if it is the unique fixed point
for T . If Qπ is optimal, then π is an optimal policy.

3. Reward-Weighted Regression
Reward-Weighted Regression (RWR) is an iterative algo-
rithm which consists of two main steps. First, a batch of
episodes is generated using the current policy πn (all poli-
cies in this section are given as conditional densities with
respect to µA). Then, a new policy is fitted to (using super-
vised learning under maximum likelihood) a sample repre-
sentation of πn, weighted by the return. At each iteration,
RWR’s objective is to find policy π maximizing:

E
s∼dπn (·),a∼πn(·|s)

[
E

Rt∼p(·|st=s,at=a,πn)
[Rt log π(a|s)]

]
,

(1)
where Π is the set of all conditional probability densities
(meant with respect to µA)5. This is equivalent to the fol-
lowing:

πn+1 = arg max
π∈Π

E
s∼dπn (·),a∼πn(·|s)

[Qπn(s, a) log π(a|s)] .

(2)
We start by deriving a closed form solution to the optimiza-
tion problem. Proof is in Appendix A.
Theorem 3.1. Let π0 be an initial policy and let ∀s ∈
S,∀a ∈ A R(s, a) > 0. At each iteration n > 0, the
solution of the RWR optimization problem is:

πn+1(a|s) =
Qπn(s, a)πn(a|s)

V πn(s)
. (3)

4. Monotonic Improvement Theorem
Here we prove that the update defined in Theorem 3.1 leads
to monotonic improvement. Proof is in Appendix A.

4It is enough to assume that the reward is bounded, so it can be
linearly mapped to a positive value.

5We can restrict to talk about probability kernels dominated by
µA instead of all probability kernels thanks to Lebesgue decompo-
sition.



Reward-Weighted Regression Converges to a Global Optimum

Theorem 4.1. Fix n > 0 and let π0 ∈ Π be a pol-
icy6. Assume ∀s ∈ S,∀a ∈ A, R(s, a) > 0. Define
the operator B : Π → Π such that πn+1 = B(πn) =
Qπn (s,a)πn(a|s)

V πn (s) . Then ∀s ∈ S we have that V πn+1(s) ≥
V πn(s) and Qπn+1(s, a) ≥ Qπn(s, a). Moreover, ∀s ∈ S :
Vara∼πn(a|s)[Q

πn(s, a)] > 0 the inequalities above are
strict.

Theorem 4.1 provides a relationship between the improve-
ment in the state-value function and the variance of the
action-value function with respect to the actions sampled.
Note that if at a certain point the policy becomes deter-
ministic or it becomes the greedy policy of its action-value
function (i.e. the optimal policy), then the operator B will
map the policy to itself and there will be no improvement.

5. Convergence Results
5.1. Weak convergence in topological factor

It is worth discussing what type of convergence we can
achieve by iterating the B-operator πn := B(πn−1), where
πn are probability densities with respect to a fixed reference
measure µA. Consider first the classic "continuous" vari-
able case, where µA is the Lebesgue measure and fix s ∈ S.
Optimal policies are known to be greedy on the optimal
action-value function Q∗(s, a). That is, they concentrate
all mass on arg maxaQ

∗(s, a). If arg maxaQ
∗(s, a) con-

sists of just a single point {a∗}, then the optimal policy
(measure), π∗(·|s) for s, concentrates all its mass in {a∗}.
This means that the optimal policy does not have a den-
sity with respect to the Lebesgue measure. Furthermore
(πn(·|s) · µA)({a∗}) =

∫
{a∗} πn(a|s)dµA(a) = 0, while

π∗({a∗}|s) = 1. However, we still want to show that the
measures πn(·|s)·µA get concentrated in the neighbourhood
of a∗ and that this neighbourhood gets tinier as n increases.
We will use the concept of weak convergence to prove this.

Another problem arises when considering the above: since
arg maxaQ

∗(s, a) can consist of multiple points, the set of
optimal policies is P(arg maxaQ

∗(s, a)), where P(F ) :=
{µ : µ is a probability measure on B(A), µ(F ) = 1} for a
F ∈ B(A). We want to prove convergence even when the se-
quence of policies πn oscillates nearP(arg maxaQ

∗(s, a)).
A way of coping with this is to make arg maxaQ

∗(s, a) a
single point through topological factorisation, to obtain the
limit by working in a quotient space. The notion of con-
vergence we will be using is described in the following
definition.

Definition 1. (Weak convergence of measures in metric
space relative to a compact set) Let (X, d) be a metric
space, F ⊂ X a compact subset, B(X) its Borel σ-algebra.

6Also in this section all policies are given as conditional densi-
ties with respect to µA.

Denote (X̃, d̃) a metric space resulting as a topological
quotient with respect to F and ν the quotient map ν : X →
X̃ (see Lemma B.2 for details). A sequence of probability
measures Pn is said to converge weakly relative to F to a
measure P denoted

Pn →w(F ) P,

if and only if the image measures of Pn under ν converge
weakly to the image measure of P under ν: 7 νPn →w νP.

5.2. Main results

Consider for all n > 0 the sequence generated by πn :=
B(πn−1). For convenience, for all n ≥ 0, we define Qn :=
Qπn , Vn := Vπn . First we note that, since the reward
is bounded, the monotonic sequences of value functions
converge point-wise to a limit:

(∀s ∈ S) : Vn(s)↗ VL(s) ≤ BV < +∞
(∀s ∈ S, a ∈ A) : Qn(s, a)↗ QL(s, a) ≤ BV < +∞,

where BV = 1
1−γ ||R||∞. Further ∀n Qn is continuous

since Qn = W (Vn) and W maps all bounded functions to
continuous functions.

The convergence proof proceeds in four steps:

1. First we show in Lemma 5.1 that QL can be expressed
in terms of VL through W operator. This helps when
showing that Qn converges uniformly to QL.

2. Then we demonstrate in Lemma 5.2 that ∀s ∈ S the
sequence of policy measures πn(·|s) · µA converges
weakly relative to the set M(s) := arg maxaQL(s, a)
to a measure that assigns all probability mass to
greedy actions of QL(·, s), i.e. πn(·|s) · µA →w(M(s))

πL(·|s) ∈ P(M(s)). Moreover πL ∈ ΠL :=
{π′L : π′L is a probability kernel from (S,B(S)) to
(A,B(A)),∀s ∈ S, π′L(.|s) ∈ P(M(s))}.

3. At this point we do not know yet if QL and VL are the
value functions of πL. We prove this in Lemma 5.3
(together with previous Lemmas) by showing that they
are fixed points of the Bellman operator.

4. Finally, we state the main results in Theorem 5.1. Since
VL andQL are value functions for πL and πL is greedy
with respect toQL, thenQL is the unique fixed point of
the Bellman’s optimality operator. Therefore QL and
VL are optimal value functions and πL is an optimal
policy for the MDP.

7Note that the limit is meant to be unique just in quotient space,
thus if P is a weak limit (relative to F ) of a sequence (Pn), then
also all measures P ′ for which νP ′ = νP are relatively weak
limits, i.e. P ′|B(X)∩Fc = P |B(X)∩Fc . Thus, they can differ on
B(X) ∩ F . While the total mass assigned to F must be the same
for P and P ′, the distribution of masses inside F may differ.



Reward-Weighted Regression Converges to a Global Optimum

Lemma 5.1. The following holds:
1. QL = W (VL),
2. QL is continuous,
3. Qn converges to QL uniformly.

Lemma 5.2. Let πn be a sequence generated by πn :=
B(πn−1). Let π0 be continuous in actions and ∀s ∈ S,
∀a ∈ A, π0(a|s) > 0. Define M(s) := arg maxQL(·|s).
Then ∀πL ∈ ΠL 6= ∅, ∀s ∈ S, we have πn(·|s) ·
µA →w(M(s)) πL(·|s)(∈ P(M(s))).

Lemma 5.3. Assume that, for each s ∈ S, for each
πL ∈ ΠL, we have that πn(·|s) · µA →w(M(s)) πL(·|s)(∈
P(M(s))). Then this holds:

VL(s) =

∫
A

QL(s, a) dπL(a|s). (4)

Proofs for the lemmas above can be found in Appendix A.
Theorem 5.1. Let πn be a sequence generated by πn :=
B(πn−1). Let π0 be such that ∀s ∈ S, ∀a ∈ A
π0(a|s) > 0 and continuous in actions. Then ∀s ∈
S πn(·|s) · µA →w(M(s)) πL(·|s), where πL ∈ ΠL is an
optimal policy for the MDP. Moreover, limn→∞ Vn = VL,
limn→∞Qn = QL are the optimal state and action value
functions.

Proof. Fix πL ∈ ΠL (we have already shown that ΠL 6= ∅).
Due to Lemma 5.2, we know that for all s ∈ S, πL(·|s)
is the relative weak limit πn(·|s) · µA →w(M(s)) πL(·|s)
and further we know that πL is greedy on QL(s, a) (from
definition of ΠL). Moreover, thanks to Lemmas 5.3 and 5.1,
VL(s) and QL(s, a) are the state and action value functions
of πL because they are fixed points of the Bellman oper-
ator. Since πL(·|s) ∈ P(arg maxaQL(s, a)), VL(s) and
QL(s, a) are also the unique fixed points of Bellman’s opti-
mality operator, hence VL, QL are optimal value functions
and πL is an optimal policy.

6. Experiments
To illustrate that the update scheme of Theorem 3.1 con-
verges to the optimal policy, we test it on the modified8

four-room gridworld domain (Sutton et al., 1999) shown on
the left of Figure 1. Here the agent starts in the upper left
corner and must navigate to the bottom right corner (i.e.,
the goal state). In non-goal states actions are restricted to
moving one square at each step in any of the four cardinal
directions. If the agent tries to move into a square containing
a wall, it will remain in place. In the goal state, all actions
lead to the agent remaining in place. The agent receives a
reward of 1 when transitioning from a non-goal state to the
goal state and a reward of 0.001 otherwise. The discount-
rate is 0.9 at each step. At each iteration, we use Bellman’s

8So as to ensure all rewards are positive.
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Figure 1. (Left) the value of states under the optimal policy in
the four-room gridworld domain. (Right) the root-mean-squared
value error (compared to the optimal policy) and return of RWR
and policy iteration in the four-room gridworld domain. All lines
are averages of 100 runs under different uniform random initial
policies. Shading shows standard deviation.

updates to obtain a reliable estimate of Qn and Vn, before
updating πn using the operator in Theorem 3.1.

The center of Figure 1 shows the root-mean-squared value
error (RMSVE) of the learned policy at each iteration as
compared to the optimal policy. While standard policy itera-
tion converges more rapidly, smooth convergence can be ob-
served under reward-weighted regression—as would be ex-
pected here. The right of Figure 1 shows the return obtained
by the learned policy at each iteration. The difference be-
tween reward-weighted regression and policy iteration can
be explained by the domain naturally favouring the greedy
updating as done by policy iteration. The source code for
this experiment is available at https://github.com/
dylanashley/reward-weighted-regression.

7. Related Work
The principle behind expectation-maximization (EM) was
first applied to artificial neural networks in Von der Malsburg
(1973). The reward-weighted regression (RWR) algorithm,
though, originated in the work of Peters & Schaal (2007)
which sought to bring earlier work of Dayan & Hinton
(1997) to the domain of operational space control and rein-
forcement learning. However, Peters & Schaal (2007) only
considered the immediate-reward reinforcement learning
(RL) setting. This was later extended to the episodic setting
separately by Wierstra et al. (2008a) and then by Kober &
Peters (2011). Wierstra et al. (2008a) went even further and
also extended RWR to partially observable Markov decision
processes, and Kober & Peters (2011) applied it to motor
learning in robotics. Separately, Wierstra et al. (2008b)
extended RWR to perform fitness maximization for evolu-
tionary methods. Hachiya et al. (2009; 2011) later found
a way of reusing old samples to improve RWR’s sample
complexity. Much later, Peng et al. (2019) modified RWR
to produce an algorithm more suitable for off-policy RL,
using deep neural networks as function approximators.

https://github.com/dylanashley/reward-weighted-regression
https://github.com/dylanashley/reward-weighted-regression
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Other methods based on principles similar to RWR have
been proposed. Neumann & Peters (2008), for example,
proposed a more efficient version of the well-known fitted
Q-iteration algorithm (Riedmiller, 2005; Ernst et al., 2005;
Antos et al., 2007) by using what they refer to as advantaged-
weighted regression—which itself is based on the RWR prin-
ciple. Ueno et al. (2012) later proposed weighted likelihood
policy search and showed that their method has guaran-
teed monotonic increases in the expected reward. Osa &
Sugiyama (2018) subsequently proposed a hierarchical RL
method that it is closely related to the episodic version of
RWR by (Kober & Peters, 2011). Notably, all of the afore-
mentioned works, as well as a number of other proposed sim-
ilar RL methods (e.g., Peters et al. (2010), Neumann (2011),
Abdolmaleki et al. (2018b), Abdolmaleki et al. (2018a)),
are based on the EM framework of Dempster et al. (1977)
and are thus known to have monotonic improvements of the
policy in the RL setting under certain conditions. However,
it has remained an open question under which conditions
convergence to the optimal is guaranteed.

8. Conclusion and Future Work
We provided the first global convergence proof for Reward-
Weighted Regression (RWR) in absence of reward transfor-
mation and function approximation. We also highlighted
problems that may arise under nonlinear reward transforma-
tions, potentially resulting in changes to the optimal policy.
In real world problems, access to true value functions may
be unrealistic—future work will study RWR’s convergence
under function approximation. Our RWR is on-policy, us-
ing only recent data to update the current policy—future
work will study convergence in challenging off-policy set-
tings (using all past data), which require corrections of the
mismatch between state-distributions.
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A. Main results
Theorem 3.1. Let π0 be an initial policy and let ∀s ∈ S,∀a ∈ A R(s, a) > 0. At each iteration n > 0, the solution of the
RWR optimization problem is:

πn+1(a|s) =
Qπn(s, a)πn(a|s)

V πn(s)
. (3)

Proof.

πn+1 = arg max
π∈Π

∫
S
dπn(s)

∫
A
πn(a|s)Qπn(s, a) log π(a|s) dads.

Define f̂(s, a) := dπn(s)πn(a|s)Qπn(s, a). f̂(s, a) can be normalized such that it becomes a density that we fit by πn+1:

f(s, a) =
f̂(s, a)∫

S
∫
A f̂(s, a) da ds

=
dπn(s)πn(a|s)Qπn(s, a)∫

S
∫
A d

πn(s)πn(a|s)Qπn(s, a) dads
.

For the function to be maximized we have:∫
S

∫
A
f(s, a) log π(a|s) dads =

∫
S
f(s)

∫
A
f(a|s) log π(a|s) da ds

≤
∫
S
f(s)

∫
A
f(a|s) log f(a|s) dads,

where the last inequality holds for any policy π, since ∀s ∈ S we have that
∫
A f(a|s) log π(a|s) da ≤∫

A f(a|s) log f(a|s) da, as f(a|s) is the maximum likelihood fit. Note that for all states s ∈ S such that dπn(s) = 0, we
have that f(s, a) = 0. Therefore, for such states, the policy will not contribute to the objective and can be defined arbitrarily.
Now, assume dπn(s) > 0. The objective function achieves a maximum when the two distributions are equal:

πn+1(a|s) = f(a|s) =
f(s, a)

f(s)
=

f(s, a)∫
A f(s, a) da

=
dπn(s)πn(a|s)Qπn(s, a)∫

S
∫
A d

πn(s)πn(a|s)Qπn(s, a) da ds
·
∫
S
∫
A d

πn(s)πn(a|s)Qπn(s, a) da ds∫
A d

πn(s)πn(a|s)Qπn(s, a) da

=
πn(a|s)Qπn(s, a)∫

A πn(a|s)Qπn(s, a) da
=
Qπn(s, a)πn(a|s)

V πn(s)
.

We can now set πn+1(a|s) = Qπn (s,a)πn(a|s)
V πn (s) also for all s such that dπn(s) = 0, which completes the proof.

Theorem 4.1. Fix n > 0 and let π0 ∈ Π be a policy9. Assume ∀s ∈ S,∀a ∈ A, R(s, a) > 0. Define the operator
B : Π → Π such that πn+1 = B(πn) = Qπn (s,a)πn(a|s)

V πn (s) . Then ∀s ∈ S we have that V πn+1(s) ≥ V πn(s) and
Qπn+1(s, a) ≥ Qπn(s, a). Moreover, ∀s ∈ S : Vara∼πn(a|s)[Q

πn(s, a)] > 0 the inequalities above are strict.

Proof. We start by defining a function V πn+1,πn(s) as the expected return for using policy πn+1 in state s and then following
policy πn: V πn+1,πn(s) :=

∫
A πn+1(a|s)Qπn(s, a) da. By showing that ∀s ∈ S, V πn+1,πn(s) ≥ V πn(s), we get that

∀s ∈ S, V πn+1(s) ≥ V πn(s). 10

9Also in this section all policies are given as conditional densities with respect to µA.
10The argument is the same as given in (Puterman, 2014),see section on Monotonic Policy Improvement.
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Now, let s be fixed:

V πn+1,πn(s) ≥ V πn(s)

⇐⇒
∫
A
πn+1(a|s)Qπn(s, a) da ≥

∫
A
πn(a|s)Qπn(s, a) da

⇐⇒
∫
A

πn(a|s)Qπn(s, a)2

V πn(s)
da ≥

∫
A
πn(a|s)Qπn(s, a) da

⇐⇒
∫
A
π(a|s)Qπn(s, a)2 da ≥

(∫
A
πn(a|s)Qπn(s, a) da

)2

⇐⇒ E
a∼πn(a|s)

[Qπn(s, a)2] ≥ E
a∼πn(a|s)

[Qπn(s, a)]2

⇐⇒ Vara∼πn(a|s)[Q
πn(s, a)] ≥ 0,

which always holds. Finally, ∀s ∈ S, ∀a ∈ A:

Qπn+1(s, a) = R(s, a) + γ

∫
S
pT (s′|s, a)V πn+1(s′) ds′

≥ R(s, a) + γ

∫
S
pT (s′|s, a)V πn(s′) ds′ = Qπn(s, a).

Lemma 5.1. The following holds:
1. QL = W (VL),
2. QL is continuous,
3. Qn converges to QL uniformly.

Proof. 1. Fix (s, a) ∈ S ×A. We aim to show QL(s, a)− [W (VL)](s, a) = 0. Since Qn = W (Vn), we can write:

QL(s, a)− [W (VL)](s, a) = QL(s, a)−Qn(s, a)− [W (VL)](s, a) + [W (Vn)](s, a)

≤ |QL(s, a)−Qn(s, a)|+ |[W (VL)](s, a)− [W (Vn)](s, a)|.

The first part can be made arbitrarily small as Qn(s, a) → QL(s, a). Consider the second part and fix ε > 0. Since
Vn → VL point-wise, from Severini-Egorov’s theorem (Severini, 1910) there exists Sε ⊂ S with (pT (·|s, a) · µS)(Scε ) < ε
such that ‖Vn − VL‖∞ → 0 on Sε. Thus there exists n0 such that ‖Vn − VL‖∞ < ε for all n > n0. Now let us rewrite the
second part for n > n0:

|[W (VL)](s, a)− [W (Vn)](s, a)| ≤
∫
S

|VL(s′)− Vn(s′)|pT (s′|s, a)dµS(s′)

=

∫
Sε

|VL(s′)− Vn(s′)|pT (s′|s, a))dµS(s′)

+

∫
Scε

|VL(s′)− Vn(s′)|pT (s′|s, a)dµS(s′)

≤ ‖VL(s′)− Vn(s′)‖∞ +BV

∫
Scε

pT (s′|s, a)dµS(s′)

≤ ε+BV ε,

which can be made arbitrarily small.
2. QL is continuous because W maps all bounded measurable functions to continuous functions.
3. Since Qn and QL are continuous functions in a compact space and Qn is a monotonically increasing sequence that
converges point-wise to QL, we can apply Dini’s theorem (see Th. 7.13 on page 150 in (Rudin et al., 1976)) which ensures
uniform convergence of Qn to QL.
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Lemma 5.2. Let πn be a sequence generated by πn := B(πn−1). Let π0 be continuous in actions and ∀s ∈ S, ∀a ∈ A,
π0(a|s) > 0. Define M(s) := arg maxQL(·|s). Then ∀πL ∈ ΠL 6= ∅, ∀s ∈ S , we have πn(·|s) · µA →w(M(s)) πL(·|s)(∈
P(M(s))).

Proof. First notice that the set ΠL is nonempty11. Fix πL ∈ ΠL and s ∈ S. In order to prove that πn(·|s) · µA →w(M(s))

πL(·|s), we will use a characterization of relative weak convergence that follows from an adaptation of the Portmanteau
Lemma (Billingsley, 2013) (see Appendix B.3). In particular, it is enough to show that for all open sets U ⊂ A such that
U ∩M(s) = ∅ or such that M(s) ⊂ U , we have that lim infn(πn(·|s) · µA)U ≥ πL(·|s)U .

The case U ∩M(s) = ∅ is trivial since πL(·|s)(U) = 0. For the remaining case M(s) ⊂ U it holds πL(·|s)(U) = 1. Thus
we have to prove lim infn(πn(·|s)·µA)U = 1. If we are able to construct an open setD ⊂ U such that (πn(·|s)·µA)(D)→ 1
for n→∞, then we will get that lim infn(πn(·|s) · µA)U ≥ 1, satisfying the condition for relative weak convergence of
πn(·|s) · µA →w(M(s)) πL(·|s).

The remainder of the proof will focus on constructing such a set. Fix a∗ ∈ M(s) and 0 < ε < 1/3. Define a continuous
map λ : A→ R+ and closed sets Aε and Bε:

λ(a) :=
QL(a)

QL(a∗)
, Aε := {a ∈ A|λ(a) ≤ 1− 2ε} Bε := {a ∈ A|λ(a) ≥ 1− ε},

where continuity of the map stems from QL(a∗) > 0 and continuity of QL (Lemma 5.1). We will prove that the candidate
set is D = Acε. In particular, we must prove that Acε ⊂ U and that (πn(·|s) · µA)(Aε) → 0. Using Lemma B.1
(Appendix) on function λ, we can choose ε > 0 such that Acε ⊂ U , satisfying the first condition. We are left to prove that
(πn(·|s) · µA)(Aε)→ 0.

Assume Aε 6= ∅ (otherwise the condition is proven): for all a ∈ Aε and b ∈ Bε it holds:

QL(a)

QL(b)
=

QL(a)
QL(a∗)

QL(b)
QL(a∗)

≤ QL(a)

QL(a∗)(1− ε)
≤ 1− 2ε

1− ε
= 1− ε

1− ε
=: α1 < 1.

For Lemma 5.1 Qn converges uniformly to QL. Therefore we can fix n0 > 0 such that ‖Qn −QL‖∞ < ε′ for all n ≥ n0,
where we define ε′ := 0.1 × QL(a∗)(1 − ε)(1 − α1). Now we can proceed by bounding Qn ratio from above. For all
n ≥ n0, a ∈ Aε and b ∈ Bε:

Qn(a)

Qn(b)
≤ QL(a)

QL(b)− ε′
≤ QL(a)

QL(a∗)(1− ε)− ε′
=

QL(a)

QL(a∗)(1− ε)(1− 0.1(1− α1))

=
α1

(0.9 + 0.1α1)
=: α < 1.

Finally, we can bound the policy ratio. For all n ≥ n0, a ∈ Aε, b ∈ Bε:

πn(a|s)
πn(b|s)

=
π0(a|s)
π0(b|s)

n∏
i=0

Qi(s, a)

Qi(s, b)
≤ αnc(a, b),

where

c(a, b) := α−n0
π0(a|s)
π0(b|s)

n0∏
i=0

Qi(s, a)

Qi(s, b)
.

The function c : Aε ×Bε → R+ is continuous as π0, Qi are continuous (and denominators are non-zero due to π0(b|s) > 0
and Qi(s, a) > 0). Since Aε ×Bε is a compact set, there exists cm such that c ≤ cm. Thus we have that for all n > n0:

πn(a|s) ≤ αncmπn(b|s).

Integrating with respect to a over Aε and then with respect to b over Bε (using reference measure µA in both cases) we
obtain:

(πn(·|s) · µA)(Aε)× (µABε) ≤ αncm(πn(·|s) · µA)(Bε)× (µAAε).

11The argument goes as follows: H := ∪s∈S{s} ×M(s) is a closed set, then f(s) := supM(s) is upper semi-continuous and
therefore measurable. Then graph of f is measurable so we can define a probability kernel πL(B|s) := 1B(f(s)) for all B measurable.
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Rearranging terms, we have:

(πn(·|s) · µA)(Aε) ≤ αn
[
cm

µAAε
µABε

(πn(·|s) · µA)Bε

]
→ 0, n→∞,

since the nominator in brackets is composed by finite measures of sets, thus finite numbers, while the denominator µABε > 0.
Indeed, define the open set C := {a ∈ A|λ(a) > 1− ε} ⊂ Bε. Then µA(Bε) ≥ µA(C) > 0 (µA is strictly positive). To
conclude, we have proven that for arbitrarily small ε > 0, the term (πn(·|s) · µA)(Aε) tends to 0, satisfying the condition
for relative weak convergence of πn(·|s) · µA →w(M(s)) πL(·|s).

Lemma 5.3. Assume that, for each s ∈ S, for each πL ∈ ΠL, we have that πn(·|s) · µA →w(M(s)) πL(·|s)(∈ P(M(s))).
Then this holds:

VL(s) =

∫
A

QL(s, a) dπL(a|s). (4)

Proof. Fix s ∈ S and πL ∈ ΠL. We aim to show VL(s) −
∫
A
QL(s, a) dπL(a|s) = 0. Since Vn(s) −∫

A
Qn(s, a)πn(a|s) dµA(a) = 0, we have:∣∣∣VL(s)−

∫
A

QL(s, a) dπL(a|s)
∣∣∣

=
∣∣∣VL(s)− Vn(s)−

∫
A

QL(s, a) dπL(a|s) +

∫
A

Qn(s, a)πn(a|s) dµA(a)
∣∣∣

≤
∣∣∣VL(s)− Vn(s)

∣∣∣+
∣∣∣∫
A

QL(s, a) dπL(a|s)−
∫
A

Qn(s, a)πn(a|s) dµA(a)
∣∣∣.

The first part can be made arbitrarily small due to Vn(s)→ VL(s). For the second part:∣∣∣∫
A

QL(s, a) dπL(a|s)−
∫
A

Qn(s, a)πn(a|s) dµA(a)
∣∣∣

=
∣∣∣∫
A

QL(s, a) dπL(a|s)−
∫
A

QL(s, a)πn(a|s)dµA(a)

+

∫
A

QL(s, a)πn(a|s)dµA(a)−
∫
A

Qn(s, a)πn(a|s) dµA(a)
∣∣∣

≤
∣∣∣∫
A

QL(s, a) dπL(a|s)−
∫
A

QL(s, a)πn(a|s)dµA(a)
∣∣∣

+

∫
A

|QL(s, a)−Qn(s, a)|πn(a|s)dµA(a),

where the first term tends to zero since πn(·|s) · µA →w(M(s)) πL(·|s) and QL is continuous and constant on M(s),
satisfying the conditions of the adapted Portmanteau Lemma (Billingsley, 2013) (see Appendix B.3). The second term can
be arbitrarily small since Lemma 5.1 ensures uniform convergence of Qn to QL.

B. Convergence - lemmas
Lemma B.1. (on level sets of continuous function on compact metric space) Let (X, d) be a compact metric space and
f : X → R be a continuous function. Furthermore, let m := maxx∈X f(x) and F := {x ∈ X : f(x) = m}. Then for
every open U ⊂ X , F ⊂ U there exists a δ > 0 such that {x ∈ X : f(x) > m− δ} ⊂ U .

Proof. First notice that m is defined correctly as f is a continuous function on a compact space and therefore always has a
maximum. Also, note that F is compact and F 6= ∅. Assume that f is not constant (otherwise the conclusion holds trivially).
Now consider an open set U and F ⊂ U . If U = X , the Lemma holds trivially, thus assume U 6= X . From compactness of
F we conclude that F is 2ε isolated from UC := X \ U for some ε > 0. Let us define V := {x ∈ X : d(x, F ) < ε} ⊂ U
an open set. Further, define m′ := max f(X \ V ). Notice that the definition is correct since X \ V is closed and therefore
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compact and also X \ V 6= ∅ as X \ V ⊃ UC 6= ∅. Further, m′ < m as X \ V and F are disjoint (F ⊂ V ). Define
δ := m−m′

2 . It remains to verify that W := {x ∈ X : f(x) > m− δ} = {x ∈ X : f(x) > m− m+m′

2 } ⊂ U . Notice that
f(W ) > m+m′

2 > m′ ≥ f(X \ V ). Thus W and X \ V must be disjoint and therefore W ⊂ V (⊂ U).

Lemma B.2. (quotient of a metric space by a compact subset) Let (X, d) be a metric space and F ⊂ X compact.
Furthermore, let τ denote the topology on X induced by the metric d. Define the equivalence:

(∀x, y ∈ X ×X) : x ∼ y ⇐⇒ (x = y ∨ (x ∈ F ∧ y ∈ F )).

Define a (factor) quotient space X̃ := X/ ∼ and ν : X → X̃ the canonical projection ν(x) := [x]∼.

1. Denote by τ̃ the quotient topology on X̃ (induced by τ and ν). Then it holds:

τ̃ = {ν(U) : U ∈ τ, (U ∩ F = ∅ ∨ F ⊂ U)}.

2. Further, the function d̃ : X̃ × X̃ → R+

d̃([x]∼, [y]∼) := d(x, y) ∧ (d(x, F ) + d(y, F ))

defines a metric on X̃ and the topology induced by metric d̃ agrees with τ̃ .

3. (continuous functions) Let f̃ : X̃ → R be a function on X̃ . Than it holds:

f̃ ∈ C(X̃) ⇐⇒ f̃ ◦ ν ∈ C(X),

so there is a one to one correspondence between continuous functions on X̃ (C(X̃)) and continuous functions on X ,
which are constant on F (which allow factorisation through ν):

{f ∈ C(X) : ∃f̃ ∈ RX̃ : f = f̃ ◦ ν} = {f ∈ C(X) : ∃cf ∈ R : f |F = cf}.

Proof. During the proof, we will assume F 6= ∅. For the case F = ∅, the Lemma holds trivially.

1. The quotient topology τ̃ is the finest topology in which is ν continuous. Suppose Ũ ∈ τ̃ (is open in τ̃ ) then U := ν−1(Ũ)
must be open (otherwise ν would not be continuous). Further, due to the equivalence defined, the pre-images under ν cannot
contain F only partially. They either contain the whole F , or are disjoint with F (in the first case we get F ⊂ U and in the
second one we get F ∩ U = ∅). This gives us the inclusion τ̃ ⊂ {ν(U) : U ∈ τ, (U ∩ F = ∅ ∨ F ⊂ U)}. For the reverse
inclusion, assume we have U ∈ τ . Assume F ⊂ U . Then the pre-image ν−1(ν(U)) = U (the result would be different
from U just when U includes F only partially), which is an open set. Thus, from the fact that τ̃ is the finest topology in
which ν is continuous, it follows that ν(U) ∈ τ̃ . Similarly for U ∩ F = ∅.

2. Now we aim to show that d̃ is a metric on X̃ . Notice that the definition is correct in the sense that it does not depend on the
choice of representants. When we assume that both x, y are not in F , then the choice of representants is unique. So assume
that, for example, x /∈ F ,y ∈ F . Then we can choose another representant for [y]∼, but then d̃([x]∼, [y]∼) = d(x, F ) is
independent of y. Similarly, if x, y are both in F then d̃([x]∼, [y]∼) = 0 which again does not depend on choice of the
representants. Non-negativity and symmetry trivially holds. First, we consider the property:

d̃([x]∼, [y]∼) = 0 ⇐⇒ [x]∼ = [y]∼(⇐⇒ x ∼ y).

Assume x ∼ y, then either x = y or x, y ∈ F . In both cases d̃([x]∼, [y]∼) becomes zero. Assume d̃([x]∼, [y]∼) = 0, then
d(x, y) = 0 or d(x, F ) + d(y, F ) = 0, where in the first case we get x = y and in the second case (here we use that F is
closed) x, y ∈ F . Thus x ∼ y. The Triangle inequality holds too. The proof follows easily, but is omitted for brevity (it
consists of checking multiple cases).

Finally, we have to show that the topology induced by d̃ agrees with τ̃ (here we will need compactness of F ). First we show
that every open set in τ̃ is also open in the topology induced by d̃. Let us consider an open set Ũ ∈ τ̃ . Now let us fix an
arbitrary point x̃ ∈ Ũ . It suffices to show that there exits r > 0 such that open ball Ur(x̃) := {ỹ ∈ X̃ : d̃(x̃, ỹ) < r} ⊂ Ũ .
From Ũ ∈ τ̃ there exists U ∈ τ such that ν(U) = Ũ and moreover F ⊂ U or F ∩ U = ∅.
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Fix x ∈ X such that [x]∼ = x̃. We start by considering the case F ⊂ U and x ∈ F . Notice that the metric reduces to
d̃([x]∼, [y]∼) = d(y, F ). Compactness of F guarantees that there exists ε > 0 such that F is ε isolated from U c := X \ U .
So it suffices to choose r := ε.

For the second case we consider F ⊂ U and x /∈ F . As U \ F is open, there exists a δ > 0 such that Uδ(x) := {y ∈ X :
d(x, y) < δ} ⊂ U \ F . Note that ν(Uδ(x)) is an open set in τ̃ (has open pre-image and does not contain F ) on which
the metric simplifies to d̃([x]∼, [y]∼) = d(x, y) (< δ). We conclude that it is an open ball in d̃, whole lying in Ũ . So it
suffices to put r := δ.

As final case, assume F ∩ U = ∅. This actually reduces to the second case we already considered.

Finally, for the opposite inclusion it suffices to show that every open ball in d̃ is an open set in τ̃ . Thus let us fix an x ∈ X
and positive r > 0 and set Ũ := Ur(x̃). In order for Ũ to be open in τ̃ , it must have open pre-image

ν−1(Ũ) = {y ∈ X : ν(y) ∈ Ũ} = {y ∈ X : d(x, y) ∧ (d(x, F ) + d(y, F )) < r}
= {y ∈ X : d(x, y) < r} ∪ {y ∈ X : (d(x, F ) + d(y, F )) < r},

where we end up with a union of two sets, both open in τ , which is again open. Thus ν−1(Ũ) is open, so Ũ is open (from τ̃
is the finest topology in which ν is continuous).

3. (Continuous functions) Assume f̃ ∈ C(X̃). Since ν is continuous, then f̃ ◦ ν is continuous (composition of continuous
maps). For the opposite implication, assume f := f̃ ◦ ν is continuous. We have to show that f̃ is continuous. Thus fix an
arbitrary open set V ⊂ R. We have to show that the pre-image Ũ := f̃−1(V ) is open. We know that U := f−1(V ) is open
from the continuity of f and that U = f−1(V ) = ν−1(Ũ), that means that the pre-image of Ũ under ν is open, but τ̃ is the
finest topology in which ν is continuous, therefore Ũ has to be open.

Lemma B.3. (Adaptation of Portmanteau theorem conditions to relative weak convergence) Let (X, d), (X̃, d̃), F , ν be
like above. Let P, Pn, n ∈ N be probability measures on B(X). Then following conditions are equivalent:

1. Pn →w(F ) P.

2. For all continuous f : X → R that are constant on F it holds that Pnf → Pf.

3. For all U ⊂ X open satisfying U ∩ F = ∅ or F ⊂ U it holds that lim inf PnU ≥ PU.

Proof. First we show equivalence of 1. and 2. Point 1. is equivalent to νPn →w νP, (definition 1) which is equivalent to
(using Portmanteau theorem):

(∀f̃ ∈ C(X̃)) : (νPn)f̃ → (νP )f̃ ,

what can be rewritten using definition of image measure:

(∀f̃ ∈ C(X̃)) : Pn(f̃ ◦ ν)→ P (f̃ ◦ ν).

But from Lemma B.2 we already know that there is a one to one correspondence between functions in C(X̃) and functions
in C(X), which factors through ν (are constant on F ). Thus it is equivalent to:

(∀f ∈ C(X)) : ((∃cf ∈ R) : f |F = cf ) =⇒ (Pnf → Pf).

Finally, we show equivalence of 1. and 3. Again, point 1. is equivalent (using Portmanteau theorem) to:

(∀Ũ ⊂ X̃ open) : lim inf(νPn)Ũ ≥ (νP )Ũ .

Using the definition of image measure and the one to one correspondence (see Lemma B.2) between all open sets in X̃ and
open sets in X we have that at least one of the two conditions U ∩F = ∅, F ⊂ U is satisfied. This concludes the result.

C. Counterexample
Counterexample. Consider the simple two-armed bandit shown in Figure 2 with actions a0 and a1, and with P (r =
1|a0) = 1, P (r = 0|a1) = 2/3, and P (r = 2|a1) = 1/3. Note that q(a0) = 1 > q(a1) = 2/3. Thus the optimal policy
always takes action a0. Now, after applying the transformation u(r) = elog(3) r = 3r, we get P (u(r) = 3|a0) = 1,
P (u(r) = 1|a1) = 2/3, and P (u(r) = 9|a1) = 1/3. Hence, under transformation u, we have q(a0) = 3 < q(a1) = 11/3. So
the optimal policy under the transformed rewards always takes action a1, which is sub-optimal, given the original problem.
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Figure 2. Counterexample demonstrating how applying a naive transformation of the reward function of an MDP may change the optimal
policy.


