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Abstract
The multi-armed bandit (MAB) problem is an
active learning framework that aims to select the
best among a set of actions by sequentially observ-
ing rewards. Recently, it has become popular for
a number of applications over wireless networks,
where communication constraints can form a bot-
tleneck. Yet existing works usually fail to address
this issue and can become infeasible in certain
applications. In this paper, we propose QuBan, a
generic reward quantization algorithm that applies
to any (no-regret) multi-armed bandit algorithm.
The modified algorithm requires on average a few
(as low as 3) bits to be sent per iteration, yet pre-
serving the same regret as the original algorithm.
Our upper bounds apply under mild assumptions
on the reward distributions over all current (and
future) MAB algorithms, including those used in
contextual bandits. We also numerically evaluate
the application of QuBan to widely used algo-
rithms such as UCB and ε-greedy.

1. Introduction
Multi-armed bandit (MAB) is an active learning framework
that finds applications in diverse domains, including recom-
mendation systems, clinical trials, adaptive routing, and so
on (Bouneffouf & Rish, 2019). In a MAB problem, a learner
interacts with an environment by pulling an arm from a set
of arms, each of which, if played, gives a scalar reward,
sampled from an unknown but fixed distribution. The goal
of the learner is to find the arm with the highest mean using
a minimum number of pulls. The performance of a learner
is measured in terms of regret, that captures the expected
difference between the observed rewards and rewards drawn
from the best arm. Work on MAB algorithms and their
applications spans several decades, cultivating a rich liter-
ature that considers a variety of models and algorithmic

*Equal contribution 1Electrical and Computer Engineering
Department, University of California at Los Angeles, Los An-
geles, CA 90095 USA. Correspondence to: Osama A. Hanna
<ohanna@ucla.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Agents
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Figure 1. A central learner collects rewards from a set of agents.
The agents can join and leave at any time and hence can be different
and unaware of the historical rewards, i.e., memoryless.

approaches (Lattimore & Szepesvári, 2020; Robbins, 1952;
Anscombe, 1963; Auer et al., 2002a; Thompson, 1933; Lai,
1987). All these works assume that the rewards can be
communicated to the learner at full precision which can be
costly in communication constrained setups. In this paper
we ask: is it possible to perform efficient and effective bandit
learning with only a few bits communicated per reward?

Understanding how many bits of communication are really
needed, is not only interesting from a theoretical viewpoint,
but can also enable the MAB framework to support learning
applications in settings that were challenging before. Con-
sider for instance swarms of tiny robots (such as RoboBees
and RoboFlies (Wood et al., 2013)), wearable (inside and
outside the body) sensors, backscatterer and RFID networks,
IoT and embedded systems; generally whenever low com-
plexity sensors cooperate, the communication cost can fast
become a performance bottleneck. MAB systems in ar-
eas such as mobile healthcare, social decision-making and
spectrum allocation have already been implemented in a
distributed manner, using limited bandwidth wireless links
and simple sensors with low computational power (Anand-
kumar et al., 2011; Buccapatnam et al., 2013; 2014; Mary
et al., 2015; Song et al., 2018; Ding et al., 2019); reduc-
ing the number of bits communicated directly translates to
reduced power consumption and wireless interference for
these systems.
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In this paper we consider the common setup illustrated in
Fig. 1, where a central learner can directly communicate
with a set of agents. We assume that the agents may change
from time to time (e.g., are mobile), but that each agent can
pull whichever arm the learner requests it to, observe the
reward, and immediately communicate the reward to the
learner. For example, the learner could be a "traffic police-
man" for small drones that searches best current policies;
or a base-station that helps low-capability sensors achieve
spectrum sharing. For many existing systems, the learner
may have already implemented a MAB algorithm to handle
the learning task. Hence our goal is to design a commu-
nication protocol such that the rewards are communicated
with only a few bits and yet the performance of the original
MAB algorithm does not degrade.

Our main contribution is a novel quantization scheme, that
we term QuBan, tailored to compressing MAB rewards.
QuBan only cares to maintain what matters to the MAB
algorithm operation, namely the ability to decide which is
the best arm. At a high level, QuBan maps rewards to
quantization levels chosen to be dense around an estimate
of the arm’s mean values and sparse otherwise. QuBan
employs a stochastic correction term that enables to convey
an unbiased estimate of the rewards with a small variance.
QuBan introduces a simple novel rounding trick to guaran-
tee that the quantization error is conditionally independent
on the history given the current pulled arm index. This main-
tains the Markov property which is crucial in the analysis
of bandit algorithms and enables reusing the same analy-
sis methods for unquantized rewards to bound the regret
after quantization. Finally, QuBan encodes the reward val-
ues that occur more frequently with shorter representations,
in order to reduce the number of bits communicated. We
provide a set of upper bounds on the average number of
bits B̂n that QuBan needs to achieve the same learning
performance as using unquantized rewards. We find that if
applied on top of a MAB algorithm with sub-linear regret,
then B̂n is a small constant (as small as 3). We provide em-
pirical studies for a number of MAB algorithms, e.g., UCB
and ε-greedy. Numerical results corroborate our theoretical
findings.

To the best of our knowledge, the proposed model is novel
and no scheme from the literature can be used to solve the
problem of maintaining a regret that matches the unquan-
tized regret while using a few bits of communication. A
review of the literature is provided in App. A.

2. Model and Notation
MAB Framework. We consider a multi-armed bandit
(MAB) problem over a horizon of size n (Robbins, 1952).
At each iteration t = 1, ..., n, a learner chooses an arm
(action) At from a set of arms At and receives a random

reward rt distributed according to an unknown reward dis-
tribution PAt with mean µAt . The reward distributions,
PAt , are assumed to be σ2-subgaussian (Boucheron et al.,
2013)1. Throughout the paper, we assume a known σ. How-
ever, an estimate of σ within a constant factor would suf-
fice. The arm selected at time t depends on the previously
selected arms and observed rewards A1, r1, ..., At−1, rt−1.
The learner is interested in minimizing the expected regret
Rn = E[R̂n], where R̂n is the regret defined as

R̂n = Σnt=1(µ∗t − rt), (1)

where µ∗t = maxA∈At µA. The expected regret captures
the difference between the expected total reward collected
by the learner over n iterations and the reward if we selected
the arm with the maximum mean (optimal arm).

Notation. When the set of arms At is finite and does not
depend on t: we denote the number of arms by k = |At|,
the best arm mean by µ∗, and the gap between the best arm
and the arm-i mean by ∆i := µ∗ − µi.

In addition to the case where the set of actions is fixed
over time, we also consider an important class of bandit
problems, contextual bandits (Auer et al., 2002b; Langford
& Zhang, 2007; Agrawal & Goyal, 2013b). In this case,
before picking an action, the learner observes a side infor-
mation, the context. Specifically we consider the widely
used stochastic linear bandits model (Abe & Long, 1999),
where the contexts are modeled by changing the action set
At across time. In this model, at iteration t, the learner
chooses an action At from a given set At ⊆ Rd and gets a
reward

rt = 〈θ∗, At〉+ ηt, (2)

where θ∗ ∈ Rd is an unknown parameter, and ηt is a noise.
Conditioned on A1, A1, r1, ...,At, At, rt, the noise ηt+1 is
assumed to be zero mean and σ2-subgaussian.

System Setup. We are interested in a distributed setting,
where a learner asks at each time a potentially different agent
to play the arm At; the agent observes the reward rt and
conveys it to the learner over a communication constrained
channel, as depicted in Fig. 1. In our setup, each agent needs
to immediately communicate the observed reward (with no
memory), using a quantization scheme to reduce the com-
munication cost. As the learning progresses, the learner is
allowed to refine the quantization scheme by broadcasting
parameters to the agents they may need. We do not count
these broadcast (downlink) transmissions in the communi-
cation cost since the learner can have no restrictions in its
power. We stress again that the agents cannot store infor-
mation of the reward history since they may join and leave
the system at any time. We thus opt to use a setting where

1This assumption is not required for our main results, however,
it allows to provide regret bounds for popular MAB algorithms.



Solving MAB Using a Few Bits of Communication

⌊
̂μ(t)
σ

⌋
rt

σ⌊
̂μ(t)
σ

⌋ + 1 ⌊
̂μ(t)
σ

⌋ + 2 ⌊
̂μ(t)
σ

⌋ + 22

Figure 2. Illustration of QuBan. The reward rt is mapped to a
value 2 (conveyed with the index It), and stochastically to one of
the two nearest quantization levels depicted on the red line.

the agents have no memory. This setting allows to support
applications with simple agents (e.g. RFID applications and
embedded systems).

Quantization. A quantizer consists of an encoder
E : R→ S that maps R to a countable set S , and a decoder
D : S → R. At each time t, the agent that observes the
reward rt transmits a finite length binary sequence represent-
ing E(rt) to the learner which in turn decodes it using the
decoder D to obtain the quantized reward r̂t = D(E(rt)).
The range of a decoder is referred to as the set of quantiza-
tion levels; the end-to-end operation of a quantizer maps the
reward to a quantization level.

Performance Metric B̂(n). Among the schemes that
achieve a regret matching the unquantized regret, our per-
formance metric is the average number of communication
bits B̂(n) used per reward after n iterations. Our goal is to
design quantization schemes that achieve expected regret
matching the expected regret of unquantized communication
(up to a small constant factor) while using a small average
number of bits B̂(n).

3. QuBan: A MAB Reward Quantizer
In this section, we propose QuBan, an adaptive quantiza-
tion scheme that can be applied on top of any MAB algo-
rithm. Our scheme maintains attractive properties (such
that the Markov property, unbiasedness, and bounded vari-
ance) for the quantized rewards that enable to retain the
same regret bound as unquantized communication for the
vast majority of MAB algorithms, while using a few bits
for communication (simulation results indicate convergence
to ∼ 3 bits per iteration for n that is sufficiently large, see
App. E).

QuBan builds on the following observations. Recall that at
time t the learner selects an action At and needs to convey
the observed reward rt. As we expect rt to be close to
the mean µAt

, we would like to use quantization levels
that are dense around µAt

and sparse in other areas. Since
µAt

is unknown, we estimate it using some function of the
observed rewards that we term µ̂(t); we can think of µ̂(t) as
specifying a “point" on the real line around which we want
to provide denser quantization.

3.1. Choices for µ̂(t)

In this work, we analyze the following three choices for
µ̂(t), the first two applying to MAB with a finite fixed set
of arms, while the third to linear bandits.
• Average arm point (Avg-arm-pt): µ̂(t) = µ̂At

(t − 1).
We thus use µ̂At

(t− 1), the average of the samples picked
from arm At up to time t− 1, as an estimate of µAt .
• Average point (Avg-pt): µ̂(t) = 1

t−1

∑t−1
j=1 r̂j (the av-

erage over all observed rewards). Here we can think of
1
t−1

∑t−1
j=1 r̂j as an estimate of the mean of the best arm.

Indeed, a well behaved algorithm will converge to selecting
the best arm for the majority of times.

These two choices of µ̂(t) give us flexibility to fit different
regimes of MAB systems as discussed in App. B.
• Contextual bandit choice: µ̂(t) = 〈θt, At〉. Consider
the widely used stochastic linear bandits model in Section 2.
We observe that linear bandit algorithms, such as contextual
Thomson sampling and LinUCB, choose a parameter θt
believed to be close to the unknown parameter θ∗, and pick
an action based on θt. Accordingly, we propose to use
µ̂(t) = 〈θt, At〉.

We underline that the estimator µ̂(t) is only maintained at
the learner’s side and is broadcasted to the agents. As dis-
cussed before, this downlink communication is not counted
as communication cost.

3.2. QuBan Components

At iteration t, QuBan centers its quantization around
the value µ̂(t). It then quantizes the normalized regret
r̄t = rt/σ − bµ̂(t)/σc to one of the two values br̄tc, dr̄te.
This introduces an error in estimating r̄t that is bounded
by 1, which results in error of at most σ in estimating
rt = σ(r̄t + bµ̂(t)/σc). This quantization is done in a ran-
domized way to convey an unbiased estimate of rt. More
precisely, QuBan transmits the sign of r̄t, and the greatest
power of 2 below |r̄t|, call it 2It (the handling of the case
where |r̄t| ≤ 1 can be seen in App. B). Then, it quantizes
|r̄t| − 2It using a randomized quantizer with levels that
are 1 distance apart in the interval [0, 2It ]2 (see Fig. 2 for
an example). The sign of r̄t is transmitted using one bit,
It is transmitted with unary coding using O(log(r̄t)) bits,
and the randomized quantizer uses 2It + 1 levels, hence
O(log(r̄t)) bits. An estimated value of rt is obtained from
the quantized r̄t by a proper shift and scaling. We recall that
µ̂(t) is believed to be close to rt in the majority of iterations
resulting in small values for log(r̄t). An illustration of the
algorithm is provided in Fig. 2. The pseudo-code of the
algorithm is given in App. B together with intuition on the
used techniques.

2Note that 0 ≤ |r̄t| − 2It ≤ 2It .
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(a) Setup 1 (larger ∆i values).
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(b) Setup 2 (smaller ∆i values).
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Figure 3. Regret versus number of iterations.

3.3. QuBan Performance

Our main theorem in App. C provides an upper bound on
the regret and the average number of bits communicated,
when QuBan is used on top of any MAB algorithm. At a
high level the theorem states that if QuBan is applied on
top of a MAB algorithm with sublinear regret, it requires
an average number of bits asymptotically bounded by 7 (3
bits in our numerical results). The theorem also shows that
QuBan maintains properties for the quantized reward, that
include the Markov property, unbiasdness, and bounded
variance, which result in achieving the same regret bound
as the unquantized case up to a factor of

√
5/4.

4. Numerical Evaluation
We here present representatives of our numerical results;
additional plots are included in App. E.

Quantization Schemes. We compare QuBan against the
baseline schemes described next.
Unquantized. Rewards are conveyed using the standard 32
bits representation.
r-bit SQ. We implement r-bit stochastic quantization, by
using the quantizer described in App. B, with 2r levels uni-
formly dividing a range [−M,M ].
QuBan. We implement a minor variation of QuBan de-
scribed in App. D. The variant maintains the same quantized
value and only changes its encoding in the neighborhood of
µ̂(t). We implemented the avg-pt, the avg-arm-pt and the
contextual reward choice for µ̂(t) (described in Section 3).

MAB Algorithms. We use quantization on top of:
(i) the UCB implementation in Lattimore & Szepesvári,
2020, chapter 8. The UCB exploration constant is chosen to
be σq , an estimate of the standard deviation of the quantized
reward distribution.
(ii) the ε-greedy algorithm in Lattimore & Szepesvári, 2020,
chapter 6, where εt is set to be εt = min{1, Cσqk

t∆2
min
}.

(iii) the LinUCB algorithm for stochastic linear bandits in
Lattimore & Szepesvári, 2020, chapter 19.

MAB Setup. We simulate three cases. In each case we

average over 10 runs of each experiment.
• Setup 1: (Figs 3(a)). We use k = 100,M = 100, C =
10, the arms’ means are picked from a Gaussian distribu-
tion with mean 0 and standard deviation 10 and the reward
distributions are conditionally Gaussian given the actions
At with variance 0.1. The parameter σq is set to be 0.1 for
QuBan and 200/2r − 1 for the r-bit SQ.
• Setup 2: (Figs 3(b)) This differs from the previous only
in that the means are picked from a Gaussian distribution
with mean 95 and standard deviation 1 (leading to smaller
∆i).
• Setup 3: (Figs 3(c)). This is our contextual bandit setup
with parameters included in App. E. We evaluate the regret
and the average number of bits used by QuBan as well as
the 3 and 1 bit stochastic quantizers in the interval [−10, 10]
(the interval in which we observe the majority of rewards).
These quantization schemes are used on top of the LinUCB
algorithm. The LinUCB exploration constant is chosen to
be σq, where σq is set to be 0.1 for QuBan and 20

2r−1 for
the r-bit SQ.

Results. Fig. 3 plots the regret R̂n in (1) vs. the number
of iterations. In App. E, we also plot the number of bits
required to achieve a certain average regret. We find that:
• QuBan in all three setups offers minimal or no regret
increase compared to the unquantized rewards regret and
achieves savings of tens of thousands of bits as compared to
unquantized communication.
• Both QuBan avg-pt and avg-arm-pt achieve the same
regret (they are not distinguishable in Fig. 3 and thus we use
a common legend), yet avg-arm-pt uses a smaller number of
bits when the means of the arms tend to be well separated
(Fig. 4(a) in App. E) while avg-pt uses a smaller number
of bits when they tend to be closer together (Fig. 4(b) in
App. E).
• 1-bit SQ significantly diverges in most cases; 3-bit and
5-bit SQ show better performance yet still not matching
QuBan with a performance gap that increases when the
arms means are closer (∆i smaller), and hence, more diffi-
cult to distinguish.
• QuBan in all three setups achieves B̂n ≈ 3 (plots are
provided in App. E).
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