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Abstract
In batch reinforcement learning, there can be
poorly explored state-action pairs resulting in
poorly learned, inaccurate models and poorly per-
forming associated policies. Various regulariza-
tion methods can mitigate the problem of learn-
ing overly-complex models in Markov decision
processes (MDPs), however they operate in tech-
nically and intuitively distinct ways and lack a
common form in which to compare them. This
paper unifies three regularization methods in a
common framework– a weighted average transi-
tion matrix. Considering regularization methods
in this common form illuminates how the MDP
structure and the state-action pair distribution of
the batch data set influence the relative perfor-
mance of regularization methods. We confirm
intuitions generated from the common framework
by empirical evaluation across a range of MDPs
and data collection policies.

1. Introduction
In certainty-equivalence reinforcement learning, the esti-
mated model is treated as accurate when finding the opti-
mal policy, without taking into account model uncertainty
(Goodwin & Sin, 2014). Consequently, when acting accord-
ing to certainty-equivalence control, we risk finding a policy
tailored to a model that is overly-expressive for the amount
of data. This is especially problematic in a batch setting, as
further exploration is not possible to improve the model.

Many regularization methods address the problem of over-
fitting, for example reducing the planning horizon, using
the posterior mean transition matrix under a Bayesian prior,
or adding stochasticity to policies during planning. How-
ever, a challenge arises in understanding how they relate
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and choosing between them because regularization meth-
ods act on different elements of the MDP. In the methods
listed above, a reduced planning horizon modifies the dis-
count factor, planning using the posterior mean transition
matrix modifies the transition matrix, and planning over the
set of stochastic policies modifies the set of policies over
which we optimize. Furthermore, their interpretations differ,
for instance in the previously mentioned cases: decreasing
the planning horizon, infusing outside information into the
model, and planning over a stochastic set of policies.

Given certain constraints, the posterior mean transition ma-
trix under a Bayesian prior is equivalent to a weighted aver-
age of the maximum likelihood estimator (MLE) transition
matrix and the transition matrix implied by the prior. Simi-
larly, we express the other two regularization methods above
as a weighted average between the MLE transition matrix
and a regularization matrix of another form. In this common
Bayesian-like form, instead of comparing across disparate
elements of the MDP, we can simply compare the form of
the regularization matrix in each case and select the one that
is most appropriate for the situation. This framing suggests
that a uniform Bayesian prior performs better in an MDP
with densely-interconnected states, a lower discount factor
performs better when balancing goals of different timescales,
and planning over stochastic policies is preferable to avoid
a catastrophic outcome. Simulations confirm that these hy-
potheses hold in many cases, but also underscore the need
to take the data collection policy as well as the MDP into
account when selecting a regularization method.

2. Regularization in Certainty-Equivalence
RL: Background and Related Work

Bayesian Prior as Regularization A prior encodes ex-
pert knowledge, information from previous studies, or other
outside information. We can also view a prior on the tran-
sition function as a form of regularization since it forces
the model not to overfit when data is limited (Poggio &
Girosi, 1990). In this paper, we consider planning using
the posterior mean of the transition matrix under a Dirichlet
prior as a regularized form of the transition matrix.
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Discount Regularization Jiang et al. (2015) demonstrate
that using a lower discount factor often leads to learning a
policy that performs better than the one learned using the
true discount factor. They prove that a lower discount factor
restricts planning to a less complex set of policies, thereby
avoiding overfitting. They further demonstrate that the ben-
efit of a lower discount factor is increasingly pronounced
in cases where the model is estimated from a smaller data
set. Amit et al. (2020) refer to this concept as “discount
regularization,” a term which we will use here.

Planning over ε-Greedy Policies Arumugam et al.
(2018) propose a regularization method where planning is
conducted over the set of ε-greedy policies rather than deter-
ministic policies. The added stochasticity prevents tailoring
the policy too closely to the model. Like discount regular-
ization, planning over ε-greedy policies restricts the class of
policies that can be optimal (Arumugam et al., 2018).

Related Work: Other Regularization Methods Be-
yond the methods included in our unified framework, state
aggregation maps the true MDP to a simpler, abstract rep-
resentation. States are grouped by characteristics such as
action-value function or optimal action (Li et al., 2006). An-
other method, L2 regularization, introduces a complexity
penalty, balancing a simpler model against one that fits the
data more closely. For example, Amit et al. (2020) pro-
vide a framework to unify discount regularization with L2

regularization in TD learning. Their use of L2 regulariza-
tion penalizes large value estimates, encouraging consistent
value estimates across state-action pairs. In contrast, we
frame methods as regularizing the transition matrix, thereby
restricting model complexity.

3. Notation and Definitions
Methods in this paper are applied in a finite MDP setting.
An MDP M is characterized by < S,A,R, T, γ >, defined
as follows. S: State space of sizeN . A: Action space. R(s):
Reward function. R generally maps each state-action pair
to a real-valued reward. In this paper, we consider rewards
as a function of states only. T (s′|s, a): Transition function,
mapping each state-action pair to a probability distribution
over successor states. γ: Discount factor, 0 ≤ γ < 1. We
assume T and R are unknown and estimated from the data.

4. Unification: Regularization as a Weighted
Average Transition Matrix

Each method above modifies a different element of the MDP.
To compare, we frame each as a weighted average of the
MLE transition matrix and a matrix of another form. In this
framework, we can compare by analyzing the matrix that is
averaged with the MLE in each case.

Dirichlet Prior We consider a Dirichlet distribution over
the vector of successor state probabilities for a state-
action pair, T (s, a) = 〈p1, ..., pN 〉. We assume prior
Pprior(T (s, a)) = Dirichlet(〈α1, ..., αN 〉). The poste-
rior mean can be expressed as a weighted average of
T̂MLE(s, a), the MLE of T (s, a), and Tprior mean(s, a), the
transition matrix implied by the prior:

Tpost mean(s, a) = (1− ε)T̂MLE(s, a) + εTprior mean(s, a)

where ε =
∑
αi∑

ci+
∑
αi

and ci is the transition count from
state s to state i in the data set.

The expression above is written for a single state s. To
express the matrix Tpost mean(a) as a weighted average of the
MLE and the prior transition matrix, ε must be equal for
all states. If we assume (1)

∑
ci equal across all states for

given action a (uniform visits), and (2)
∑
αi equal across

all states for given action a (identical priors), then we can
write the matrix of posterior means as

T̂ (a) = (1− ε)T̂MLE(a) + εTprior mean(a) (1)

(Full derivation in Appendix A.1.) Condition (2) holds for
the choice of a uniform prior in empirical examples, however
condition (1), uniform visits, is restrictive and unrealistic.
We consequently do not enforce uniform visits in examples,
however the weighted average form still provides insight in
comparing this regularization form to others.

Discount Regularization To express discount regulariza-
tion in the form of Equation 1, consider the matrix form of
the Bellman equation V = R + γTV . Let γl < γ be the
lower value of the discount factor used for regularization.
We write γlT from the Bellman equation under discount
regularization as the product of γ, the true discount factor
for the MDP, and a weighted average matrix:

γlT = γ[(1− ε)T + εTzeros]

where Tzeros is a matrix of zeros and ε = γ−γl
γ .

Hence using a lower discount factor is equivalent to using
γ, the true value of the discount factor for the MDP, and re-
placing the transition matrix with its weighted average with
a matrix of zeros. Applying this to our unified framework,
we replace the MLE transition matrix for action a with the
regularized form:

T̂ (a) = (1− ε)T̂MLE(a) + εTzeros (2)

(Full derivation in Appendix A.2.)

Planning over ε-Greedy Policies Finally, we frame plan-
ning over the set of ε-greedy policies as a weighted average
transition matrix. When finding the optimal policy from the
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estimated MDP by policy iteration, all policies are treated as
ε-greedy. Then we perform the greedy, deterministic policy
that had the best ε-greedy performance.

When following an ε-greedy policy, for greedy action a,
the agent transitions according to transition matrix T (a)
with probability (1− ε) and chooses uniformly at random
between the transition matrices for all actions with proba-
bility ε. Estimating each transition matrix by its MLE, the
transitions under an ε-greedy policy corresponds to:

T̂ (a) = (1− ε)T̂MLE(a) + ε
1

|A|
∑
a′

T̂MLE(a
′) (3)

Recall that we restrict our consideration to the case of state-
dependent rewards R(s). Under this assumption, planning
over the set of ε-greedy policies is equivalent to replacing
the MLE transition matrix for each action with Equation 3
before computing the optimal greedy policy.

5. Discussion of Unified Framework
With the methods expressed in a common form, we can now
make predictions about their relative performance.

Uniform Prior and Discount Regularization Connection
A surprising result revealed by the unified form is that,
when constrained to the weighted average form (uniform
exploration and equal priors), a uniform prior produces the
same optimal policy as discount regularization for the same
value of ε.

Theorem 1. Let M1 and M2 be finite-state MDPs with
identical state space, action space, and reward function. Let
M1 have transition function T and discount factor (1− ε)γ.
Let M2 have discount factor γ and transition function (1−
ε)T + εTunif , where Tunif is the uniform transition matrix.
Then M1 and M2 have the same optimal policy.

Proof. See Appendix A.3.1 for proof.

Impact of MDP Structure A uniform Dirichlet prior is
a good regularizer in a dense world. With a uniform prior,
the posterior transition matrix is not constrained by the
connections between states in the true MDP. If the MDP has
a high level of connectivity between states, the connectivity
of a uniform prior is appropriate, however in the case of a
sparsely connected MDP, assuming all states are linked is
unlikely to be optimal.

Discount regularization balances between planning lengths.
The discount factor determines planning horizon, priori-
tizing shorter- versus longer-term rewards. The weighted
average view of discount regularization is consistent with
the view of discounting as causing the agent to act as if it

transitions according to the true transition matrix with prob-
ability 1− ε and exit the MDP (represented by the matrix
of zeros) with probability ε (Sutton & Barto, 2018, p. 113).
Faced with the prospect of exit, the agent prioritizes closer
rewards. We predict that this is beneficial when balanc-
ing the trade-offs of differently sized rewards at different
distances.

ε-greedy planning avoids catastrophic outcomes. In the ε-
greedy case, averaging the transition matrices of all actions
causes the agent to act as if there is more stochasticity in
the transitions. We hypothesize that the added randomness
during planning will cause the agent to find a more conser-
vative policy and perform better in MDPs with catastrophic
outcomes.

Impact of Data Collection Policy In the unified form
for discount regularization, the regularization matrix is the
same for all state-action pairs. In contrast, the regularization
matrix for planning over ε-greedy policies is the same for all
actions, but differ by state. Finally, a Dirichlet prior, when
not constrained to uniform visits, regularizes each state-
action pair separately. Therefore, for data sets with uneven
counts across states and/or actions, we expect a Dirichlet
prior to perform best, followed by ε-greedy planning then
discount regularization because of the ability to separately
tailor the regularization to the state-action pair.

Furthermore, examining the equivalence between discount
regularization and the weighted average form of the uni-
form Dirichlet prior reveals that discount regularization
functions like a Dirichlet prior with all parameters of mag-
nitude γ−γl

γl

∑
ci
N (see Appendix A.3.2 for derivation). This

underscores the limitations of discount regularization under
uneven data collection. The magnitude of the prior is higher
for state-action pairs with more data, which is not desirable.

6. Empirical Examples
Equipped with a common framework, we implement the
three regularization methods across simple tabular examples.
We explore the impact of following characteristics on the
loss of the resulting policy: MDP structure, probability that
an action in the data set is generated by the optimal policy,
starting state of trajectories in the data set, and data set size.

6.1. MDP Types

Dense world: Interconnected Grid This example MDP
illustrates dense and complex connections between states.
For each action, the agent transitions according to the arrows
in Figure 1(a) with equal probability. Rewards are normally
distributed with means as indicated.
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Figure 1. (a) Interconnected Grid (b) Cliff Walk (c) Two Goals

Catastrophic Outcome: Cliff Walk The Cliff Walk ex-
ample from Sutton & Barto (2018) represents an agent that
moves left, right, up, and down, with added noise. Mean
rewards are -100 in the cliff and -1 for all other transitions.
After reaching state G, the agent receives no further rewards.

Different Planning Lengths: Two Goals The final ex-
ample MDP depicts differently sized rewards on opposite
ends of a linear grid. The agent moves left, right, or up, each
with noise. Transitioning to state 0 results in a reward of
mean 0.10 and transitioning to state 11 results in a reward
of mean 1. Rewards for all other transitions have mean 0
and after reaching either the small or large reward, the agent
receives no further rewards.

6.2. Implementation

For each MDP, for a range of data collection policies and
sizes, we generate trajectories from the true MDP. We esti-
mate the transition and reward matrices as the MLE. For a
range of ε between 0 and 1 (or prior magnitude from 0 to
1000), we regularize the transition matrix for each action.
We find the optimal policy via policy iteration. The policy
that is optimal in the estimated, regularized MDP and the
optimal policy for the true MDP are compared in terms of
performance on the true MDP. Details are in Appendix B.

6.3. Results

To compare regularization methods across MDPs and data
sets, we plot the loss of the resulting policy. We also plot
mean squared error (MSE) of the estimated, regularized
transition matrix compared to the true transition matrix to
investigate the extent to which better approximating the true
transition matrix drives lower loss.

Hypothesized interactions between MDP structure and
regularization are confirmed, although mediated by
data collection policy. In Figure 2, comparing results by
MDP confirms our predictions under the condition of uni-
formly random data collection, although less pronounced in
the case of Interconnected Grid. Deviating from a uniformly
random data collection policy by generating an increas-
ing percentage of the actions from the true optimal policy
impacts which method minimizes loss as well as whether
regularization is beneficial at all. We note a reversal in
which regularization method minimizes loss for the Cliff
Walk when data is not fully random, and with Two Goals,
no regularization method is beneficial as actions in the data
set are generated increasingly from the optimal policy.

Data set size and starting state demonstrate less impact
on relative loss. Number and length of trajectories do not
considerably impact relative performance. The impact of
trajectory starting state varies by MDP. While the ordering
of methods by loss is not dramatically shifted across starting
states, the shape of the loss curves indicate a differing impact
of regularization. Results are in Appendices C.2 and C.3.

Impact of uneven data collection is inconclusive. We
hypothesized that regularizers that are more flexible in allow-
ing different amounts of regularization across state-action
pairs outperform under uneven exploration. Both generating
the data set from the optimal policy and restricting starting
state cause uneven exploration, yet we do not clearly ob-
serve the hypothesized relationship. Further investigation is
needed to isolate the impact of uneven exploration.

Lower loss does not consistently correspond to lower
transition matrix MSE. Although loss is partially driven
by the ability to accurately replicate the true transition ma-
trix, there are other factors impacting loss to be identified.

To summarize, choosing between regularization methods
can be viewed in terms of choosing the regularization matrix
from the weighted average form that best aligns with the
context at hand in terms of both the data collection policy
and MDP structure. The empirical examples in this section
provide evidence that both of these factors impact relative
loss. Further work remains to formalize the conditions in
which each regularizer is preferred.
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Figure 2. Loss and MSE by Optimality of Data Collection Policy. Predictions by MDP hold for random data collection, but results vary
when data partially- or fully-generated from optimal policy. Random start states; 15 trajectories of length 10 each for Interconnected Grid
and Two Goals; 25 trajectories of length 20 for Cliff Walk.

7. Conclusion
We have unified three MDP regularization methods into a
common framework that helps us to predict and understand
their performance in different settings. The common form
and empirical examples demonstrate that it is vital to con-
sider both the the MDP structure and the data collection
policy when deciding between regularization methods. The
unified form also motivates viewing discount regularization
as replacing the maximum likelihood estimate transition
matrix with its posterior mean under a uniform prior, when
the data set is constrained to uniform state visitation. In
future work, we will leverage the unified framework to
systematically characterize MDPs and data sets to select a
regularization method.
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APPENDIX

A. Full Derivation of Unified Form
A.1. Dirichlet Prior

Assume prior Pprior(T (s, a)) = Dirichlet(〈α1, ..., αN 〉) on transition matrix T (s, a) and let 〈c1, ..., cN 〉 be the transition
count data observed from state s to states 1 to N under action a. The posterior of T (s, a) follows a Dirichlet distribution
with parameter 〈c1 + α1, ..., cN + αN 〉 and the posterior mean is:

Tpost mean(s, a) = 〈
c1 + α1∑
ci +

∑
αi
, ...,

cN + αN∑
ci +

∑
αi
〉

Tpost mean(s, a) = 〈
c1∑

ci +
∑
αi
, ...,

cN∑
ci +

∑
αi
〉+ 〈 α1∑

ci +
∑
αi
, ...,

αN∑
ci +

∑
αi
〉

Multiply each term by 1.

Tpost mean(s, a) =

∑
ci∑
ci
〈 c1∑

ci +
∑
αi
, ...,

cN∑
ci +

∑
αi
〉+

∑
αi∑
αi
〈 α1∑

ci +
∑
αi
, ...,

αN∑
ci +

∑
αi
〉

=

∑
ci∑

ci +
∑
αi
〈 c1∑

ci
, ...,

cN∑
ci
〉+

∑
αi∑

ci +
∑
αi
〈 α1∑

αi
, ...,

αN∑
αi
〉

Let T̂MLE(s, a) be the MLE of T (s, a): T̂MLE(s, a) = 〈 c1∑
ci
, ..., cN∑

ci
〉.

Let Tprior mean(s, a) be the transition matrix implied by the prior for state s and action a. Tprior mean(s, a) = 〈 α1∑
αi
, ..., αN∑

αi
〉.

Using T̂MLE(s, a) and Tprior mean(s, a), we can write Tpost mean(s, a) as follows.

Tpost mean(s, a) =

∑
ci∑

ci +
∑
αi
T̂MLE(s, a) +

∑
αi∑

ci +
∑
αi
Tprior mean(s, a)

Let ε =
∑
αi∑

ci+
∑
αi

. Consequently, we have:

Tpost mean(s, a) = (1− ε)T̂MLE(s, a) + εTprior mean(s, a)

The expression above is for a single state s. To write Tpost mean(a) as a matrix for all states for a given action, we must pull
out the same factor of ε and (1− ε) for all states. Hence we assume:

1.
∑
ci equal across all states for a given action a, and

2.
∑
αi equal across all states for a given action a,

Assuming the conditions above and taking the matrix of posterior means as our estimate of T (a):

T̂ (a) = (1− ε)T̂MLE(a) + εTprior mean(a)

A.2. Discount Regularization

Consider the matrix form of the Bellman equation, using γl < γ, the lower value of the discount factor used for regularization:
V = R+ γlTV . By the steps below, we write the product γlT from the Bellman equation as the product of true discount
factor γ and a weighted average matrix.

First add and subtract γ.

γlT = [γ − (γ − γl)]T

Pull out a factor of γ.

γlT = γ(1− (γ − γl)
γ

)T
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Let Tzeros be an appropriately sized matrix of zeros. Adding γTzeros to the right hand side does not change the equality.

γlT = γ[(1− γ − γl
γ

)T + Tzeros]

Multiply the Tzeros term inside the parentheses by γ−γl
γ . Tzeros is all zeros so a multiplier does not affect the equality.

γlT = γ[(1− γ − γl
γ

)T + (
γ − γl
γ

)Tzeros]

Let ε = γ−γl
γ ,

γlT = γ[(1− ε)Ttrue + εTzeros]

We have replaced the product of the regularization discount factor and the true transition matrix with the product of the true
discount factor and a weighted average of the transition matrix and a matrix of zeros. To put this in the unified framework,
consider regularizing the MLE transition matrix for action a via discount regularization. Using the proof in this section, our
regularized estimated transition matrix for action a, T̂ (a), is:

T̂ (a) = (1− ε)T̂MLE(a) + εTzeros

A.3. Discount Regularization - Uniform Prior Connection

A.3.1. PROOF OF THEOREM 1: EQUIVALENCE OF WEIGHTED AVERAGE FORM

First we show that the optimal policy is not affected by adding the same constant x to all rewards r(s, a). Let
Qπx(s, a) be the action-value function for policy π when adding constant x to all rewards. Then,

Qπx(s, a) = Eπ[
∑∞
k≥0 γ

k(r(sk, ak) + x)|s0 = s, ao = a] = Eπ[
∑∞
k≥0 γ

kr(sk, ak)|s0 = s, ao = a] + x
1−γ

and the action-value function of the optimal policy is, Q∗x(s, a) = maxπ[Eπ[
∑∞
k≥0 γ

kr(sk, ak)|s0 = s, ao = a] + x
1−γ ]

The optimal action at state s is πopt(s) = argmaxaQ
∗
x(s, a). The first term of the expression for Q∗x(s, a) does not contain

x and the second does not depend on a, therefore πopt is not affected by the choice of any constant added to r(s, a).

Next, observe that Q∗x(s, a) is the solution to Bellman’s optimality equation, Qx(s, a) = r(s, a) + x +
γ
∑
s′ T (s, a, s

′)maxa′Qx(s′, a′). From above, we established that πopt = argmaxaQ
∗
x(s, a) does not depend on x.

Therefore the solution to Bellman’s optimality equation also does not depend on x.

Bellman’s optimality equation for a transition matrix regularized by averaging with the uniform transition matrix
can be written in terms of a scaled discount factor and added constant. In this case, Bellman’s optimality equation is
Q∗(s, a) = r(s, a) + γ

∑
s′ [((1− ε)T (s, a, s′) + ε 1n )maxa′Q∗(s′, a′)]

Q∗(s, a) = r(s, a) + γ(1− ε)
∑
s′ T (s, a, s

′)maxa′Q∗(s′, a′) + γ εn
∑
s′ maxa′Q∗(s′, a′)

Letting x = γ εn
∑
s′ maxa′Q∗(s′, a′), Bellman’s optimality equation is:

Q∗(s, a) = r(s, a) + x+ γ(1− ε)
∑
s′ T (s, a, s

′)maxa′Q∗(s′, a′)

x is constant with respect to a, so by this first section of the proof, it does not affect the optimal policy. Therefore we can
write the expression for the optimal policy at state s as:
πopt(s) = argmaxaQ

∗(s, a)
πopt(s) = argmaxa(r(s, a) + x+ γ(1− ε)

∑
s′ T (s, a, s

′)maxa′Q∗(s′, a′))
πopt(s) = argmaxa(r(s, a) + γ(1− ε)

∑
s′ T (s, a, s

′)maxa′Q∗(s′, a′))

This is the optimal policy for the MDP with the original transition matrix and discount factor (1− ε)γ. This is equivalent to
discount regularization, and matches the value of epsilon ε = γ−γl

γ that we derived in the previous section.

A.3.2. DIRICHLET PRIOR IMPLIED BY DISCOUNT REGULARIZATION

The equivalence proof above demonstrates that, for a given value of ε, averaging the transition matrix with the uniform
matrix or with the matrix of zeros yields the same policy. Averaging with the uniform matrix is only exactly equivalent to a
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uniform prior if the sum of the transition counts is equal for all starting states, for a given action. Recall that ε =
∑
αi∑

αi+
∑
ci

,
where ci are the transition counts from the data and αi are the parameters of the Dirichlet prior. We can solve to find the prior
magnitude αi implied by the choice of ε and observed transition counts

∑
ci in the weighted average form. This reveals

what Dirichlet prior we are implicitly using when we regularize by the weighted average uniform form, and consequently
the Dirichlet prior implied by discount regularization.

From ε =
∑
αi∑

αi+
∑
ci

, observe
∑
αi =

ε
1−ε

∑
ci. We assume N states. For the uniform distribution, all αi for a given

state are the same, so substitute
∑
αi = Nαi to get αi = ε

1−ε

∑
ci
N . Therefore, using a lower discount rate yields the same

optimal policy as setting a uniform Dirichlet prior over each row of the transition matrix with magnitude ε
1−ε

∑
ci
N .

We can relate this back to the value of γ. Recall ε = γ−γl
γ , where γ is the true value of the discount factor and γl is the lower

value used for regularization. Plugging this into the expression above yields αi = γ−γl
γl

∑
ci
N . So discount regularization

functions like a Dirichlet prior

Tprior(s, a) ∼ Dirichlet(
γ − γl
γl

∑
ci

N
, ...,

γ − γl
γl

∑
ci

N
) (4)

where again
∑
ci is the total number of transitions in the data starting at state s.

B. Implementation Details

Algorithm 1 Regularization Loss Pseudocode
Input: MDP, epsilon list, regularization method
for i = 1 to 5000 do

Generate data set: n trajectories of length l
Estimate MDP from data
for ε in epsilon list do

Regularize transition matrices by amount ε
Calculate optimal policy π of regularized MDP
Calculate loss comparing π vs. true optimal policy in true MDP

end for
end for
Average loss by ε value across all data sets

To compare policies resulting from different regularization methods, we implement the following procedure, summarized
in Algorithm 1. Separately for each of the three example MDPs, we repeatedly generate data sets of trajectories from the
true MDP. We estimate the transition and reward matrices as the MLE of the data. The estimate of the reward function at
state-action pair (s, a) is then the mean of the observed rewards at (s, a). The estimated probability of transition from state s
to state s′ given action a is the number of times the transition from s to s′ is observed given action a divided by the number
of times state-action pair (s, a) is observed in the data set. For state-action pairs that are not observed in the data, we assume
equal transition probabilities to all states and reward of 0.50.

For each of a list of values of ε between 0 and 1 (or for uniform prior, a list of multipliers between 0 and 1000), we regularize
the estimated transition matrix for each action. We then find the optimal policy via policy iteration. Separately, we calculate
the true optimal policy using the known, true MDP. We then evaluate the policy found from the estimated, regularized MDP
and the policy from the true MDP, both in the true MDP. We compute loss as the weighted average difference in values of
the two policies across all states, weighted by the starting state distribution.

To explore the impact on different aspects of the data set, we vary the trajectory starting state, the length and number of
trajectories, and the probability of an action being generated from the optimal policy versus a random policy. For the
Cliff Walk, trajectory starting states considered are uniformly random, start at S, or start within 2 states of G. For the
Interconnected Grid, starting states are either uniformly random, limited to 5 of the 10 states, or limited to 1 state. In the
case of Two Goals, starting states are uniformly random, starting in state 1 (next to the small reward) or starting in state 10
(next to the large reward).
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The MSE is the squared difference in transition probabilities between the true and estimated transition matrices, averaged
across all state-action pairs. For discount regularization, the weighted average form is not a true transition matrix. There is
an implicit absorbing state that the agent enters with probability ε at each step. For discount regularization, we calculate the
MSE in relation to the augmented transition matrix with the absorbing state and also without it.

C. Additional Results
In the case of discount regularization, the regularized form is not a true transition matrix, so we also plot its MSE taking into
account the implicit absorbing state. We display plots of the MSE without the absorbing state as well because the scale
allows for viewing the differences in detail.

C.1. Results by Distance from Optimal

Figure 3. Loss, varying probability that actions in the data set are drawn from optimal policy. Random start states; 15 trajectories
of length 10 each for Interconnected Grid and Two Goals; 25 trajectories of length 20 for Cliff Walk. Percentages chosen to show change
in shape of curve.
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Figure 4. MSE, varying probability that actions in the data set are drawn from optimal policy. Random start states; 15 trajectories
of length 10 each for Interconnected Grid and Two Goals; 25 trajectories of length 20 for Cliff Walk. Percentages chosen to show change
in shape of curve.

Figure 5. MSE, varying probability that actions in the data set are drawn from optimal policy. Random start states; 15 trajectories
of length 10 each for Interconnected Grid and Two Goals; 25 trajectories of length 20 for Cliff Walk. Percentages chosen to show change
in shape of curve. Discount regularization with absorbing state removed for scale, to show detail on other curves.
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C.2. Results by Data Set Size

C.2.1. INTERCONNECTED GRID

Figure 6. Interconnected Grid Loss varying number and length of trajectories in data set. Random start states, random policy.

Figure 7. Interconnected Grid MSE varying number and length of trajectories in data set. Random start states, random policy.

Figure 8. Interconnected Grid MSE varying number and length of trajectories in data set. Random start states, random policy. Discount
regularization with absorbing state removed for scale, to show detail on other curves.
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C.2.2. CLIFF WALK

Figure 9. Cliff Walk Loss varying number and length of trajectories in data set. Random start states, random policy.

Figure 10. Cliff Walk MSE varying number and length of trajectories in data set. Random start states, random policy.

Figure 11. Cliff Walk MSE varying number and length of trajectories in data set. Random start states, random policy. Discount
regularization with absorbing state removed for scale, to show detail on other curves.
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C.2.3. TWO GOALS

Figure 12. Two Goals Loss varying number and length of trajectories in data set. Random start states, random policy.

Figure 13. Two Goals MSE varying number and length of trajectories in data set. Random start states, random policy.

Figure 14. Two Goals and MSE varying number and length of trajectories in data set. Random start states, random policy. Discount
regularization with absorbing state removed for scale, to show detail on other curves.
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C.3. Results by Trajectory Start State

C.3.1. INTERCONNECTED GRID

Figure 15. Interconnected Grid Loss varying start state. Random policy, 15 trajectories of length 10.

Figure 16. Interconnected Grid MSE varying start state. Random policy, 15 trajectories of length 10.

Figure 17. Interconnected Grid MSE varying start state. Random policy, 15 trajectories of length 10. Discount regularization with
absorbing state removed for scale, to show detail on other curves.
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C.3.2. CLIFF WALK

Figure 18. Cliff Walk Loss varying start state. Random policy, 25 trajectories of length 20.

Figure 19. Cliff Walk MSE varying start state. Random policy, 25 trajectories of length 20.

Figure 20. Cliff Walk MSE varying start state. Random policy, 25 trajectories of length 20. Discount regularization with absorbing state
removed for scale, to show detail on other curves.
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C.3.3. TWO GOALS

Figure 21. Two Goals Loss varying start state. Random policy, 15 trajectories of length 10.

Figure 22. Two Goals MSE varying start state. Random policy, 15 trajectories of length 10.

Figure 23. Two Goals MSE varying start state. Random policy, 15 trajectories of length 10. Discount regularization with absorbing state
removed for scale, to show detail on other curves.


