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1. Introduction
Generalization is a central challenge in reinforcement learn-
ing (RL), and several works have observed empirically
(1; 2; 3; 4) that generalization to new situations poses a
significant problem to RL policies learned from a fixed
training set of situations. In standard supervised learning, it
is known that in the absence of distribution shift and with
appropriate inductive biases, optimizing for performance on
the training set (i.e., empirical risk minimization) translates
into good generalization performance. It is tempting to sup-
pose that the generalization challenges in RL can be solved
in the same manner as empirical risk minimization in su-
pervised learning: when provided a training set of contexts,
learn the optimal policy within these contexts and then use
that policy in new contexts at test-time.

Perhaps surprisingly, we show that such “empirical risk
minimization” approaches can be sub-optimal for general-
izing to new contexts in RL, even when new contexts are
drawn from the same distribution as the training contexts.
As an anecdotal example of why this sub-optimality arises,
imagine a robotic zookeeper for feeding otters that must be
trained on some set of zoos. When placed in a new zoo, the
robot must find and enter the otter enclosure, and has two
paths to do so: either peek through all the habitat windows
looking for otters, which succeeds with 95% probability in
all zoos, or to follow an image of a hand-drawn map of the
zoo that unambiguously identifies the otter enclosure, which
will succeed as long as the agent is able to successfully parse
the image. In every training zoo, the otters can be found
more reliably using the image of the map, and so an agent
trained to seek the optimal policy in the training zoos would
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learn a classifier to predict the identity of the otter enclosure
from the map, and enter the predicted enclosure. This clas-
sification strategy is optimal on the training environments
because the agent can learn to perfectly classify the training
zoo maps, but it is sub-optimal for generalization, because
the learned classifier will not be able to perfectly classify ev-
ery new zoo map at test-time.1 If the learned map classifier
succeeds on anything less than 95% of new zoos at test-time,
the strategy of peeking through the windows, although sub-
optimal in all the training environments, turns out to be a
more reliable strategy for finding the otter habitat in a new
zoo, and results in higher expected returns at test-time.

In the zookeeper example, although the hand-drawn map
provides the exact location of the otter enclosure (and so the
enclosure’s location is technically fully observed), the agent
cannot identify the true parameters of the map classifier
from the small set of maps seen at training time, and so
the location of the otters is implicitly obfuscated from the
agent. More generally, we make the observation that, even
in fully-observable domains, the agent’s epistemic uncer-
tainty renders the environment implicitly partially observed
at test-time. We formalize this observation, and show that
generalizing optimally at test-time corresponds to solving
a partially-observed Markov decision process that we call
an epistemic POMDP, which is induced by the agent’s
epistemic uncertainty about the test environment.

That uncertainty about MDP parameters can be modelled
as a POMDP is well-studied in Bayesian RL when training
and testing on a single task in an online setting, primarily
in the context of exploration (5; 6; 7; 8). However, as we
will discuss, this POMDP interpretation has significant and
previously undescribed consequences for the generalization
problem in RL, where an agent cannot collect more data
online, and must instead learn a policy from a fixed set of
training contexts that generalizes to new contexts at test-
time. We show that the standard approaches that seek to
learn policies under such uncertainty do not appropriately
account for the induced partial observability, and can be
arbitrarily sub-optimal for test-time generalization in theory
and in practice. Maximizing expected return in the epis-

1Much as a supervised learning algorithm cannot attain exactly
zero test error, even if it generalizes well.
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temic POMDP emerges as a principled approach to learning
policies that generalize well, and we propose LEEP, an
ensemble-based algorithm derived from the POMDP.

The primary contribution of this paper is to use Bayesian RL
techniques to reframe generalization in RL as the problem of
solving a partially observed Markov decision process, which
we call the epistemic POMDP. The epistemic POMDP high-
lights the additional challenges needed for optimal gener-
alization in RL, as compared to supervised learning. We
show both theoretically and empirically the necessity of
reasoning about this partial observability in order to max-
imize test-time performance, and suggest simple methods
based on the POMDP formulation for doing so. Empirically,
we demonstrate that our algorithm derived from the epis-
temic POMDP achieves significant gains in performance
over current methods on several ProcGen benchmark tasks.

2. Problem Setup
We focus on generalization in contextual MDPs where the
agent is only trained on a subsample of contexts, and seeks
to generalize well across unseen contexts. A contextual
MDP is an MDPM in which the state can be decomposed
as st = (c, s′t), a context vector c ∈ C that remains constant
throughout an episode, and a sub-state s′ ∈ S ′ that may
vary: S := C × S ′. Each context corresponds to a different
situation, each with slightly different dynamics and rewards,
but some shared structure across which an agent can gen-
eralize. During training, the agent is allowed to interact
only within a sampled subset of contexts Ctrain ⊂ C. The
generalization performance of the agent is measured by
the return of the agent’s policy in the full contextual MDP
J(π), corresponding to expected performance when placed
in potentially new and unseen contexts. While our experi-
ments will be in contextual MDPs, our theoretical results
also apply to other RL generalization settings where the full
MDP cannot be inferred unambiguously from the data avail-
able during training, for example in offline reinforcement
learning (9).

3. Modeling Generalization in RL as an
Epistemic POMDP

To understand test-time generalization in RL, we study the
problem under a Bayesian perspective on epistemic uncer-
tainty. We show that training on limited training contexts
leads to an implicit partial observability at test-time that we
describe using a formalism called the epistemic POMDP.

3.1. The Epistemic POMDP

In the Bayesian framework, when learning given a limited
amount of evidence D from an MDPM, we can use a prior
distribution P(M) to construct a posterior belief distribu-

tion P(M|D) over the identity of the MDP. For learning in
a contextual MDP, D corresponds to the training contexts
Ctrain that the agent can interact with. Since the agent cannot
fully identify the MDP from the evidence, when the agent
is evaluated at test-time, it is uncertain as to which MDP
from the posterior distribution P(M|D) is being acted in.
Following a reduction common in Bayesian RL (6; 8), we
model this test-time uncertainty using a partially observed
MDPMpo that we will call the epistemic POMDP.

The epistemic POMDP is structured as follows: each
new episode in the POMDP begins by sampling a single
MDPM∼ P(M|D) from the posterior, and then the agent
interacts withM until the episode ends in this MDP. The
agent does not observe which MDP was sampled, and since
the MDP remains fixed for the duration of the episode,
this induces implicit partial observability. Effectively, each
episode in the epistemic POMDP corresponds to one of the
possible situations that the agent believes it might find itself
in at test-time.

What makes the epistemic POMDP a useful tool is that
the expected return objective in the POMDP corresponds
exactly to the expected return of the agent at test-time when
the Bayesian prior is accurate (Eq 1). Therefore, the optimal
policy in the epistemic POMDP, π∗po is the Bayes-optimal
policy for maximizing the expected test-time return.
JMpo(π) = J(π | D) := EM∼P(M)[JM(π) | D]. (1)

The epistemic POMDP is based on well-understood con-
cepts in Bayesian reinforcement learning, but we use this
construction specifically to understand generalization – a
perspective that is distinct from prior work. The equivalence
between test-time return and performance in the epistemic
POMDP allows us to use the epistemic POMDP as a proxy
for understanding how well current RL methods generalize.

3.2. Optimality in the Epistemic POMDP
We now use the structure of the epistemic POMDP to char-
acterize properties of Bayes-optimal test-time behavior and
the sub-optimality of alternative policy learning approaches.

It is well established that optimal POMDP policies are gener-
ally memory-based (10), and amongst memoryless policies,
the optimal policy may be stochastic (11; 12). Because of
the equivalence between the epistemic POMDP and test-
time behavior, these maxims are also true for Bayes-optimal
behavior for maximizing test-time performance.

Remark 3.1. The Bayes-optimal policy for maximizing test-
time performance is in general non-Markovian. When re-
stricted to Markovian policies, the Bayes-optimal policy is
in general stochastic.

Proofs of all statements in the paper are provided in Ap-
pendix B. The fact that acting optimally at test-time can
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require adaptivity (or stochasticity for memoryless policies)
provides a new perspective on and formal backing to the
various empirical studies that have found improved general-
ization performance using recurrent networks (13; 14) and
stochastic regularization penalties (15; 16; 17; 18).

It is also useful to understand when partial observability
does not play a significant role. When this is true, the
POMDP objective can coincide with a surrogate MDP
approximation, and Bayes-optimal solutions learned with
fully-observed RL algorithms. In the epistemic POMDP,if
the optimal behavior in every MDP from the posterior is
identical, then acting optimally just involves following this
optimal MDP policy, instead of reasoning about the hidden
MDP identity. Perhaps surprisingly, being optimal every-
where is also necessary for such a strategy to be Bayes-
optimal in general. The following proposition states that,
even if a policy is optimal in many (but not all) of the pos-
sible MDPs from our posterior, this “optimal” policy can
generalize poorly at test-time.

Proposition 3.1. Let ε > 0. There exists posterior distri-
butions P(M|D) where a deterministic Markov policy π is
optimal with probability at least 1− ε,

PM∼P(M|D)

(
π ∈ argmax

π′
JM(π′)

)
≥ 1− ε, (2)

but is outperformed by a uniformly random policy in the
epistemic POMDP: JMpo(π) < JMpo(πunif).

This proposition indicates the brittleness of learning policies
in an MDP model, since the learned policy may perform
poorly at test-time, even if it captures behavior on a majority
of environments in the posterior (for example, in the RL
image classification task). Due to this partial observability,
optimal policies for the MDPs in the posterior may be poor
guidelines for Bayes-optimal behavior, and in Appendix B.2,
we show that the Bayes-optimal policy may take actions that
are sub-optimal in every environment in the posterior.

As Bayes-optimal memoryless policies are stochastic, one
may wonder if simple strategies for inducing stochasticity,
such as adding ε-greedy noise or entropy regularization, can
alleviate sub-optimality. In some cases, this may be true; for
certain goal-reaching problems, entropy-regularized RL can
be interpreted as optimizing an epistemic POMDP objective
for a specific posterior distribution (Appendix B.3) (19). In
the more general setting, we show in Appendix B.4 that
entropy regularization and other general-purpose techniques
can similarly catastrophically fail in epistemic POMDPs.

In general, the structure of the epistemic POMDP indicates
that while MDP-based algorithms can serve as a useful
starting point for acquiring generalizable skills, maximizing
test-time performance may require more nuanced strategies
that more carefully reason about this partial observability.

4. Learning Policies in the Epistemic POMDP
We now turn our attention to deriving practical approximate
methods for learning policies in the epistemic POMDP.

4.1. A Lower Bound on the POMDP Objective
We begin by developing a lower bound on the return of a
policy in the epistemic POMDP, and prove that optimizing
this bound recovers the Bayes-optimal policy. We assume
access to n candidate MDPs sampled from the posterior dis-
tribution: {Mi}i∈[n] ∼ P(M | D). These samples define
an empirical approximation of the posterior distribution, and
consequently induce an empirical epistemic POMDP M̂po.

As the empirical epistemic POMDP corresponds to a collec-
tion of nMDPs 2, we will decompose the optimization prob-
lem to mimic this structure, learning n policies π1, · · · , πn,
each one in one of the MDPs from the posterior, and com-
bining these policies together to recover a single policy π.
Reducing the policy learning problem into a set of MDP
learning problems can allow us to leverage the many ad-
vances in deep RL for scalably solving MDPs. The fol-
lowing theorem, which lower-bounds the expected return
of a policy π in the empirical epistemic POMDP using the
policies {πi}i∈[n], provides a natural objective for learning
policies in this decoupled manner.
Theorem 4.1. Let π, π1, · · ·πn be n+ 1 memoryless poli-
cies, and let rmax = maxi,s,a |rMi

(s, a)|. The expected
return of π in the empirical epistemic POMDP JM̂po(π) is
bounded below as:

JM̂po(π) ≥
1

n

n∑
i=1

JMi
(πi)

−
√
2rmax

(1− γ)2n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(·|s) || π(·|s))

]
.

(3)

This theorem indicates that if the policies in the collection
{πi}i∈[n] all achieve high return in their respective MDPs
(first term) and are imitable by a single policy π (second
term), then π is guaranteed to achieve high return in the
epistemic POMDP. In contrast, if the policies cannot be
closely imitated by a single policy, this collection of policies
may not be useful for learning in the epistemic POMDP
using the lower bound. This could be the case, for example,
if each of the policies πi is trained to maximize return on its
MDPMi selfishly without any consideration to the other
policies or MDPs. To be useful for the lower bound, each
policy πi should balance between maximizing performance
on its MDP and minimizing its deviation from the other
policies in the set. The following proposition shows that if

2Note that when the true environment is a contextual MDP, a
sample does not correspond to a single training context within a
contextual MDP — it represents an approximation to the entire
contextual MDP.
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the policies are trained jointly to ensure this balance, it not
only recovers a good policy, it in fact recovers the optimal
policy in the empirical epistemic POMDP.

Proposition 4.1. Let f : {πi}i∈[n] 7→ π be a function that
maps n policies to a single policy satisfying f(π, · · · , π) =
π for every policy π, and let α be a hyperparameter satis-
fying α ≥

√
2rmax

(1−γ)2 . Then letting π∗1 , . . . π
∗
n be the optimal

solution to the following optimization problem:

{π∗i }i∈[n] = argmax
π1,··· ,πn

1

n

n∑
i=1

JMi(πi)

− α

n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(·|s) || f({πi})(·|s))

]
,

(4)
the policy π∗ := f({π∗i }i∈[n]) is optimal for the empirical
epistemic POMDP.

4.2. A Practical Algorithm: LEEP
We now derive a practical algorithm from Proposition 4.1.
To do so, we discuss two problems: how posterior sam-
ples Mi ∼ P(M|D) can be approximated, and how the
function f that combines policies should be chosen.

Approximating the posterior distribution: Although ex-
actly maintaining a posterior distribution over contextual
MDPs can be difficult, we can approximate samples from
the posterior via a bootstrap sampling technique (20). To
sample a candidate MDPMi, we sample with replacement
from the training contexts Ctrain to get a new set of contexts
Citrain, and defineMi to be the empirical MDP on this subset
of training contexts. Rolling out trials from the posterior
sampleMi then corresponds to selecting a context at ran-
dom from Citrain, and then rolling out that context.

Choosing a link function: The link function f in Proposi-
tion 4.1 that combines the set of policies together effectively
serves as an inductive bias: since policy optimization in
practice is approximate, different choices can yield com-
bined policies with different characteristics. Since optimal
behavior in the epistemic POMDP must consider all actions,
even those that are potentially sub-optimal in all MDPs in
the posterior (as discussed in Section 3.2), we use an “opti-
mistic” link function that does not dismiss any action that
is considered by at least one of the policies, specifically
f({πi}i∈[n]) = (maxi πi)(a|s) := maxπi(a|s)∑

a′ maxπi(a′|s) .

Algorithm: We learn a set of n policies {πi}i∈[n], using
a policy gradient algorithm to implement the update step.
To update the parameters for πi, we take gradient steps via
a surrogate loss constructed via the standard policy gra-
dient, augmented by a disagreement penalty between the
policy and the combined policy f({πi}i∈[n]) with a penalty
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Figure 1. Procgen. Test return for LEEP and PPO in four Procgen
environments (averaged across 5 random seeds).

parameter α > 0, as in Equation 5:

L(πi) = LRL(πi)+αEπi,Mi
[DKL(πi(a|s)‖max

j
πj(a|s))].

(5)
Combining these elements together leads to our method,
LEEP.In summary, LEEP bootstrap samples the training
contexts to create overlapping sets of training contexts
C1

train, . . . Cntrain. Every iteration, each policy πi generates
rollouts in training contexts chosen uniformly from its corre-
sponding Citrain, and is then updated according to Equation 5,
which both maximizes the expected reward and minimizes
the disagreement penalty between each πi and the combined
policy π = maxj πj .

4.3. Experimental Results on Procgen
We evaluate LEEP in the Procgen benchmark (21), a chal-
lenging suite of tasks testing generalization to unseen con-
texts. We instantiate our method using an ensemble of n = 4
policies, a penalty parameter of α = 1, and PPO (22) to
train the individual policies (implementation details in Ap-
pendix C.1). Here, we display a subset of our results, with
the rest in Appendix C.

We evaluate our method on four games in which prior work
has found a significant generalization challenge (21; 23; 24):
Maze, Heist, BigFish, and Dodgeball. In three of the envi-
ronments (Maze, Heist, and Dodgeball), our method outper-
forms PPO significantly, and in all games, the generalization
gap between training and test performance is lower for our
method. For analysis and ablations, see Appendix C.

5. Discussion
It has often been observed experimentally that generaliza-
tion in RL poses a significant challenge, but it has so far
remained an open question as to whether the RL setting
itself presents additional generalization challenges beyond
those seen in supervised learning. In this paper, we answer
this question in the affirmative, and show that, in contrast
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to supervised learning, generalization in RL results in a
new type of problem that cannot be solved with standard
MDP solution methods, due to partial observability induced
by epistemic uncertainty. We call the resulting partially
observed setting the epistemic POMDP, where uncertainty
about the true underlying MDP results in a challenging par-
tially observed problem. We present a practical approximate
method that optimizes a bound for performance in an ap-
proximation of the epistemic POMDP, and show empirically
that this approach, which we call LEEP, attains significant
improvements in generalization over other RL methods that
do not properly incorporate the agent’s epistemic uncertainty
into policy optimization. A limitation of this approach is
that it optimizes a crude approximation to the epistemic
POMDP with a small number of posterior samples, and may
be challenging to scale to better approximations to the true
objective. Developing algorithms that better model the epis-
temic POMDP and optimize policies within is an exciting
avenue for future work, and we hope that this direction will
lead to further improvements in generalization in RL.
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A. Related Work
Many empirical studies have demonstrated the tendency of RL algorithms to overfit significantly to their training envi-
ronments (1; 2; 3; 4), and the more general increased difficulty of learning policies that generalize in RL as compared to
seemingly similar supervised learning problems (25; 26; 27; 28). These empirical observations have led to a newfound inter-
est in algorithms for generalization in RL, and the development of benchmark RL environments that focus on generalization
to new contexts from a limited set of training contexts sharing a similar structure (state and action spaces) but possibly
different dynamics and rewards (29; 16; 30; 21; 31).

Generalization in RL. Approaches for improving generalization in RL have fallen into two main categories: improving
the ability of function approximators to generalize better with inductive biases, and incentivizing behaviors that are easier
to generalize to unseen contexts. To improve the representations learned in RL, prior work has considered imitating
environment dynamics (32; 33), seeking bisimulation relations (34; 35), and more generally, addressing representational
challenges in the RL optimization process (17; 23). In image-based domains, inductive biases imposed via neural network
design have also been proposed to improve robustness to certain factors of variation in the state (36; 37; 24). The challenges
with generalization in RL that we will describe in this paper stem from the deficiencies of MDP objectives, and cannot
be fully solved by choice of representations or functional inductive biases. In the latter category, one approach is domain
randomization, varying environment parameters such as coefficients of friction or textures, to obtain behaviors that are
effective across many candidate parameter settings (38; 39; 40; 41; 42). Domain randomization sits within a class of methods
that seek robust policies by injecting noise into the agent-environment loop, whether in the state (15), the action (e.g., via
max-entropy RL) (16), or intermediary layers of a neural network policy (e.g., through information bottlenecks) (17; 18).
In doing so, these methods effectively introduce partial observability into the problem; while not necessarily equivalent
to the partial observability that is induced by the epistemic POMDP, it may indicate why these methods generalize well
empirically.

Bayesian RL: Our work recasts generalization in RL within the Bayesian RL framework, the problem of acting optimally
under a belief distribution over MDPs (see Ghavamzadeh et al. (8) for a survey). Bayesian uncertainty has been studied in
many sub-fields of RL (43; 44; 45; 46), the most prominent being for exploration and learning efficiently in the online RL
setting. Bayes-optimal behavior in RL is often reduced to acting optimally in a POMDP, or equivalently, a belief-state MDP
(6), of which our epistemic POMDP is a specific instantiation. Learning the Bayes-optimal policy exactly is intractable in
all but the simplest problems (47; 48), and many works in Bayesian RL have studied relaxations that remain asymptotically
optimal for learning, for example with value of perfect information (5; 49) or Thompson sampling (7; 50; 51). Our main
contribution is to revisit these classic ideas in the context of generalization for RL. We find that the POMDP interpretation
of Bayesian RL (5; 6; 52) provides new insights on inadequacies of current algorithms used in practice, and explains why
generalization in RL can be more challenging than in supervised learning. Being Bayesian in the generalization setting
also requires new tools and algorithms beyond those classically studied in Bayesian RL, since test-time generalization
is measured using regret over a single evaluation episode, instead of throughout an online training process. As a result,
algorithms and policies that minimize short-term regret (i.e., are more exploitative) are preferred over traditional algorithms
like Thompson sampling that explore thoroughly to ensure asymptotic optimality at the cost of short-term regret.

B. Theoretical Results
B.1. Proposition 5.1

Proposition 3.1. Let ε > 0. There exists posterior distributions P(M|D) where a deterministic Markov policy π is optimal
with probability at least 1− ε,

PM∼P(M|D)

(
π ∈ argmax

π′
JM(π′)

)
≥ 1− ε, (2)

but is outperformed by a uniformly random policy in the epistemic POMDP: JMpo(π) < JMpo(πunif).

Proof. Consider two deterministic MDPs,MA, andMB that both have two states and two actions: “stay” and ”switch”. In
both MDPs, the reward for the “stay” action is always zero. InMA the reward for “switch” is always 1, while inMB the
reward for “switch” is −c for c > 0. The probability of being inMB is ε while the probability of being inMA is 1− ε.
Clearly, the policy “always switch” is optimal inMA and so is ε-optimal under the distribution on MDPs. The expected
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discounted reward of the “always switch” policy is:

J(πalways switch) = (1− ε) 1

1− γ
− ε c

1− γ
=

1

1− γ
(1− (c+ 1)ε) . (6)

On the other hand, we can consider a policy which selects actions uniformly at random. In this case, the expected cumulative
reward is

J(πrandom) = (1− ε)1
2

1

1− γ
− ε c

2

1

1− γ
=

1

2

1

1− γ
(1− (c+ 1)ε) =

1

2
J(πalways switch) . (7)

Thus for any ε we can find a c > 1
ε − 1 such that both policies have negative expected rewards and we prefer the random

policy for being half as negative.

B.2. Bayes Optimal policy might take suboptimal actions everywhere

Proposition B.1. There exist posterior distributions P(M|D) where the support of the Bayes-optimal memoryless policy
π∗po(a|s) is disjoint with that of the optimal policies in each MDP in the posterior. Formally, writing supp(π(a|s)) = {a ∈
A : π(a|s) > 0}, then ∀M with P(M|D) > 0 and ∀s:

supp(π∗po(a|s)) ∩ supp(π∗M(a|s)) = ∅

Proof. The proof is a simple modification of the construction in Proposition 5.1. Consider two deterministic MDPs,MA,
andMB with equal support under the posterior, where both have two states and three actions: “stay”, ”switch 1”, and
“switch 2”. In both MDPs, the reward for the “stay” action is always zero. InMA the reward for “switch” is always 1, while
inMB the reward for “switch” is −2. The reward structure for “switch 2” is flipped: inMA, the reward for “switch 2” is
−2, and inMB , the reward is 1. Then, the policy “always switch” is optimal inMA, and the policy “always switch 2” is
optimal inMB . However, any memoryless policy that takes either of these actions receives negative reward in the epistemic
POMDP, and is dominated by the Bayes-optimal memoryless policy “always stay”, which achieves 0 reward.

B.3. MaxEnt RL is optimal for a choice of Prior

We describe a special case of the construction of Eysenbach and Levine (19), which shows that maximum-entropy RL in a
bandit problem recovers the Bayes-optimal POMDP policy in an epistemic POMDP similar to that described in the RL
image classification task.

Consider the family of MDPs {Mk}k∈[n] each with one state and n actions, where taking action k in MDPMk yields
zero reward and the episode ends, and taking any other action yields reward −1 and the episode continues. Effectively,
Mk corresponds to a first-exit problem with “goal action” k. Note that this MDP structure is exactly what we have for the
RL image classification task for a single image. Also consider the surrogate bandit MDP M̂, also with one state and n
actions, but in which taking action k yields reward rk with immediate episode termination. The following proposition shows
that running max-ent RL in M̂ recovers the optimal memoryless policy in a particular epistemic POMDP supported on
{Mk}k∈[n].

Proposition B.2. Let π∗ = argmaxπ∈Π JM̂(π) +H(π) be the max-ent solution in the surrogate bandit MDP M̂. Define
the distribution P(M|D) on {Mk}k∈[n] as P(Mk|D) = exp(2rk)∑

j exp(2rj)
. Then, π is the optimal memoryless policy in the

epistemic POMDPMpo defined by P(M|D).

Proof. See Eysenbach and Levine (19, Lemma 4.1). The optimal policy π∗ is given by π∗(a = k) = exp(rk)∑
j exp(rj)

. We know
from Appendix ?? that this policy is optimal for epistemic POMDPMpo when γ = 1.

If allowing for time-varying reward functions, this construction can be extended beyond seeking to epistemic POMDPs
beyond bandits, and towards a more general MDP setting, where the agent seeks to reach a specific goal state, but the
identity of the goal state hidden from the agent (19, Lemma 4.2).
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Figure 2. Visual description of Binary Tree MDPs described in proof of Proposition B.3 with depth n = 3.

B.4. Failure of MaxEnt RL and Uncertainty-Agnostic Regularizations

Here, we formalize the remark made in the main text that while the Bayes-optimal memoryless policy is stochastic,
methods that promote stochasticity in an uncertainty-agnostic manner can fail catastrophically. We begin by explaining the
significance of this result: it is well-known that stochastic policies can be arbitrarily sub-optimal in a single MDP, and can
be outperformed by deterministic policies. The result we describe is more subtle than this: there are epistemic POMDPs
where any attempt at being stochastic in an uncertainty-agnostic manner is sub-optimal, and also any attempt at acting
completely deterministically is also sub-optimal. Rather, the characteristic of Bayes-optimal behavior is to be stochastic in
some states (where it has high uncertainty), and not stochastic in others, and a useful stochastic regularization method must
modulate the level of stochasticity to calibrate with regions where it has high epistemic uncertainty.

Proposition B.3. Let α > 0, c > 0. There exist posterior distributions P(M|D), where the Bayes-optimal memoryless
policy π∗po is stochastic. However, every memoryless policy πs that is “everywhere-stochastic”, in that ∀s ∈ S :
H(πs(a|s)) > α, can have performance arbitrarily close to the uniformly random policy:

J(πs)− J(πunif)

J(π∗po)− J(πunif)
< c

Proof. Consider two binary tree MDP with n levels,M1 andM2. A binary tree MDP, visualized in Figure 2, has n levels,
where level k has 2k states. On any level k < n, the agent can take a “left” action or a “right” action, which transitions to
the corresponding state in the next level. On the final level, if the state corresponds to the terminal state (in green), then
the agent receives a reward of 1, and the episode exits, and otherwise a reward of 0, and the agent returns to the top of the
binary tree. The two binary tree MDPsM1 andM2 are identical except for the final terminal state: inM1, the terminal
state is the left-most state in the final level, and inM2, the terminal state is the right-most state. Reaching the goal inM1

corresponds to taking the “left” action repeatedly, and reaching the goal inM2 corresponds to taking the “right” action
repeatedly. We consider the posterior distribution that places equal mass onM1 andM2, P(M1|D) = P(M2|D) = 1

2 . A
policy that reaches the correct terminal state with probability p (otherwise reset) will visit the initial state a Geom(p) number
of times, and writing γ := γn, will achieve return γp

1−γ+pγ = 1
1+ 1

p
1−γ
γ

.

Uniform policy: A uniform policy randomly chooses between “left” and “right” at all states, and will reach all states in
the final level equally often, so the probability it reaches the correct goal state is 1

2n . Therefore, the expected return is
J(πunif) =

1
1+2n 1−γ

γ

.

Bayes-optimal memoryless policy: The Bayes-optimal memoryless policy π∗po chooses randomly between “left” and “right”
at the top level; on every subsequent level, if the agent is in the left half of the tree, the agent deterministically picks
“left” and on the right half of the tree, the agent deterministically picks “right”. Effectively, this policy either visits the
left-most state or the right-most state in the final level. The Bayes-optimal memoryless policy returns to the top of the tree a
Geom(p = 1

2 ) number of times, and the expected return is given by J(π∗po) = 1
1+2 1−γ

γ

.

Everywhere-stochastic policy: Unlike the Bayes-optimal policy, which is deterministic in all levels underneath the first, an
everywhere-stochastic policy will sometimes take random actions at these lower levels, and therefore can reach states at the
final level that are neither the left-most or right-most states (and therefore always bad). We note that if H(π(a|s)) > α,
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then there is some β > 0 such that maxa π(a|s) < 1− β. For an α-everywhere stochastic policy, the probability of taking
at least one incorrect action increases as the depth of the binary tree grows, getting to the correct goal at most probability
1
2 (1− β)

n−1. The maximal expected return is therefore J(πs) ≤ 1
1+2( 1

1−β )n−1 1−γ
γ

J(π∗po) =
1

1 + 2 1−γ
γ

J(πs) =
1

1 + 2( 1
1−β )

n−1 1−γ
γ

J(πunif) =
1

1 + 2n 1−γ
γ

As n→∞, J(π∗po), J(πs) and J(πunif) will converge to zero. Using asymptotic analysis we can determine their speed of
convergence and find that:

J(π∗po) ∼ γ

2
J(πs) ∼

γ

2( 1
1−β )

n−1
J(πunif) ∼

γ

2n

Using these asymptotics, we find that:

J(πs)− J(πunif)

J(π∗po)− J(πunif)
∼ 1

( 1
1−β )

n−1
= (1− β)n−1

Which shows that this ratio can be made arbitrarily small as we increase n.

An aside: deterministic policies While our proposition only discusses the failure mode of stochastic policies, all deterministic
memoryless policies in this environment also fail. A deterministic policy πd in this environment continually loops through
one path in the binary tree repeatedly, and therefore will only ever reach one goal state; the best deterministic policy then
either constantly takes the “left” action (which is optimal forM1), or constantly takes the “right” action (which is optimal
forM2). Any other deterministic policy reaches a final state that is neither the left-most nor the right-most state, and
will always get 0 reward. The expected return of the optimal deterministic policy is J(πd) = γ

2 , receiving γ reward in
one of the MDPs, and 0 reward in the other. When the discount factor γ is close to 1, the maximal expected return of a
deterministic policy is approximately 1

2 , while the expected return of the Bayes-optimal policy is approximately 1, indicating
a sub-optimality gap.

B.5. Proof of Theorem 6.1

Theorem 4.1. Let π, π1, · · ·πn be n+ 1 memoryless policies, and let rmax = maxi,s,a |rMi
(s, a)|. The expected return of

π in the empirical epistemic POMDP JM̂po(π) is bounded below as:

JM̂po(π) ≥
1

n

n∑
i=1

JMi
(πi)

−
√
2rmax

(1− γ)2n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(·|s) || π(·|s))

]
.

(3)

Proof. Before we begin, we recall some basic tools from analysis of MDPs. For a memoryless policy π, the state-action
value function Qπ(s, a) is given by Qπ(s, a) = Eπ[

∑
t≥0 γ

tr(st, at)|s0 = s, a0 = a]. The advantage function Aπ(s, a) is
defined as Aπ(s, a) = Qπ(s, a)− Ea∼π(·|s)[Q

π(s, a)]. The performance difference lemma (53) relates the expected return
of two policies π and π′ in an MDPM via their advantage functions as

JM(π′) = JM(π) +
1

1− γ
Es∼dπ′M [Ea∼π′ [AπM(s, a)]]. (8)
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We now begin the derivation of our lower bound:

JM̂po =
1

n

n∑
i=1

JMi
(π)

=
1

n

n∑
i=1

JMi(πi) +
1

n

n∑
i=1

[JMi(π)− JMi(πi)]

=
1

n

n∑
i=1

JMi(πi)−
1

n(1− γ)

n∑
i=1

Es∼dπiMi

[
Ea∼πi

[
AπMi

(s, a)
]]

=
1

n

n∑
i=1

JMi(πi)−
1

n(1− γ)

n∑
i=1

Es∼dπiMi

[
Ea∼πi

[
AπMi

(s, a)
]
− Ea∼π

[
AπMi

(s, a)
]]

(9)

In the last equality we used the fact that Ea∼π [Aπ(s, a)] = 0. From there we proceed to derive a lower bound:

1

n

n∑
i=1

JMi(π) =
1

n

n∑
i=1

JMi(πi)−
1

n(1− γ)

n∑
i=1

Es∼dπiMi

[
Ea∼πi

[
AπMi

(s, a)
]
− Ea∼π

[
AπMi

(s, a)
]]

≥ 1

n

n∑
i=1

JMi(πi)−
2rmax

n(1− γ)2
n∑
i=1

Es∼dπiMi

[DTV (πi(· | s);π(· | s))]

≥ 1

n

n∑
i=1

JMi
(πi)−

√
2rmax

(1− γ)2n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(· | s) || π(· | s))

]
(10)

where the first inequality is since |AπMi
(s, a)| ≤ rmax

1−γ and the second from Pinsker’s inequality. Our intention in this
derivation is not to obtain the tighest lower bound possible, but rather to illustrate how bounding the advantage can lead
to a simple lower bound on the expected return in the POMDP. The inequality can be made tighter using other bounds on
|AπMi

(s, a)|, for example using Amax = maxi,s,a |AπMi
(s, a)|, or potentially a bound on the advantage that varies across

state.

B.6. Proof of Proposition 6.1

Proposition 4.1. Let f : {πi}i∈[n] 7→ π be a function that maps n policies to a single policy satisfying f(π, · · · , π) = π

for every policy π, and let α be a hyperparameter satisfying α ≥
√

2rmax
(1−γ)2 . Then letting π∗1 , . . . π

∗
n be the optimal solution to

the following optimization problem:

{π∗i }i∈[n] = argmax
π1,··· ,πn

1

n

n∑
i=1

JMi(πi)

− α

n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(·|s) || f({πi})(·|s))

]
,

(4)

the policy π∗ := f({π∗i }i∈[n]) is optimal for the empirical epistemic POMDP.

Proof. By Theorem 4.1 we have that ∀α ≥
√

2rmax
(1−γ)2n :

JM̂po(f({π∗i })) ≥
1

n

n∑
i=1

JMi
(π∗i )− α

n∑
i=1

E
s∼d

π∗
i
Mi

[√
DKL (π∗i (·|s) || f({π∗i })(·|s))

]
. (11)

Now, write π′∗ ∈ argmaxπ JM̂po(π) to be an optimal policy in the empirical epistemic POMDP, and consider the collection
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of policies {π′∗, π′∗, . . . , π′∗}. Since {π∗i } is the optimal solution to Equation 4, we have

JM̂po(f({π∗i })) ≥
1

n

n∑
i=1

JMi(π
′∗)− α

n∑
i=1

Es∼dπ′∗Mi

[√
DKL (π′∗(·|s) || f({π′∗})(·|s))

]
=

1

n

n∑
i=1

JMi(π
′∗)

= JM̂po(π
′∗),

(12)

where the second line here uses the fact that f(π′∗, . . . , π′∗) = π′∗. Therefore π∗ := f({π∗i }) is optimal for the empirical
epistemic POMDP.

C. Experiments
We evaluate LEEP in the Procgen benchmark (21), a challenging suite of tasks testing generalization to unseen contexts.
Our experiments seek to answer the following questions:

1. Does LEEP (derived from the epistemic POMDP) lead to improved test-time performance over standard RL methods?

2. Can LEEP prevent overfitting when provided a limited number of training contexts?

3. How do different algorithmic components of LEEP affect test-time performance ?

The Procgen benchmark is a set of procedurally generated games, each with different generalization challenges. In each
game, during training, the algorithm can interact with 200 training levels, before it is asked to generalize to the full
distribution of levels. The agent receives a 64 × 64 × 3 image observation, and must output one of 15 possible actions.
We instantiate our method using an ensemble of n = 4 policies, a penalty parameter of α = 1, and PPO (22) to train the
individual policies (implementation details in Appendix C.1).

We evaluate our method on four games in which prior work has found a large gap between training and test performance, and
which we therefore conclude pose a significant generalization challenge (21; 23; 24): Maze, Heist, BigFish, and Dodgeball.
In Figure 3 (left), we compare the test-time performance of the policies learned using our method to those learned by a PPO
agent with entropy regularization. In three of these environments (Maze, Heist, and Dodgeball), our method outperforms
PPO by a significant margin, and in all cases, we find that the generalization gap between training and test performance is
lower for our method than PPO (Appendix ??). To understand how LEEP behaves with fewer training contexts, we ran on
the Maze task with only 50 levels (Figure 3 (center)); the test return of the PPO policy decreases through training, leading to
final performance worse than the starting random policy, but our method avoids this degradation.
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Figure 3. Procgen results. (left) Test set return for LEEP and PPO throughout training in four Procgen environments (averaged across 5
random seeds). (center) Performance on Maze with 50 training levels. (right) Ablations of LEEP and comparisons in Maze.

We perform an ablation study on the Maze and Heist environments (Maze in Figure 3 (right), Heist in Appendix ??) to rule
out potential confounding causes for the improved generalization that our method displays on the Procgen benchmark tasks.
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First, to see if the performance benefit derives solely from the use of ensembles, we compare LEEP to a Bayesian model
averaging strategy that trains an ensemble of policies without regularization (“Ensemble (no reg)”), and uses a mixture
of these policies. This strategy does improve performance over the PPO policy, but does not match LEEP, indicating the
usefulness of the regularization. Second, we compared to a version of LEEP that combines the ensemble policies together
using the average 1

n

∑n
i=1 πi(a|s) (“LEEP (avg)”) achieves worse test-time performance than the optimistic version, which

indicates that the inductive bias conferred by the maxi πi link function is a useful component of the algorithm. Finally,
we compare to Distral, a multi-task learning method with different motivations but similar structure to LEEP: this method
helps accelerate learning on the provided training contexts (see figures on next page), but does not improve generalization
performance as LEEP does.
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Figure 4. Training (top) and test (bottom) returns for LEEP and PPO on four Procgen environments. Results averaged across 5 random
seeds. LEEP achieves equal or higher training return compared to PPO, while having a lower generalization gap between test and training
returns.
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Figure 5. Training and test returns for various ablations and comparisons of LEEP.
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Figure 6. Performance of LEEP and PPO as the number of training levels provided varies. While the learned performance of the PPO
policy is worse than a random policy with less training levels, LEEP avoids this overfitting and in general, demonstrates a smaller train-test
performance gap than PPO.

C.1. Procgen Implementation and Experimental Setup

We follow the training and testing scheme defined by Cobbe et al. (21) for the Procgen benchmarks: the agent trains on a
fixed set of levels, and is tested on the full distribution of levels. Due to our limited computational budget, we train on the
so-called “easy” difficulty mode using the recommended 200 training levels. Nonetheless, many prior work has found a
significant generalization gap between test and train performance even in this easy setting, indicating it a useful benchmark
for generalization (21; 24; 23). We implemented LEEP on top of an existing open-source codebase released by Jiang et al.
(23). Full code is provided in the supplementary for reference.

LEEP maintains n = 4 policies {πi}i∈[n], each parameterized by the ResNet architecture prescribed by (21). In LEEP,
each policy is optimized to maximize the entropy-regularized PPO surrogate objective alongside a one-step KL divergence
penalty between itself and the linked policy maxi πi; gradients are not taken through the linked policy.
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Eπi [min(rt(π)A
π(s, a), clip(rt(π), 1− ε, 1 + ε)Aπ(s, a) + βH(πi(a|s))− αDKL(πi(a|s)‖max

j
πj(a|s))]

The penalty hyperparameter α was obtained by performing a hyperparameter search on the Maze task for all the comparison
methods (including LEEP) amongst α ∈ [0.01, 0.1, 1.0, 10.0]. Since LEEP trains 4 policies using the same environment
budget as a single PPO policy, we change the number of environment steps per PPO iteration from 16384 to 4096, so that
the PPO baseline and each policy in our method takes the same number of PPO updates. All other PPO hyperparameters are
taken directly from (23).

In our implementation, we parallelize training of the policies across GPUs, using one GPU for each policy. We found it
infeasible to run more ensemble members due to GPU memory constraints without significant slowdown in wall-clock time.
Running LEEP on one Procgen environment for 50 million steps requires approximately 5 hrs in our setup on a machine
with four Tesla T4 GPUs.


