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Abstract
Bandit algorithms are increasingly used in real-
world sequential decision-making problems. As-
sociated with this is an increased desire to be able
to use the resulting datasets to answer scientific
questions like: Did one type of ad lead to more
purchases? In which contexts is a mobile health
intervention effective? However, classical statis-
tical approaches fail to provide valid confidence
intervals when used with data collected with ban-
dit algorithms. Alternative methods have recently
been developed for simple models (e.g., compar-
ison of means). Yet there is a lack of general
methods for conducting statistical inference us-
ing more complex models on data collected with
(contextual) bandit algorithms; for example, cur-
rent methods cannot be used for valid inference
on parameters in a logistic regression model for
a binary reward. In this work, we develop the-
ory justifying the use of M-estimators—which
includes estimators based on empirical risk min-
imization as well as maximum likelihood—on
data collected with adaptive algorithms, including
(contextual) bandit algorithms. Specifically, we
show that M-estimators, modified with particular
adaptive weights, can be used to construct asymp-
totically valid confidence regions for a variety of
inferential targets.

1. Introduction
Due to the need for interventions that are personalized to
users, (contextual) bandit algorithms are increasingly used
to address sequential decision making problems in health-
care (Yom-Tov et al., 2017; Liao et al., 2020), online educa-
tion (Liu et al., 2014; Shaikh et al., 2019), and public policy
(Kasy and Sautmann, 2021). Contextual bandits personal-
ize, that is, minimize regret, by learning to choose the best
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intervention in each context, i.e., the action that leads to the
greatest expected reward. Besides the goal of regret mini-
mization, another critical goal in these real-world problems
is to be able to use the resulting data collected by bandit
algorithms to advance scientific knowledge (Liu et al., 2014;
Erraqabi et al., 2017). By scientific knowledge, we mean
information gained by using the data to conduct a variety of
statistical analyses, including confidence interval construc-
tion and hypothesis testing. While regret minimization
is a within-experiment learning objective, gaining scien-
tific knowledge from the resulting adaptively collected
data is a between-experiment learning objective, which
ultimately helps with regret minimization between deploy-
ments of bandit algorithms. Note that the data collected by
bandit algorithms are adaptively collected because previ-
ously observed contexts, actions, and rewards are used to
inform what actions to select in future timesteps.

There are a variety of between-experiment learning ques-
tions encountered in real-life applications of bandit algo-
rithms. For example, in real-life sequential decision-making
problems there are often a number of additional scientifically
interesting outcomes besides the reward that are collected
during the experiment. In the online advertising setting,
the reward might be whether an ad is clicked on, but one
may be interested in the outcome of amount of money spent
or the subsequent time spent on the advertiser’s website.
If it was found that an ad had high click-through rate, but
low amounts of money was spent after clicking on the ad,
one may redesign the reward used in the next bandit experi-
ment. One type of statistical analysis would be to construct
confidence intervals for the relative effect of the actions on
multiple outcomes (in addition to the reward) conditional
on the context. Furthermore, due to engineering and practi-
cal limitations, some of the variables that might be useful
as context are often not accessible to the bandit algorithm
online. If after-study analyses find some such contextual
variables to have sufficiently strong influence on the relative
usefulness of an action, this might lead investigators to en-
sure these variables are accessible to the bandit algorithm in
the next experiment.

As discussed above, we can gain scientific knowledge from
data collected with (contextual) bandit algorithms by con-
structing confidence intervals and performing hypothesis
tests for unknown quantities such as the expected outcome
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for different actions in various contexts. Unfortunately, stan-
dard statistical methods developed for i.i.d. data fail to
provide valid inference when applied to data collected with
common bandit algorithms. For example, assuming the sam-
ple mean of rewards for an arm is approximately normal can
lead to unreliable confidence intervals and inflated type-1
error; see Figure 2 for an illustration. Recently statistical
inference methods have been developed for data collected
using bandit algorithms (Hadad et al., 2019; Deshpande
et al., 2018; Zhang et al., 2020); however, these methods
are limited to inference for parameters of simple models.
There is a lack of general statistical inference methods for
data collected with (contextual) bandit algorithms in more
complex data-analytic settings, including parameters in non-
linear models for outcomes; for example, there are currently
no methods for constructing valid confidence intervals for
the parameters of a logistic regression model for binary
outcomes or for constructing confidence intervals based on
robust estimators like minimizers of the Huber loss function.

In this work we show that a wide variety of estimators
which are frequently used both in science and industry on
i.i.d. data, namely, M-estimators (Van der Vaart, 2000), can
be used to conduct valid inference on data collected with
(contextual) bandit algorithms when adjusted with particular
adaptive weights, i.e., weights that are a function of previ-
ously collected data. Different forms of adaptive weights
are used by existing methods for simple models. Our work
is a step towards developing a general framework for statis-
tical inference on data collected with adaptive algorithms,
including (contextual) bandit algorithms.

2. Problem Formulation
We assume that the data we have after running a contextual
bandit algorithm is comprised of contexts {Xt}Tt=1, actions
{At}Tt=1, and primary outcomes {Yt}Tt=1. T is determinis-
tic and known. We assume that rewards are a deterministic
function of the primary outcomes, i.e., Rt = f(Yt) for
some known function f . We are interested in constructing
confidence regions for the parameters of the conditional dis-
tribution of Yt given (Xt, At). Below we consider T →∞
in order to derive the asymptotic distributions of estimators
and construct asymptotically valid confidence intervals. We
use potential outcome notation (Imbens and Rubin, 2015)
and let {Yt(a) : a ∈ A} denote the potential outcomes
of the primary outcome and let Yt := Yt(At) be the ob-
served outcome. We assume a stochastic contextual bandit
environment in which {Xt, Yt(a) : a ∈ A} i.i.d.∼ P ∈ P
for t ∈ [1 : T ]; the contextual bandit environment distribu-
tion P is in a space of possible environment distributions P.
We define the history Ht := {Xt′ , At′ , Yt′}tt′=1 for t ≥ 1
and H0 := ∅. Actions At ∈ A are selected according
to policies π := {πt}t≥1, which define action selection

probabilities πt(At, Xt,Ht−1) := P (At|Ht−1, Xt). Even
though the potential outcomes are i.i.d., the observed data
{Xt, At, Yt}Tt=1 are not because the actions are selected
using policies πt which are a function of past data,Ht−1.

We are interested in constructing confidence regions for
some unknown θ∗(P) ∈ Θ ⊂ Rd, which is a parameter of
the conditional distribution of Yt given (Xt, At). Specifi-
cally, we assume that θ∗(P) is a conditionally maximizing
value of criterion mθ, i.e., for all P ∈ P,

θ∗(P)∈ argmax
θ∈Θ

EP [mθ(Yt, Xt, At)|Xt, At] w.p. 1. (1)

Note that it is an implicit modelling assumption that such a
θ∗(P) exists for a given mθ. To estimate θ∗(P), we build
on M-estimation (Huber, 1992), which classically selects
the estimator θ̂ to be the θ ∈ Θ that maximizes the empirical
analogue of Equation (1):

θ̂T := argmax
θ∈Θ

1

T

T∑
t=1

mθ(Yt, Xt, At). (2)

For example, in a classical linear regression setting with
|A| < ∞, a natural choice for mθ is the negative of the
squared loss function, mθ(Yt, Xt, At) = −(Yt−X>t θAt

)2.
When Yt is binary, a natural choice is instead the nega-
tive log-likelihood function for a logistic regression model.
More generally, mθ is commonly chosen to be a log-
likelihood function or the negative of a robust loss func-
tion such as the Huber loss. If the data, {Xt, At, Yt}Tt=1,
were independent across time, classical approaches could
be used to prove the consistency and asymptotic normality
of M-estimators. However, on data collected with bandit
algorithms, standard M-estimators like the ordinary least-
squares estimator fail to provide valid confidence intervals.

3. Adaptively Weighted M-Estimators
We consider a weighted M-estimating criteria with adap-
tive weights Wt ∈ σ(Ht−1, Xt, At) given by Wt =√

πsta
t (At,Xt)

πt(At,Xt,Ht−1) . Here {πsta
t }t≥1 are pre-specified stabi-

lizing policies that do not depend on data {Yt, Xt, At}t≥1.
A default choice for the stabilizing policy when the action
space is of size |A| < ∞ is just πsta

t (a, x) = 1/|A| for
all x, a, and t; we discuss considerations for the choice of
{πsta

t }Tt=1 in Appendix C. We call these weights square-root
importance weights because they are the square-root of the
standard importance weights (Hammersley, 2013). We use
estimators for θ∗(P), θ̂T , is the maximizer of a weighted
version of the M-estimation criterion of Equation (2):

θ̂T := argmax
θ∈Θ

1

T

T∑
t=1

Wtmθ(Yt, Xt, At)

Let MT (θ) := 1
T

∑T
t=1Wtmθ(Yt, Xt, At). We provide

asymptotically valid confidence regions for θ∗(P) by de-
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riving the asymptotic distribution of θ̂T as T →∞ and by
proving that the convergence in distribution is uniform over
P ∈ P. Such convergence allows us to construct a uniformly
asymptotically valid 1− α level confidence region, CT (α),
for θ∗(P), which is a confidence region that satisfies

lim inf
T→∞

inf
P∈P

PP,π (θ∗(P) ∈ CT (α)) ≥ 1− α. (3)

Confidence regions that are asymptotically valid, but not
uniformly asymptotically valid, fail to be reliable in prac-
tice (Leeb and Pötscher, 2005; Romano et al., 2012). To
construct uniformly valid confidence regions for θ∗(P) we
prove that θ̂T is uniformly asymptotically normal in that

ΣT (P)−1/2M̈T (θ̂T )
√
T (θ̂T − θ∗(P))

D→ N (0, Id) uniformly over P ∈ P, (4)

where ṁθ := ∂
∂θmθ, M̈T (θ) := ∂2

∂2θMT (θ), and
ΣT (P) := 1

T

∑T
t=1 EP,πsta

t

[
ṁθ∗(P)(Yt, Xt, At)

⊗2
]
. For

any vector z we define z⊗2 := zz>. In Appendix B, we
state the full conditions we use to prove for general M-
estimators that θ̂T is uniformly consistent and uniformly
asymptotically normal in the sense of Equation (4).

The critical role of the square-root importance weights

Wt =
√

πsta
t (At,Xt)

πt(At,Xt,Ht−1) is to adjust for instability in the
variance of M-estimators due to the bandit algorithm.
These weights act akin to standard importance weights
when squared and adjust a key term in the variance of M-
estimators from depending on adaptive policies {πt}Tt=1,
which can be ill-behaved, to depending on the pre-specified
stabilizing policies {πsta

t }Tt=1. See Zhang et al. (2020)
and Deshpande et al. (2018) for more discussion of the
ill-behavior of common bandit algorithms, which occurs
particularly when there is no unique optimal policy.

To better understand the role of the weights, we consider
the least-squares estimators in a finite-arm linear contex-
tual bandit setting as an illustrating example. Assume
that EP [Yt|Xt, At = a] = X>t θ

∗
a(P) w.p. 1. We fo-

cus on estimating θ∗a(P) for some a ∈ A. The least-
squares estimator corresponds to an M-estimator with
mθa(Yt, Xt, At) = −1At=a(Yt−X>t θa)2. The adaptively
weighted least-squares (AW-LS) estimator is θ̂AW-LS

T,a :=

argmaxθa{−
∑T
t=1Wt1At=a(Yt−X>t θa)2}. For simplic-

ity, suppose that the stabilizing policy does not change with t
and drop the index t to get πsta. Taking the derivative of this
criterion, we get 0 =

∑T
t=1Wt1At=aXt

(
Yt−X>t θ̂AW-LS

T,a

)
,

and rearranging terms gives

1√
T

T∑
t=1

Wt1At=aXtX
>
t

(
θ̂AW-LS
T,a − θ∗a(P)

)
=

1√
T

T∑
t=1

Wt1At=aXt

(
Yt −X>t θ∗a(P)

)
. (5)

Note the right hand side of Equation (5) is a martingale
difference sequence with respect to history {Ht}Tt=0 be-
cause EP,π[Wt1At=a(Yt − X>t θ

∗
a(P))|Ht−1] = 0 for

all t, by our i.i.d. potential outcomes assumption and
since EP [Yt|Xt, At = a] = X>t θ

∗
a(P). We prove Equa-

tion (5) is uniformly asymptotically normal by apply-
ing a martingale central limit theorem; the key condi-
tion we need to ensure is that the conditional variance
converges uniformly, for which it is sufficient to show
that EP,π[W 2

t 1At=aXtX
>
t (Yt − X>t θ

∗
a(P))2|Ht−1] =

Σ(P) for every t. By law of iterated expectations,
EP,π[W 2

t 1At=aXtX
>
t (Yt −X>t θ∗a(P))2|Ht−1] equals

EP
[
EP [W 2

t 1At=aXtX
>
t (Yt−X>t θ∗a(P))2|Ht−1, Xt]

∣∣Ht−1

]
=
(a)

EP
[
EP,πsta [1At=aXtX

>
t (Yt−X>t θ∗a(P))2|Ht−1, Xt]

∣∣Ht−1

]
=
(b)

EP
[
EP,πsta

[
1At=aXtX

>
t (Yt−X>t θ∗a(P))2

∣∣Xt

]∣∣Ht−1

]
=
(c)

EP
[
EP,πsta

[
1At=aXtX

>
t (Yt −X>t θ∗a(P))2

∣∣Xt

]]
=
(d)

EP,πsta [1At=aXtX
>
t (Yt −X>t θ∗a(P))2] =: Σ(P).

Above, (a) holds because the importance weights change
the sampling measure from the adaptive policy πt to the
pre-specified stabilizing policy πsta. (b) holds by our i.i.d.
potential outcomes assumption and because πsta is a pre-
specified policy. (c) holds because Xt does not depend
on Ht−1 by our i.i.d. potential outcomes assumption. (d)
holds by the law of iterated expectations. Note that Σ(P)
does not depend on t because πsta is not time-varying. In
contrast, without the adaptive weighting, i.e., when Wt = 1,
the conditional covariance of 1At=a

(
Yt −X>t θ∗a(P)

)
on

Ht−1 is a random variable, due to the adaptive policy πt.

In Figure 2 we plot the empirical distributions of the z-
statistic for the least-squares estimator both with and without
adaptive weighting. Note the unweighted version gives the
ordinary least-squares (OLS) estimator. It is clear that the
least-squares estimator with adaptive weighting has a z-
statistic that is much closer to a normal distribution.

Figure 2. The empirical distributions of the weighted and un-
weighted least-squares estimators for θ∗1(P) := EP [Yt(1)] in
a two arm bandit setting where EP [Yt(1)] = EP [Yt(0)] = 0. We
perform Thompson Sampling withN (0, 1) priors,N (0, 1) errors,

and T = 1000. We plot
√∑T

t=1At(θ̂
OLS
T,1 − θ∗1(P)) on the left

and
(

1√
T

∑T
t=1

√
0.5
πt(1)

At
)
(θ̂AW-LS
T,1 − θ∗1(P)) on the right.
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Figure 1. Empirical coverage probabilities (upper row) and volume (lower row) of 90% confidence ellipsoids. The left two columns are
for the continuous reward setting and the right two columns are for the binary reward setting. We consider confidence ellipsoids for all
parameters θ∗(P) and for advantage parameters θ∗1(P) for both settings. Error bars are standard errors computed over 5k repetitions.

4. Related Work
Recent work has discussed the non-normality of OLS on
data collected with bandit algorithms and proposed alterna-
tive methods for statistical inference. The common thread
through these methods is the use of adaptive weighting.
Deshpande et al. (2018) introduced the W-decorrelated es-
timator, which adjusts the OLS estimator with a sum of
adaptively weighted residuals. Hadad et al. (2019) intro-
duce adaptively weighted versions of both the standard
augmented-inverse propensity weighted estimator and the
sample mean. They introduce a class of adaptive “variance
stabilizing” weights, for which the variance of a normalized
version of their estimators converges in probability to a con-
stant. In their discussion section they note open questions,
two of which this work addresses: 1) “What additional es-
timators can be used for normal inference with adaptively
collected data?” and 2) How do their results generalize to
more complex sampling designs, like data collected with
contextual bandit algorithms? We demonstrate that variance
stabilizing adaptive weights can be used to modify a large
class of M-estimators to guarantee valid inference. This
generalization allows us to perform valid inference for a
large class of important inferential targets: parameters of
models for expected outcomes that are context dependent.

An alternative to using asymptotic approximations to con-
struct confidence intervals is to use high-probability anytime
confidence bounds. These bounds provide stronger guaran-
tees than those based on asymptotic approximations, as they
are guaranteed to hold for finite samples and hold simulta-
neously for T ≥ 1. However, these bounds are typically
much wider, which is why much of classical statistics uses
asymptotic approximations. We empirically compare to the
self-normalized martingale bound (Abbasi-Yadkori et al.,
2011), a bound commonly used in the bandit literature.

5. Simulation Results
In this section, Rt = Yt. We consider two settings: a
continuous reward setting and a binary reward setting. In
the continuous reward setting, the rewards are generated
with mean EP [Rt|Xt, At] = X̃>t θ

∗
0(P)+AtX̃

>
t θ
∗
1(P) and

noise drawn from a student’s t distribution with five degrees
of freedom; here X̃t = [1, Xt] ∈ R3 (Xt with intercept
term), actions At ∈ {0, 1}, and parameters θ∗0(P), θ∗1(P) ∈
R3. In the binary reward setting, the reward Rt is generated
as a Bernoulli with success probability EP [Rt|Xt, At] =
[1 + exp(−X̃>t θ∗0(P)−AtX̃>t θ∗1(P))]−1. Furthermore, in
both simulation settings we set θ∗0(P) = [0.1, 0.1, 0.1] and
θ∗1(P) = [0, 0, 0], so there is no unique optimal arm; we call
vector parameter θ∗1(P) the advantage of selecting At = 1
over At = 0. Also in both settings, the contexts Xt are
drawn i.i.d. from a uniform distribution.

In both simulation settings we collect data using Thomp-
son Sampling with a linear model for the expected reward
and normal priors (Agrawal and Goyal, 2013) (so even
when the reward is binary). We constrain the action se-
lection probabilities with clipping at a rate of 0.05; this
means that while typical Thompson Sampling produces
action selection probabilities πTS

t (At, Xt,Ht−1), we in-
stead use action selection probabilities πt(At, Xt,Ht−1) =
0.05 ∨

(
0.95 ∧ πTS

t (At, Xt,Ht−1)
)

to select actions. We
constrain the action selection probabilities in order to ensure
weights Wt are bounded when using a uniform stabilizing
policy; see Appendix B.1 and Section 6 for more discussion
on this boundedness assumption. Also note that increasing
the amount the algorithm explores (clipping) decreases the
expected width of confidence intervals constructed on the
resulting data (see Section 6).

To analyze the data, in the continuous reward setting,
we use least-squares estimators with a correctly specified
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model for the expected reward, i.e., M-estimators with
mθ(Rt, Xt, At) = −(Rt − X̃>t θ0 − AtX̃>t θ1)2. We con-
sider both the unweighted and adaptively weighted versions.
We also compare to the self-normalized martingale bound
(Abbasi-Yadkori et al., 2011) and the W-decorrelated estima-
tor (Deshpande et al., 2018), as they were both developed for
the linear expected reward setting. For the self-normalized
martingale bound, which requires explicit bounds on the
parameter space, we set Θ = {θ ∈ R6 : ‖θ‖2 ≤ 6}.
In the binary reward setting, we also assume a correctly
specified model for the expected reward. We use both un-
weighted and adaptively weighted maximum likelihood esti-
mators (MLEs), which correspond to an M-estimators with
mθ(Rt, Xt, At) set to the negative log-likelihood of Rt
given Xt, At. We solve for these estimators using Newton–
Raphson optimization and do not put explicit bounds on
the parameter space Θ (note in this case mθ is concave
in θ (Agresti, 2015, Chapter 5.4.2)). See Appendix A for
additional details and simulation results.

In Figure 1 we plot the empirical coverage probabilities
and volumes of 90% confidence regions for θ∗(P) :=
[θ∗0(P), θ∗1(P)] and θ∗1(P) in both the continuous and bi-
nary reward settings. While the confidence regions based
on the unweighted least-squares estimator (OLS) and the
unweighted MLE have significant undercoverage that does
not improve as T increases, the confidence regions based
on the adaptively weighted versions, AW-LS and AW-MLE,
have very reliable coverage. For the confidence regions
for θ∗1(P) based on the AW-LS and AW-MLE, we include
both projected confidence regions (for which we have the-
oretical guarantees) and non-projected confidence regions.
The confidence regions based on projections (see Appendix
B.1) are conservative but nevertheless have comparable vol-
ume to those based on OLS and MLE respectively. We
do not prove theoretical guarantees for the non-projection
confidence regions for AW-LS and AW-MLE, however they
perform well across in our simulations. Both types of confi-
dence regions based on AW-LS have significantly smaller
volumes than those constructed using the self-normalized
martingale bound and W-decorrelated estimator. Note that
the W-decorrelated estimator and self-normalized martin-
gale bounds are designed for linear contextual bandits and
are thus not applicable for the logistic regression model
setting. The confidence regions constructed using the self-
normalized martingale bound have reliable coverage as well,
but are very conservative. Empirically, we found that the
coverage probabilities of the confidence regions based on the
W-decorrelated estimator were very sensitive to the choice
of tuning parameters. We use 5, 000 Monte-Carlo repeti-
tions and the error bars plotted are standard errors.

6. Discussion
Immediate questions We assume that ratios
πsta
t (At, Xt)/πt(At, Xt,Ht−1) are bounded for our

theoretical results; this precludes πt(At, Xt,Ht−1) from
going to zero for a fixed stabilizing policy. For simple
models, e.g., the AW-LS estimator, we can let these
ratios grow at a certain rate and still guarantee asymptotic
normality (Appendix B.6); we conjecture similar results
hold more generally.

Generality and robustness This work assumes
θ∗(P) ∈ argmaxθ∈Θ EP [mθ(Yt, Xt, At)|Xt, At]
w.p. 1. Our theorems use this assumption to ensure
that {Wtṁθ(Yt, Xt, At)}t≥1 is a martingale difference
sequence with respect to {Ht}t≥0. On i.i.d. data it is
common to define θ∗(P) to be the best projected solution,
i.e., θ0(P) ∈ argmaxθ∈Θ EP,π [mθ(Yt, Xt, At)]. Note
that the best projected solution, θ∗(P), depends on the
distribution of the action selection policy π. It would be
ideal to also be able to perform inference for a projected
solution on adaptively collected data.

Trading-off regret minimization and statistical infer-
ence objectives In sequential decision-making problems
there is a fundamental trade-off between minimizing regret
and minimizing estimation error for parameters of the en-
vironment using the resulting data (Bubeck et al., 2009;
Dean et al., 2018). Given this trade-off there are many open
problems regarding how to minimize regret while still guar-
anteeing a certain amount of power or expected confidence
interval width, e.g., developing sample size calculators for
use in justifying the number of users in a mobile health trial,
and developing new adaptive algorithms (Liu et al., 2014;
Erraqabi et al., 2017; Yao et al., 2020).
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