
Randomized Least Squares Policy Optimization

Haque Ishfaq 1 2 Zhuoran Yang 3 Andrei Lupu 1 2 Viet Nguyen 1 2 Lewis Liu 1 Riashat Islam 1 2

Zhaoran Wang 4 Doina Precup 1 2 5

Abstract
Policy Optimization (PO) methods with func-
tion approximation are one of the most popu-
lar classes of Reinforcement Learning (RL) al-
gorithms. However, designing provably efficient
policy optimization algorithms remains a chal-
lenge. Recent work in this area has focused on in-
corporating upper confidence bound (UCB)-style
bonuses to drive exploration in policy optimiza-
tion. In this paper, we present Randomized Least
Squares Policy Optimization (RLSPO) which is
inspired by Thompson Sampling. We prove that,
in an episodic linear kernel MDP setting, RLSPO
achieves Õ(d3/2H3/2

√
T) worst-case (frequen-

tist) regret, where H is the number of episodes,
T is the total number of steps and d is the feature
dimension. Finally, we evaluate RLSPO empiri-
cally and show that it is competitive with existing
provably efficient PO algorithms.

1. Introduction
One of the fundamental challenges in designing practical
reinforcement learning (RL) algorithms is how to effec-
tively trade off exploration and exploitation in an unknown
environment. Exploration is well studied in value-based
methods with provable guarantees in Markov Decision Pro-
cesses (MDPs) with the tabular or linearly parameterized
dynamics (Jaksch et al., 2010; Yang & Wang, 2019; Jin
et al., 2020; Ayoub et al., 2020; Zhou et al., 2020; Cai et al.,
2019b). However, in the case of Policy Optimization (PO)
algorithms, exploration is less well-understood. PO algo-
rithms model the agent’s policy explicitly, typically using a
parametric mapping from states to actions (Williams, 1992;
Baxter & Bartlett, 2000; Sutton et al., 2000; Konda & Tsit-

*Equal contribution 1Mila 2School of Computer Science,
McGill University 3Department of Operations Research and
Financial Engineering, Princeton University 4 Industrial En-
gineering & Management Sciences, Northwestern University
5DeepMind, Montreal. Correspondence to: Haque Ishfaq
<haque.ishfaq@mail.mcgill.ca>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

siklis, 2000), and have become quite popular especially for
tasks with continuous states and/or actions (Schulman et al.,
2015; 2017b). However, empirical results for deep RL have
shown that PO algorithms can require a large number of
samples to learn (Burda et al., 2018; Bellemare et al., 2016;
Pathak et al., 2017). Recent works, eg., (Im & Halberda,
2012; Mnih et al., 2016; Schulman et al., 2015; Hazan et al.,
2019), proposed several heuristics to improve the sample
efficiency of PO. However, there is little theory to support
such heuristics.

Upper Confidence Bounds (UCB) (Auer et al., 2002; Abbasi-
Yadkori et al., 2011) and Thompson Sampling (TS) (Thomp-
son, 1933; Osband et al., 2013b; Russo et al., 2018; Osband
& Van Roy, 2017) are the two most popular exploration
strategies that provide strong theoretical guarantees in both
bandit and RL settings. UCB-style algorithms attain the op-
timal worst-case regret bound in the tabular setting (Jaksch
et al., 2010; Azar et al., 2017; Osband & Roy, 2016) and are
also provably efficient in the linear setting (Jin et al., 2020;
Yang & Wang, 2019; Cai et al., 2019b). However, UCB
algorithms are often too conservative empirically, compared
to TS-based methods (Chapelle & Li, 2011; Osband et al.,
2013a). Yet, theoretical results for PO have mainly been
obtained for UCB approaches only (Cai et al., 2019b; Shani
et al., 2020; Agarwal et al., 2020).

In this paper, we propose the Randomized Least Squares
Policy Optimization (RLSPO) algorithm, and establish a
worst-case frequentist regret bound for it.

Numerical experiments in the RiverSwim environment and
randomly generated low-rank MDPs show that the practi-
cal performance of RLSPO is in line with the theoretical
guarantees.

The main contributions of this paper are summarized as
follows:

• We propose, to the best of our knowledge, the first
Thompson Sampling based policy optimization algo-
rithm with provable guarantees.

• Our main theoretical result is a Õ(d3/2H3/2
√
T) re-

gret upper bound in terms of the planning horizon H ,
the feature dimension d and the total number of transi-
tions T .

• We adopt optimistic sampling techniques to circumvent

Submission and Formatting Instructions for ICML 2021

the challenges that arise in analysing the worst-case
regret bound.

2. Background
For any set A, ∆(A) and 〈·, ·〉A denote the probability sim-
plex and the inner product over set A, respectively. For
a positive definite matrix A and a vector x, we denote
‖x‖A =

√
xTAx. We denote the cumulative distribution

function of the standard Gaussian by Φ(·). To denote func-
tion growth, we use Õ(·), ignoring poly-logarithmic factors.

2.1. Linear Function Approximation in RL

We consider the setting of linear kernel MDPs, where both
the transition kernels and the reward functions are assumed
to be linear in feature maps. Formally, we have the following
assumption.

Assumption 2.1 (Linear Kernel MDP, (Ayoub et al., 2020;
Zhou et al., 2020)). The MDP (S,A, H,P, r) is a linear
kernel MDP with the kernel feature map ψ : S ×A× S →
Rd1 and the value feature map ϕ : S × A → Rd2 if, for
any h ∈ [H], there exists a vector µh ∈ Rd1 with ‖µh‖2 ≤√
d1 such that Ph(s′ | s, a) = 〈ψ(s, a, s′), µh〉, for any

(s, a, s′) ∈ S ×A× S, and there exists a vector wh ∈ Rd2
with ‖wh‖2 ≤

√
d2 such that rh(s, a) = 〈ϕ(s, a), wh〉, for

any (s, a) ∈ S ×A.

We further assume that for any (s, a) ∈ S×A and V : S →
[0, H], ∥∥∥∫

S

ψ(s, a, s′) · V (s′)ds′
∥∥∥

2
≤
√
d1H.

Finally, we denote max(d1, d2) = d.

Note that a finite MDP is also a linear kernel MDP. Let
ψ(s, a, s′) = e(s,a,s′) be the canonical basis in R|S|2|A|. For
any h ∈ [H] and (s, a, s′) ∈ S×A×S , we can represent the
transition kernel as Ph(s′ | s, a) = 〈e(s,a,s′), µh〉. Similarly,
letting ϕ(s, a) = e(s,a) be the canonical basis in R|S||A|, we
can represent the reward function as rh(s, a) = 〈e(s,a), wh〉.

3. Algorithm
In this section, we describe the RLSPO algorithm which
alternates between two main steps: (i) policy improvement
and (ii) policy evaluation within each episode.

Policy Improvement Step. In Algorithm 1, lines 5-10 ex-
ecute the policy improvement step to obtain a new policy
πk. For any (k, h) ∈ [K] × [H], and (s, a) ∈ S × A, we
parameterize πkh as,

πkh(a | s) =
exp

(
Ekh(s, a)

)∑
a′∈A exp

(
Ekh(s, a′)

) , (3.1)

Algorithm 1 Randomized Least-Squares Policy Optimiza-
tion (RLSPO)

1: Set M to be a fixed integer and λ to be positive number.
2: Initialize {Q0

h}Hh=1 as zero functions and {π0
h}Hh=1 as

uniform distributions on A.
3: For episode k = 1, 2, . . . ,K do
4: Receive the initial state sk1 .
5: For step h = 1, 2, . . . ,H do
6: Update policy
7: πkh(· | ·) ∝ πk−1

h (· | ·) · exp{αQk−1
h (·, ·)}

8: Take the action following akh ∼ πkh(· | skh).
9: Observe reward rh(skh, a

k
h) and

10: get next state skt+1.
11: Initialize V kH+1 as a zero function.
12: For step h = H,H − 1, . . . , 1 do
13: Σkh ←

∑k−1
i=1 φ

i
h(sih, a

i
h)φih(sih, a

i
h)> + λI .

14: θ̂kh← (Σkh)−1
∑k−1
i=1 V

i
h+1(sih+1)φih(sih, a

i
h).

15: φkh(·, ·)←
∫
S ψ(·, ·, s′)V kh+1(s′)ds′.

16: Λkh ←
∑k−1
i=1 ϕ(sih, a

i
h)ϕ(sih, a

i
h)> + λI .

17: ŵkh ← (Λkh)−1
∑k−1
i=1 rh(sih, a

i
h)ϕ(sih, a

i
h).

18: Sample i.i.d. {ξk,jh }j∈[M] ∼ N (0, σ2
1(Σkh)−1).

19: Sample i.i.d. {εk,jh }j∈[M] ∼ N (0, σ2
2(Λkh)−1).

20: P̃hṼ
k,j
h+1(·, ·)←φkh(·, ·)>(θ̂kh + ξk,jh)forj ∈ [M].

21: r̃k,jh (·, ·)← ϕ(·, ·)>(ŵkh + εk,jh) for j ∈ [M].
22: Qkh(·, ·)← min{maxj∈[M] r̃

k,j
h (·, ·) +

23: maxj∈[M] P̃hṼ
k,j
h+1(·, ·), H − h+ 1}+

24: V kh (·)← 〈Qkh(·, ·), πkh(· | ·)〉A.

where Ekh is the potential function with the update rule:

Ekh(s, a) = Ek−1
h (s, a) + αQπ

k−1,k−1
h (s, a). (3.2)

Here, α > 0 is the step-size for policy improvement. More-
over, we initialize the potential function to zero. For any
s ∈ S and h ∈ [H] the updated policy πk in (3.1) takes the
following closed form:

πkh(· | s) ∝ πk−1
h (· | s) · exp{αQπ

k−1,k−1
h (s, ·)}. (3.3)

However, the Q-function Qπ
k−1,k−1
h is yet to be estimated

in Algorithm 1 through subsequent policy evaluation steps.
Thus, we replace Qπ

k−1,k−1
h with the estimated Q-function

Qk−1
h in (3.3), as shown in line 1 in Algorithm 1. This

form of policy improvement steps is commonly known as
exponential gradient updates (Kakade, 2002; Agarwal et al.,
2019). Finally, we note that with Qk−1

h in (3.3), πkh is the
solution to the following optimization problem:

arg max
πh∈∆(A |S)

Eπk−1

[
〈Qk−1

h (sh, ·), πh(· | sh)〉A

+
1

α
DKL

(
πh(· | sh)‖ πk−1

h (· | sh)
)]

.

(3.4)

Submission and Formatting Instructions for ICML 2021

The optimization problem in (3.4) builds on related ap-
proaches by (Cai et al., 2019b) and (Liu et al., 2019), which
also closely resembles the one-step iteration objective in the
proximal policy optimization (PPO) algorithm (Schulman
et al., 2017b) and trust-region policy optimization (TRPO)
(Schulman et al., 2015).

Policy Evaluation Step. At the end of the k-th episode,
RLSPO performs one iteration of least-squares temporal
difference learning (LSTD) (Bradtke & Barto, 1996; Boyan,
2002) to evaluate policy πk based on the k − 1 historical
trajectories (lines 12-24 in Algorithm 1). For each h ∈
[H], in lieu of estimating PhV πk

h+1 in the Bellman equations

(A.1), we estimate PhV kh+1 by φkh
>
θkh where θkh is iteratively

updated by solving the regularized least-squares problem
over θh:

θ̂kh ← arg min
θh∈Rd1

k−1∑
i=1

(V ih+1(sih+1)−φih(sih, a
i
h)>θh)2+λ‖θh‖22.

(3.5)
Here φih(·, ·) =

∫
S ψ(·, ·, s′)V ih+1(s′)ds′, V ih+1(·) =

〈Qih+1(·, ·), πih+1(· | ·)〉A for h ∈ [H − 1] and V iH+1 = 0,
and λ > 0 is the regularization parameter which is specified
in Theorem 4.1. Note that φih can be interpreted as the fea-
ture vector induced by the estimated value function of all
the possible next states.

Likewise, we estimate rkh by ϕ>wkh, where wkh is updated
by solving another regularized least squares problem over
wh:

ŵkh ← arg min
wh∈Rd2

k−1∑
i=1

(rh(sih, a
i
h)−ϕh(sih, a

i
h)>wh)2+λ‖wh‖22,

where λ > 0 is the regularization parameter. Then, we per-
turb the estimated parameters θ̂kh and ŵkh by adding mean-
zero Gaussian noise and employ the optimistic sampling
technique to encourage exploration, which we discuss be-
low.

Exploration with Gaussian Noise. As described in
(Abeille et al., 2017), TS does not necessarily need to
sample from an actual Bayesian posterior distribution.
In fact, any distribution with suitable concentration and
anti-concentration properties would guarantee a small re-
gret. More precisely, instead of sampling from a true
Bayesian posterior, we can sample a noise value ξkh from
Gaussian distribution N (0, σ2

1(Σkh)−1) and add it to our
RLS estimate θ̂kh to get a perturbed estimate of PhV kh+1.
This process is equivalent to sampling from the Gaus-
sian distribution N (θ̂kh, σ

2
1(Σkh)−1) where σ2

1 is the pos-
terior inflation scalar. The variance of the noise ξkh is pro-
portional to the inverse of the regularized design matrix
Σkh =

∑k−1
i=1 φ

i
h(sih, a

i
h)φih(sih, a

i
h)> + λI , where the φih’s

are the estimated value function induced features of the

state action pairs encountered in previous episodes. In-
tuitively, this choice of Gaussian distribution results in
perturbations that exhibit higher variances in the less ex-
plored directions. In a similar manner, we can sample a
noise value εkh from Gaussian distributionN (0, σ2

2(Λkh)−1),
where Λkh =

∑k−1
i=1 ϕ(sih, a

i
h)ϕ(sih, a

i
h)> + λI , and add it

to RLS estimate ŵkh to get a perturbed estimate of rkh.

Optimistic Sampling. In the analysis of the randomized TS
algorithm, one key challenge is to show that the algorithm is
optimistic with a constant probability. The optimistic sam-
pling technique which we present now is a key ingredient
in circumventing this technical difficulty in our worst-case
regret analysis. In optimistic sampling, in order to boost the
probability of being optimistic, we sample M independent
noises {ξk,jh }j∈[M] and {εk,jh }j∈[M] from N (0, σ2

1(Σkh)−1)

and N (0, σ2
2(Λkh)−1) respectively. We specify the exact

value of M , σ1 and σ2 in Theorem 4.1. Then, we form the
optimistic estimate for the action value function

Qkh(·, ·) = min

{
max
j∈[M]

r̃k,jh (·, ·) + max
j∈[M]

P̃hṼ
k,j
h+1(·, ·),

H − h+ 1

}+

,

(3.6)

where for all j ∈ [M],

P̃hṼ
k,j
h+1(·, ·) = φkh(·, ·)>(θ̂kh + ξk,jh), (3.7)

and
r̃k,jh (·, ·) = ϕ(·, ·)>(ŵkh + εk,jh). (3.8)

4. Main Result
Our main result is a frequentist worst-case regret bound for
RLSPO under linear kernel MDP setting from Assumption
2.1.

Theorem 4.1. Let α =
√

2 log |A|/H2K, λ = 1, σ1 =

Õ(H
√
d), σ2 =

√
d and M = d log(δ/18)/ log c0, where

c0 = Φ(1) = 0.841 and δ ∈ (0, 1]. Under Assumption 2.1
and the assumption that log |A| = O(d3[log(dT/δ)]2), the
regret of Algorithm 1 satisfies

Regret(T) ≤ Õ(d3/2H3/2
√
T),

with probability at least 1− δ.

Theorem 4.1 asserts that when λ, α, σ and M are
set properly, RLSPO will suffer total regret of at most
Õ(d3/2H3/2

√
T). We emphasize that our regret is com-

pletely independent of |S| and |A|, which is crucial in the
large state-space setting where we need to use function ap-
proximation.

Submission and Formatting Instructions for ICML 2021

Remark 4.2. As can be seen in Table 1, there is a
√
d gap

between the regret bound of RLSPO and OPPO. As shown
in (Hamidi & Bayati, 2020), this gap of

√
d in worst-case

regret between UCB and TS based method is unavoidable.
When converted to linear bandit by setting H = 1, our
regret bound matches the best known regret upper bound
for LinTS due to (Abeille et al., 2017).

Remark 4.3. The choice of learning rate α and it’s de-
pendency on K comes from the proof of Lemma F.2 and
Lemma H.2 in the appendix which are inspired from the
analysis of mirror descent algorithm in optimization litera-
ture. If K is unknown, we can use “doubling trick”(Besson
& Kaufmann, 2018) from online learning literature - at every
power of 2 episode (i.e. at episode 2i for some i), we reset
and assume K = 2i. It is standard knowledge that this trick
increases the overall regret by only a constant factor. The
assumption log |A| = O(d3[log(dT/δ)]2) is used when we
apply Lemma F.2 in the proof of Theorem 4.1. In practice,
this assumption does not really impose a limit on the num-
ber of actions since we can still have exponentially many
actions.

4.1. Proof and key lemmas

Now we describe some key lemmas that are used in the
proof of Theorem 4.1. We use the following quantities in
the statements of our lemmas: β(δ) = Õ(H2d), ν(δ) =

Õ(H2d), γ(δ) = Õ(H2d2), and α(δ) = Õ(d2). The exact
values of these quantities, proofs and remaining details can
be found in the appendix.

First, we consider the events Gkh(ξ, δ) and Gkh(ε, δ) when
for fixed episode k and time-step h, the maximum norms of
the sampled Gaussian noise in Line 1 and 1 in Algorithm 1
are bounded. When the aforementioned events occur for
every time-step in each episode, we denote the event by
G(K,H, δ). Concretely we give the following definitions.

Definition 4.4 (Good events). For any δ > 0 and positive
integer M , we define the following random events

Gkh(ξ, δ)
def
=
{

max
j∈[M]

‖ξk,jh ‖Σk
h
≤
√
γ(δ)

}
,

Gkh(ε, δ)
def
=
{

max
j∈[M]

‖εk,jh ‖Λk
h
≤
√
α(δ)

}
,

G(K,H, δ)
def
=
⋂
k≤K

⋂
h≤H

(
Gkh(ξ, δ) ∩ Gkh(ε, δ)

)
.

The next lemma shows that the event G(K,H, δ) occurs
with high probability. The crux of the proof of Theorem 4.1
is to show that under this event the regret is small.

Lemma 4.5 (Good event probability). For any positive inte-
ger K and any δ > 0, we would have the event G(K,H, δ′)
with probability at least 1− δ, where δ′ = δ/2MT .

Concentration Events. One key tool that is used in the
proof of Theorem 4.1, is the anti-concentration property
of the maximum of samples of Gaussian random variables.
Characterization of this property in our context allows us to
ensure frequent optimism.

Lemma 4.6. Consider a d-dimensional multivariate nor-
mal distribution N(0, AΣ−1) where A is a scalar. Let
η1, η2, . . . , ηM be M independent samples from the dis-
tribution. Then for any δ > 0

P
(

max
j∈[M]

‖ηj‖Σ ≤ c
√
dA log(d/δ)

)
≥ 1−Mδ,

where c is some absolute constant.

The next lemma characterizes the concentration behavior
of value function. This result is achieved by using the con-
centration properties of self-normalizing processes (Abbasi-
Yadkori et al., 2011).

Lemma 4.7. Let λ = 1 in Algorithm 1. For any δ >
0, conditioned on the event G(K,H, δ), we have for all
(k, h) ∈ [K]× [H],

∥∥∥k−1∑
i=1

φih(sih, a
i
h) ·

(
V ih+1(sih+1)− (PhV ih+1)(sih, a

i
h)
)∥∥∥

(Σk
h)−1

≤ C1

√
dH2 log(dT/δ),

(4.1)
with probability at least 1− δ where C1 > 0 is an absolute
constant.

Now, we define the model prediction error,

lkh(s, a) = rkh(s, a) + PhV kh+1(s, a)−Qkh(s, a). (4.2)

This depicts the prediction error using V kh+1 instead of V π
k

h+1

in the Bellman equations (A.1). Using Lemma 4.6, we prove
the following lemma in Appendix E that characterizes the
model prediction error lkh in Algorithm 1.

Lemma 4.8 (stochastic upper confidence bound). Let λ = 1
in Algorithm 1. For any δ > 0, conditioned on the event
G(K,H, δ), for all (s, a, h, k) ∈ S ×A× [H]× [K], with
probability at least 1− (δ + 2cM0), we have

lkh(s, a) ≤ 0, (4.3)

and

−lkh(s, a) ≤
(√

α(δ) +
√
d
)∥∥ϕ(s, a)

∥∥
(Λk

h)−1+(√
ν(δ) +

√
γ(δ)

)∥∥φkh(s, a)
∥∥

(Σk
h)−1 ,

(4.4)

where c0 = Φ(1) = 0.841.

Submission and Formatting Instructions for ICML 2021

Lemma 4.8 states that our state-action value estimate is
uniformly optimistic at least with a constant probability.
Moreover, due to the uncertainty that comes from observing
finite amount of historical data, the model prediction error
lkh(s, a) can be possibly large for state-action pairs (s, a)
that are less visited. Also, from Lemma 4.8, we see the
importance of optimistic sampling. Since c0 < 1, for M ≥
1, cM0 is a decreasing function in M . Thus as we increase
the number of noise samples M , we increase the probability
of having the inequalities (4.3) and (4.4) to hold.

5. Conclusion and future work
In this paper, we proposed a Thompson Sampling based
policy optimization algorithm and proved that it has a worst-
case regret bound of Õ(d3/2H3/2

√
T). Our proof involves

an optimistic sampling technique for increasing the prob-
ability of being optimistic, which could be of broader in-
terest. Our empirical results demonstrate that, similarly to
value-based methods, TS has the potential to outperform
alternative exploration strategies such as UCB in policy
optimization algorithms.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, pp. 2312–2320,
2011.

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N.,
Szepesvári, C., and Weisz, G. POLITEX: Regret bounds
for policy iteration using expert prediction. volume 97,
pp. 3692–3702, 2019.

Abeille, M., Lazaric, A., et al. Linear thompson sampling
revisited. Electronic Journal of Statistics, 11(2):5165–
5197, 2017.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan,
G. Optimality and approximation with policy gradi-
ent methods in markov decision processes. CoRR,
abs/1908.00261, 2019. URL http://arxiv.org/
abs/1908.00261.

Agarwal, A., Henaff, M., Kakade, S., and Sun, W. Pc-pg:
Policy cover directed exploration for provable policy gra-
dient learning. arXiv preprint arXiv:2007.08459, 2020.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International Confer-
ence on Machine Learning, pp. 127–135, 2013.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L.
Model-based reinforcement learning with value-targeted
regression. In International Conference on Machine
Learning, pp. 463–474. PMLR, 2020.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 263–272. JMLR. org, 2017.

Baxter, J. and Bartlett, P. L. Direct gradient-based reinforce-
ment learning. In 2000 IEEE International Symposium
on Circuits and Systems. Emerging Technologies for the
21st Century. Proceedings (IEEE Cat No. 00CH36353),
volume 3, pp. 271–274. IEEE, 2000.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in neural
information processing systems, pp. 1471–1479, 2016.

Besson, L. and Kaufmann, E. What doubling tricks can
and can’t do for multi-armed bandits. arXiv preprint
arXiv:1803.06971, 2018.

Bhandari, J. and Russo, D. Global optimality guar-
antees for policy gradient methods. arXiv preprint
arXiv:1906.01786, 2019.

Boyan, J. A. Technical update: Least-squares temporal
difference learning. Machine learning, 49(2-3):233–246,
2002.

Bradtke, S. J. and Barto, A. G. Linear least-squares algo-
rithms for temporal difference learning. Machine learn-
ing, 22(1-3):33–57, 1996.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably
efficient exploration in policy optimization. CoRR,
abs/1912.05830, 2019a. URL http://arxiv.org/
abs/1912.05830.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. arXiv preprint
arXiv:1912.05830, 2019b.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. In Advances in neural information processing
systems, pp. 2249–2257, 2011.

Fazel, M., Ge, R., Kakade, S., and Mesbahi, M. Global
convergence of policy gradient methods for the linear
quadratic regulator. In International Conference on Ma-
chine Learning, pp. 1467–1476. PMLR, 2018.

http://arxiv.org/abs/1908.00261
http://arxiv.org/abs/1908.00261
http://arxiv.org/abs/1912.05830
http://arxiv.org/abs/1912.05830

Submission and Formatting Instructions for ICML 2021

Hamidi, N. and Bayati, M. On worst-case regret of linear
thompson sampling. arXiv preprint arXiv:2006.06790,
2020.

Hazan, E., Kakade, S. M., Singh, K., and Soest,
A. V. Provably efficient maximum entropy explo-
ration. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, pp. 2681–2691,
2019. URL http://proceedings.mlr.press/
v97/hazan19a.html.

Im, H. and Halberda, J. The effects of sampling and internal
noise on the representation of ensemble average size.
Attention, perception psychophysics, 75, 11 2012. doi:
10.3758/s13414-012-0399-4.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(Apr):1563–1600, 2010.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020.

Kakade, S. M. A natural policy gradient. In Advances in
neural information processing systems, pp. 1531–1538,
2002.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Advances in neural information processing systems, pp.
1008–1014, 2000.

Liu, B., Cai, Q., Yang, Z., and Wang, Z. Neural proxi-
mal/trust region policy optimization attains globally opti-
mal policy. arXiv preprint arXiv:1906.10306, 2019.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T. P., Harley, T., Silver, D., and Kavukcuoglu,
K. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pp. 1928–1937,
2016. URL http://proceedings.mlr.press/
v48/mniha16.html.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
Bridging the gap between value and policy based rein-
forcement learning. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pp. 2775–2785, 2017.

Osband, I. and Roy, B. V. On lower bounds for regret in
reinforcement learning. 2016.

Osband, I. and Van Roy, B. Why is posterior sampling better
than optimism for reinforcement learning? In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2701–2710. JMLR. org, 2017.

Osband, I., Russo, D., and Roy, B. V. (more) efficient rein-
forcement learning via posterior sampling. In Advances
in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States, pp. 3003–3011,
2013a.

Osband, I., Russo, D., and Van Roy, B. (more) efficient
reinforcement learning via posterior sampling. In Ad-
vances in Neural Information Processing Systems, pp.
3003–3011, 2013b.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 16–17,
2017.

Russo, D., Roy, B. V., Kazerouni, A., Osband, I., and Wen,
Z. A tutorial on thompson sampling. Foundations and
Trends in Machine Learning, 11(1):1–96, 2018. doi:
10.1561/2200000070. URL https://doi.org/10.
1561/2200000070.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897, 2015.

Schulman, J., Abbeel, P., and Chen, X. Equivalence
between policy gradients and soft q-learning. CoRR,
abs/1704.06440, 2017a. URL http://arxiv.org/
abs/1704.06440.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017b.

Shani, L., Efroni, Y., Rosenberg, A., and Mannor, S. Op-
timistic policy optimization with bandit feedback. In
International Conference on Machine Learning, pp. 8604–
8613. PMLR, 2020.

Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. In-
trinsically motivated reinforcement learning: An evo-
lutionary perspective. IEEE Trans. on Auton. Ment.
Dev., 2(2):70–82, June 2010. ISSN 1943-0604. doi:
10.1109/TAMD.2010.2051031. URL https://doi.
org/10.1109/TAMD.2010.2051031.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

http://proceedings.mlr.press/v97/hazan19a.html
http://proceedings.mlr.press/v97/hazan19a.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070
http://arxiv.org/abs/1704.06440
http://arxiv.org/abs/1704.06440
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1109/TAMD.2010.2051031

Submission and Formatting Instructions for ICML 2021

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural in-
formation processing systems, pp. 1057–1063, 2000.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy,
A. Optimism in reinforcement learning with gener-
alized linear function approximation. arXiv preprint
arXiv:1912.04136, 2019.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Yang, L. and Wang, M. Sample-optimal parametric q-
learning using linearly additive features. In Interna-
tional Conference on Machine Learning, pp. 6995–7004.
PMLR, 2019.

Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M.,
and Lazaric, A. Frequentist regret bounds for randomized
least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954–1964.
PMLR, 2020a.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E.
Learning near optimal policies with low inherent bellman
error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020b.

Zheng, Z., Oh, J., and Singh, S. On learning intrinsic
rewards for policy gradient methods. In Advances in
Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
pp. 4649–4659, 2018.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature mapping.
arXiv preprint arXiv:2006.13165, 2020.

Submission and Formatting Instructions for ICML 2021

A. Background in Episodic Reinforcement Learning
We consider undiscounted episodic MDPs of the form (S,A, H,P, r), where S is the (possibly uncountable) state space,
A is a finite action space, H is the number of steps in each episode, P = {Ph}Hh=1 are the state transition probability
distributions, and r = {rh}Hh=1 are the reward functions. For each h ∈ [H], Ph(· | s, a) is the transition kernel over the next
states if action a is taken at state s during the h-th time step of the episode. Also, rh : S ×A → [0, 1] is the deterministic
reward function at step h.1

A (stochastic) policy π is a collection of H functions {πh : S → ∆(A)}h∈[H]. We denote by π(· | s) the action distribution
of policy π for state s, and by π∗ the optimal policy.

The value function V πh : S → R at step h ∈ [H] is the expected sum of remaining rewards until the end of the episode,
received under π when starting from sh = s,

V πh (s) = Eπ
[H∑
h′=h

rh′(sh′ , ah′) | sh = s
]
.

The action-value function Qπh : S × A → R is the expected sum of remaining rewards under π when starting from
state-action pair (sh, ah) = (s, a),

Qπh(s, a) = rh(s, a) + Eπ
[H∑
h′=h+1

rh′(sh′ , ah′) | sh = s, ah = a
]
.

We denote V ∗h (s) = V π
∗

h (s) and Q∗h(s, a) = Qπ
∗

h (s, a). Moreover, to simplify notation, we denote [PhVh+1](s, a) =
Es′∼Ph(·|s,a)Vh+1(s′), where Ph is the operator induced by the transition kernel Ph(·|·, ·).

Recall that value functions obey the Bellman equations:

Qπh(s, a) = (rh + PhV πh+1)(s, a),

V πh (s) = 〈Qπh(s, ·), πh(· | s)〉A,
V πH+1(s) = 0

(A.1)

The agent aims to learn the optimal policy by acting in the environment forK episodes. Before starting each episode k ∈ [K],
the agent chooses a policy πk and an adversary chooses the initial state sk1 . Then, at each time step h ∈ [H], the agent
observes skh ∈ S , picks an action akh ∈ A, receives a reward rh(skh, a

k
h) and transitions to the next state skh+1 ∼ Ph(· | skh, akh).

The episode ends after the agent collects the H-th reward and reaches the state skH+1. The suboptimality of the agent at the
k-th episode is captured by the difference between V π

k

1 (sk1) and V ∗1 (sk1). The total regret after K episodes is

Regret(K) =

K∑
k=1

[
V ∗1 (sk1)− V πk

1 (sk1)
]
. (A.2)

B. Related Work
Exploration in Policy Optimization. Most commonly used exploration tactics for PO methods are based on heuristics.
For example, works such as (Mnih et al., 2016; Schulman et al., 2017a; Nachum et al., 2017) use entropy regularization to
induce exploration. In yet another class of works, intrinsic motivation (Singh et al., 2010; Pathak et al., 2017; Zheng et al.,
2018) is added to the rewards to achieve the same effect. However, none of the these works provide theoretical guarantees
for their methods.

Thompson Sampling in linear bandits. (Agrawal & Goyal, 2013) provided a TS algorithm for linear bandit problems in
which the selected actions and the observed rewards are used to update a Gaussian prior over the parameter space. In the
linear bandit setting, Abeille et al. (2017) showed that in order to design TS algorithms, sampling from an actual Bayesian
posterior is not necessary, and the same order of frequentist regret can be obtained as long as the distribution from which TS
samples obeys certain concentration and anti-concentration properties. In this work, we follow (Abeille et al., 2017) and
adopt a randomized algorithm formulation for RLSPO.

1We consider deterministic reward functions for notational simplicity. Our results straightforwardly generalize to stochastic reward
functions. Moreover, note that we are assuming that rewards are in [0, 1] for normalization.

Submission and Formatting Instructions for ICML 2021

Algorithm Regret Policy Based Exploration Setting
RLSPO Õ(d3/2H3/2

√
T) Yes TS LKM

OPPO (Cai et al., 2019a) Õ(dH3/2
√
T) Yes UCB LKM

POMD (Shani et al., 2020) Õ(
√
S2AH3T) Yes UCB Tabular

OPT-LSVI (Jin et al., 2020) Õ(d3/2H3/2
√
T) No UCB LM

OPT-RLSVI (Zanette et al., 2020a) Õ(d2H2
√
T) No TS LM

LSVI-UCB (Wang et al., 2019) Õ(d3/2H
√
T) No UCB OC

Table 1: Regret bounds summary

Regret minimization in linear setting. Recently, there has been a series of works that studies provably efficient RL
algorithms with linear function approximation (Jin et al., 2020; Cai et al., 2019b; Zanette et al., 2020a;b). Among these
studies, Jin et al. (2020) proposes a UCB-style optimistic modification of Least-Squares Value Iteration (OPT-LSVI) and
provides regret bound in the linear MDP setting. More recently, Zanette et al. (2020b) proposed the optimistic LSVI type
algorithm ELEANOR, which works under a low inherent Bellman error assumption, slightly weaker than the linear MDP
assumption. However, their algorithm is computationally intractable. Another recent work (Wang et al., 2019) introduces a
new expressivity condition named optimistic closure under which they propose a variant of optimistic LSVI.

Compared to value based methods, there has been much less work on the theory of policy optimization - both from the
computational and statistical perspective. Some recent works (Fazel et al., 2018; Abbasi-Yadkori et al., 2019; Bhandari &
Russo, 2019; Liu et al., 2019; Agarwal et al., 2019) studied the computational efficiency and convergence properties of
policy optimization. However, these works rely on the assumption of either known transition model or the existence of a
well-explored behavior policy, which bypasses the need to address exploration-exploitation trade-off. On the exploration
side, the most related work to ours is the OPPO algorithm proposed by Cai et al. (2019b). OPPO achieves a regret bound
of Õ(dH3/2

√
T) under the full-information feedback linear kernel MDP setting. Even though there are some structural

similarities, the RLSPO algorithm we proposed is fundamentally different from OPPO due to the way exploration is
performed in each algorithm. OPPO encourages exploration by adding a UCB-style bonus function to the estimated
action-value function, and thus falls under the optimism in the face of uncertainty class of algorithms. In comparison,
RLSPO performs exploration using a Thompson Sampling approach. In terms of the frequentist regret bound, RLSPO is
worse than OPPO by a factor of

√
d. Similar to OPPO, Shani et al. (2020) proposes Optimistic POMD, an optimistic variant

of TRPO (Schulman et al., 2015) under bandit feedback. However, their work only considers tabular MDPs. Another recent
work (Agarwal et al., 2020) proposes the PC-PG algorithm, which uses an ensemble of learned policies that provides a
policy cover over the state space.

In regards to Thompson Sampling, the closest work to ours is the OPT-RLSVI algorithm proposed by Zanette et al. (2020a),
where they proved a frequentist regret bound under linear MDP assumption. OPT-RLSVI induces exploration by perturbing
the least-squares approximation of the action-value function using a mean-zero Gaussian noise. However, OPT-RLSVI is a
value iteration algorithm, while RLSPO is a policy optimization algorithm. Moreover, to achieve TS-like exploration, they
sample just one noise value at each time step, whereas our optimistic sampling technique samples multiple noise values (see
Sec. 3). Consequently, their construction of the Q-function and analysis technique cannot be directly adapted to our policy
optimization problem. However, our analysis based on the optimistic sampling technique can be adapted to value iteration
(which we leave for future work).

Table 1 summarizes the comparison of several regret upper bounds for both policy-based and value-based RL algorithms,
in the tabular, linear MDP (LM) and linear kernel MDP (LKM) settings. The only exception is the LSVI-UCB algorithm
(Wang et al., 2019), which works with the “optimistic closure (OC)” condition. For the linear MDP and linear kernel MDP
settings, d denotes the number of features and T denotes the total number of steps. In the tabular setting, S and A denote the
number of states and actions, respectively. Policy-based denotes whether the algorithm updates its policies directly using a
policy improvement step, and Exploration denotes the type of exploration strategy used for each method. We emphasize that
although both linear MDP and linear kernel MDP include tabular MDP as a special case, neither LM or LKM is special case
of the other. Thus, the results for linear MDP and linear kernel MDP are not directly comparable. We mention results in LM
for completeness.

Submission and Formatting Instructions for ICML 2021

C. Experiments

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ×103

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ep
is

od
e

R
et

ur
n

Riverswim6: best run

Baseline
RLSPO
OPPO
OPPO - bonus
POMD

(a) Episode returns for best runs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ×103

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ep
is

od
e

R
et

ur
n

Riverswim6: average runs

Baseline
RLSPO
OPPO
OPPO - bonus
POMD

(b) Episode returns for all runs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ×103

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ep
is

od
e

R
et

ur
n

Riverswim6 - RLSPO: M-sensitivity

M = 1
M = 2

M = 4
M = 8

M = 16

(c) Episode returns for different M

Figure 1: Comparison of RLSPO, OPPO, OPPO without bonus and POMD on the RiverSwim environment. a) Mean
episode returns for best runs, after hyperparameter optimization. b) Mean episode returns, averaged over all hyperparameter
combinations tested. c) Mean episode returns for different values of M . In all figures, the baseline is the optimal policy
(going always right). The shaded areas represent one standard deviation. When well tuned to the task, OPPO can perform as
well if not slightly better than RLSPO. However, RLSPO is much more robust to hyperparameter changes, as seen on the
middle, making it significantly easier to tune.

To complement our theoretical results, we conduct numerical experiments in the standard variant of the RiverSwim
environment (Strehl & Littman, 2008) and in randomly generated low-rank MDPs (Jin et al., 2020; Zanette et al., 2020a;
Ayoub et al., 2020) to compare the performance of RLSPO with OPPO (Cai et al., 2019b) and POMD (Shani et al., 2020).
Here we discuss the results in the RiverSwim environment and defer the results of the randomly generated MDPs to the
Appendix I.

Note that, because RiverSwim is a stationary environment, there is no need to learn different policies at every time step, as is
done in the general definition of linear kernel MDPs. To accommodate this relaxation, it suffices to modify Algorithm 1 and
OPPO in order to have a single set of parameters θk and wk and perform a single policy evaluation step using all previously
encountered states, rather than one policy evaluation for each step h. Note that this modification also allows our algorithm to
be used in variable-horizon settings.

In Fig. 1a and Fig. 1b, we set M = 25 for RLSPO.2 We then varied σ2
1 for RLSPO (we fixed σ2

2 = d) and the β constant for
OPPO, which scales the exploration bonus. We also optimized the learning rate, α, which impacts both algorithms similarly.
Finally, for all hyperparameter combinations, we evaluated the algorithms over 20 different seeds.

In Fig. 1, we directly compare the performance of RLSPO against OPPO and POMD. As can be seen in Fig. 1a, where we
evaluate the optimized algorithms, all three reach a near-optimal policy after approximately 1000 episodes. Additionally,
when finely tuned, OPPO can perform as well if not slightly better than RLSPO in the early phases of training. However,
making OPPO and POMD reach that level of performance is difficult. Indeed, in Fig. 1b, we show the average performance
of all three algorithms across all hyperparameter combinations we tried. Evidently, OPPO and POMD perform significantly
worse than RLSPO on average, with a greater performance variance, thus showing its sensitivity to hyperparameter changes.
By comparison, RLSPO exhibits a much more consistent behaviour, with the majority of combinations tested reaching
near-optimal policies by the end of training. Fig 1c shows the performance of RLSPO when using different values of M .

In Fig. 2, we further emphasize that point by fixing the algorithm exploration parameter (σ2
1 for RLSPO; β for OPPO and

POMD) and optimizing the learning rate. In Fig. 2a, we see that if α is optimized, RLSPO will reach an optimal policy
by the end of training in almost all cases, with only a small drop in performance for the two highest covariance values.
Comparatively, in Fig. 2b and Fig. 2c, OPPO and POMD suffer much more from both high and low exploration bonuses,
failing to get near the optimal policy for the highest and the two lowest β values. Note that, for both algorithms, we set the
experiment such that there is factor of 104 between the lowest and the highest exploration parameter tested.

In summary, a fine-tuned OPPO can slightly outperform RLSPO, but the amount of fine tuning required to achieve similar
performance for OPPO is typically much greater, leading to a heavier time and computational cost.

2Different M values were found to give very similar results.

Submission and Formatting Instructions for ICML 2021

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ×103

−2

−1

0

1

2

3

Ep
is

od
e

R
et

ur
n

Riverswim6 - RLSPO: hyperparam sensitivity

Baseline
σ2 = 2.0× 10−4

σ2 = 5.0× 10−3

σ2 = 2.0× 10−2
σ2 = 5.0× 10−1

σ2 = 2.0× 100

(a) Episode returns for best runs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ×103

−2

−1

0

1

2

3

Ep
is

od
e

R
et

ur
n

Riverswim6 - OPPO: hyperparam sensitivity

Baseline

β = 2.0× 10−4

β = 5.0× 10−3

β = 2.0× 10−2

β = 5.0× 10−1

β = 2.0× 100

(b) Episode returns for all runs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ×103

−2

−1

0

1

2

3

Ep
is

od
e

R
et

ur
n

Riverswim6 - POMD: hyperparam sensitivity

Baseline

β = 2.0× 10−4

β = 5.0× 10−3

β = 2.0× 10−2

β = 5.0× 10−1

β = 2.0× 100

(c) POMD episode for different β

Figure 2: Algorithm sensitivity to their main hyperparameter, tested in RiverSwim. a) Mean RLSPO episode returns for
different σ2

1 values. b) Mean OPPO episode returns for different β values. c) Mean POMD episode returns for different β
values. In all three figures, the baseline is the optimal policy and the shaded areas represent one standard deviation. OPPO
and POMD performances are significantly more sensitive to β than RLSPO is to σ2

1 , even if α was optimized individually
for each run.

D. Definitions
In this section, we define the filtration generated by the history of the state-action sequence, observed rewards and the
sampled noises. Then we define the values β(δ), ν(δ), γ(δ) and α(δ) which we use to provide our high probability
confidence bounds. Furthermore, we specify the exact values of the posterior inflations σ1 and σ2 used in the Gaussian
distributions in Line 1 and 1 of Algorithm 1 respectively. Recall that M is the number of noise samples we draw from each
of the Gaussian distributions. We then introduce the good events which we will show to happen with high probability in
Lemma 4.5 and under which the regret will be small. Finally, we define model prediction error which will simplify our
discussion.

Definition D.1 (Filtrations). We denote the σ-algbera generated by the set G using σ(G). We define the following filtrations:

Fk def
= σ

(
{(sit, ait, rit)}{i,t}∈[k−1]×[H]

⋃
{(ξi,jt , εi,jt)}{i,t,j}∈[k−1]×[H]×[M]

)
,

Fkh,1
def
= σ

(
Fk

⋃
{(skt , akt , rkt)}t∈[h]

⋃
{(ξk,jt , εk,jt) : t ≥ h, 1 ≤ j ≤M}

)
,

Fkh,2
def
= σ

(
Fkh,1

⋃
{xkh+1}

)
.

Definition D.2 (Noise bounds). For any δ > 0 and some large enough constants C1, C2 and C3, let√
β(δ)

def
= C1H

√
d log(dT/δ),√

ν(δ)
def
=
√
β(δ) +

√
d,√

γ(δ)
def
= C2

√
dν(δ) log(d/δ),√

α(δ)
def
= C3d

√
log(d/δ).

Definition D.3 (Noise distribution). In Algorithm 1, we set the following values for σ1 and σ2

σ1 =
√
ν(δ),

σ2 =
√
d.

Thus for all j ∈ [M], we have,
{ξk,jh } ∼ N

(
0, ν(δ)(Σkh)−1

)
,

and
{εk,jh } ∼ N

(
0, d(Λkh)−1

)
.

Submission and Formatting Instructions for ICML 2021

Definition D.4 (Good events). For any δ > 0 and positive integer M , we define the following random events

Gkh(ξ, δ)
def
=
{

max
j∈[M]

‖ξk,jh ‖Σk
h
≤
√
γ(δ)

}
,

Gkh(ε, δ)
def
=
{

max
j∈[M]

‖εk,jh ‖Λk
h
≤
√
α(δ)

}
,

G(K,H, δ)
def
=
⋂
k≤K

⋂
h≤H

(
Gkh(ξ, δ) ∩ Gkh(ε, δ)

)
.

Definition D.5 (Model prediction error). Finally, for all (k, h) ∈ [K]× [H], we recall the model prediction error associated
with the reward rkh,

lkh(s, a) = rkh(s, a) + PhV kh+1(s, a)−Qkh(s, a).

This depicts the prediction error using V kh+1 instead of V π
k

h+1 in the Bellman equations (A.1).

E. Concentration Bounds
In this section we provide some key lemmas that are crucial for the regret analysis of Theorem 4.1. Our concentration results
are conditioned on the good event G(K,H, δ) which is defined in Definition D.4. Moreover, our high probability bounds
involve functions α(δ), β(δ), ν(δ) and γ(δ) which are specified in Definition D.2.

E.1. Proof of Lemma 4.7

Lemma 4.7 characterizes the concentration behavior of the estimated value function. The proof closely follows that of
Lemma D.1 in (Cai et al., 2019b). However, one major difference is that we consider the filtrations Fkh,1 and Fkh,2 defined in
Appendix D.1 that include the noise sampled from Gaussian distributions as opposed to Fk,h,1 and Fk,h,2 defined in Section
4.1 in (Cai et al., 2019b). Before providing the proof for Lemma 4.7, we recall an important result on the concentration
properties of self-normalizing processes.

Lemma E.1 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)). Let {εt}∞t=1 be a real-valued
stochastic process with corresponding filtration {Ft}∞t=0. Let for any t ≥ 1, εt | Ft−1 be a zero-mean and σ- sub-Gaussian
random variable, that is E[εt | Ft−1] = 0, and for all λ ∈ R,

E[exp (λεt) | Ft−1] ≤ exp (λ2σ2/2). (E.1)

Let {φ}∞t=0 be an Rd-valued stochastic process where φt ∈ Ft−1. Moreover, let Λ0 ∈ Rd×d be a positive definite matrix
and let Λt = Λ0 +

∑t
s=1 φsφ

>
s . Then for any δ > 0, with probability at least 1− δ, it holds for all t ≥ 0 that

∥∥∥ t∑
s=1

φsεs

∥∥∥2

Λ−1
t

≤ 2σ2 log
(det(Λt)

1/2 det(Λ0)−1/2

δ

)
. (E.2)

Proof of Lemma 4.7. Using the Markov property and the definition of the filtration Fkh,1, we have

E
[
V kh+1(skh+1) | Fkh,1

]
= (PhV kh+1)(skh, a

k
h). (E.3)

Note that the function V kh+1 is determined by the function Qkh+1 and the policy πkh+1. Both Qkh+1 and πkh+1 are determined
by the historical data in the filtration Fkh,1. Thus, conditioning on the filtration Fkh,1, V kh+1 is a deterministic function and
the only source of randomness in (E.3) is skh+1.

We define the one-step environment noise with respect to V kh+1 as

ηkh = V kh+1(skh+1)− (PhV kh+1)(skh, a
k
h). (E.4)

Note that conditioning on Fkh,1, ηkh is a random variable with mean zero. Moreover, V kh+1 ∈ [0, H]. Thus, using Hoeffding’s
lemma and the definition of sub-Gaussian random variable in (E.1), conditioning on the filtration Fkh,1, ηkh is an H/2-sub-
Gaussian random variable. Lastly, we note that ηkh is Fkh,2-measurable. We are now ready to apply Lemma E.1. First, we

Submission and Formatting Instructions for ICML 2021

recall the definition of Σkh.

Σkh =

k−1∑
i=1

φih(sih, a
i
h)φih(sih, a

i
h)> + λI. (E.5)

Now using Lemma E.1, for any fixed h ∈ [H], it holds that with probability at least 1− δ/H ,

∥∥∥∥k−1∑
i=1

φih(sih, a
i
h) ·

(
V ih+1(sih+1)− (PhV ih+1)(sih, a

i
h)
)∥∥∥∥2

(Σk
h)−1

≤ H2/2 · log

(
H det(Σkh)1/2 det(λI)−1/2

δ

)
, (E.6)

for any k ∈ [K]. We will now find an upper bound for det(Σkh).

Using triangle inequality, we bound the spectral norm of Σkh as

‖Σkh‖2 ≤ λ+

k−1∑
i=1

‖φih(sih, a
i
h)‖22

≤ λ+ dH2K.

The last inequality above follows from Assumption 2.1 which says for any (s, a) ∈ S ×A and V : S → [0, H],∥∥∥∫
S

ψ(s, a, s′) · V (s′)ds′
∥∥∥

2
≤
√
dH.

Using the definition of spectral norm of a matrix, we deduce,

det(Σkh) ≤ ‖Σkh‖d2
≤ (λ+ dH2K)d.

(E.7)

Finally, setting λ = 1, combining (E.6) and (E.7), and applying union bound we get that for any h ∈ [H], with probability
at least 1− δ,

∥∥∥∥k−1∑
i=1

φih(sih, a
i
h) ·

(
V ih+1(sih+1)− (PhV ih+1)(sih, a

i
h)
)∥∥∥∥2

(Σk
h)−1

≤ H2/2 · log

(
H(λ+ dH2K)d/2 det(λI)−1/2

δ

)
≤ C2

1dH
2 log(dT/δ),

(E.8)

for any (k, h) ∈ [K]× [H], where C1 > 0 is an absolute constant. Taking square root of both sides of (E.8) completes the
proof.

E.2. Proof of Lemma 4.8

Proof. Applying Lemma E.2, for all (s, a, h, k) ∈ S ×A× [H]× [K], we have,∣∣∣rh(s, a) + PhV kh+1(s, a)− ϕ(s, a)>ŵkh − φkh(s, a)>θ̂kh

∣∣∣ ≤ √d∥∥ϕ(s, a)
∥∥

(Λk
h)−1 +

√
ν(δ)

∥∥φ(s, a)kh
∥∥

(Σk
h)−1 , (E.9)

with probability at least 1− δ.

As we are conditioning on the event G(K,H, δ), using Cauchy-Schwarz inequality, we have

max
j∈[M]

∣∣φkh(s, a)>ξk,jh
∣∣ ≤ max

j∈[M]

∥∥φkh(s, a)
∥∥

(Σk
h)−1

∥∥ξk,jh ∥∥
(Σk

h)−1

≤
√
γ(δ)

∥∥φkh(s, a)
∥∥

(Σk
h)−1 , (E.10)

Submission and Formatting Instructions for ICML 2021

for all (s, a, h, k) ∈ S ×A× [H]× [K].

Similarly, we have
max
j∈[M]

∣∣ϕ(s, a)>εk,jh
∣∣ ≤√α(δ)

∥∥ϕ(s, a)
∥∥

(Λk
h)−1 , (E.11)

for all (s, a, h, k) ∈ S ×A× [H]× [K].

Now from the definition of model prediction error, using (E.9) and (E.10), we obtain,

−lkh(s, a) = Qkh(s, a)− rkh(s, a)− PhV kh+1(s, a)

= min{max
j∈[M]

r̃k,jh (s, a) + max
j∈[M]

P̃hṼ
k,j
h+1(s, a), H − h+ 1}+ − rkh(s, a)− PhV kh+1(s, a)

≤ max
j∈[M]

r̃k,jh (s, a) + max
j∈[M]

P̃hṼ
k,j
h+1(s, a)− rkh(s, a)− PhV kh+1(s, a)

= max
j∈[M]

ϕ(s, a)>(ŵkh + εk,jh) + max
j∈[M]

φkh(s, a)>(θ̂kh + ξk,jh)− rkh(s, a)− PhV kh+1(s, a)

≤ max
j∈[M]

∣∣ϕ(s, a)>εk,jh
∣∣+ max

j∈[M]

∣∣φkh(s, a)>ξk,jh
∣∣+
∣∣ϕ(s, a)>ŵkh + φkh(s, a)>θ̂kh − rkh(s, a)− PhV kh+1(s, a)

∣∣
≤
√
α(δ)

∥∥ϕ(s, a)
∥∥

(Λk
h)−1 +

√
γ(δ)

∥∥φkh(s, a)
∥∥

(Σk
h)−1 +

√
d
∥∥ϕ(s, a)

∥∥
(Λk

h)−1 +
√
ν(δ)

∥∥φ(s, a)kh
∥∥

(Σk
h)−1

≤
(√

α(δ) +
√
d
)∥∥ϕ(s, a)

∥∥
(Λk

h)−1 +
(√

γ(δ) +
√
ν(δ)

)∥∥φkh(s, a)
∥∥

(Σk
h)−1 ,

(E.12)
and,

lkh(s, a) = rkh(s, a) + PhV kh+1(s, a)−Qkh(s, a)

= rkh(s, a) + PhV kh+1(s, a)−min{max
j∈[M]

r̃k,jh (s, a) + max
j∈[M]

P̃hṼ
k,j
h+1(s, a), H − h+ 1}+

≤ max
{
rkh(s, a) + PhV kh+1(s, a)− max

j∈[M]
r̃k,jh (s, a)− max

j∈[M]
P̃hṼ

k,j
h+1(s, a), rkh(s, a) + PhV kh+1(s, a)

− (H − h+ 1)
}+

≤ max
{
rkh(s, a)− ϕ(s, a)>ŵkh + PhV kh+1(s, a)− φkh(s, a)>θ̂kh − max

j∈[M]
ϕ(s, a)>εk,jh − max

j∈[M]
φkh(s, a)>ξk,jh , 0

}
≤ max

{√
d
∥∥ϕ(s, a)

∥∥
(Λk

h)−1 − max
j∈[M]

ϕ(s, a)>εk,jh +
√
ν(δ)‖φkh(s, a)‖(Σk

h)−1 − max
j∈[M]

φkh(s, a)>ξk,jh , 0
}
,

(E.13)
with probability at least 1− δ.

For all j ∈ [M], we have,
{ξk,jh } ∼ N

(
0, ν(δ)(Σkh)−1

)
.

Thus, for all j ∈ [M] and for all (s, a) ∈ S ×A , we have{
φkh(s, a)>ξk,jh

}
∼ N

(
0, ν(δ)‖φkh(s, a)‖2(Σk

h)−1

)
.

Now, for any j ∈ [M] and for all (s, a) ∈ S ×A, we have

P
(
φkh(s, a)>ξk,jh −

√
ν(δ)‖φkh(s, a)‖(Σk

h)−1 ≥ 0
)

= Φ(−1),

where we denote the cumulative distribution function of the standard Gaussian by Φ(·).

Now we have,
P
(

max
j∈[M]

φkh(s, a)>ξk,jh −
√
ν(δ)‖φkh(s, a)‖(Σk

h)−1 ≥ 0
)

= 1− (1− Φ(−1))M

= 1− Φ(1)M

= 1− cM0 , (E.14)

Submission and Formatting Instructions for ICML 2021

where we set c0 = Φ(1).

Likewise, for all j ∈ [M], we have,
{εk,jh } ∼ N

(
0, d(Λkh)−1

)
.

Following the same steps as above, we have

P
(

max
j∈[M]

ϕkh(s, a)>εk,jh −
√
d‖ϕkh(s, a)‖(Λk

h)−1 ≥ 0
)
≥ 1− cM0 . (E.15)

Combining (E.13), (E.14) and (E.15), with probability at least 1− (δ + 2cM0), we have,

lkh(s, a) ≤ 0. (E.16)

Combining (E.12) and (E.16), for all (s, a, h, k) ∈ S ×A× [H]× [K], we get

lkh(s, a) ≤ 0,

and
−lkh(s, a) ≤

(√
α(δ) +

√
d
)∥∥ϕ(s, a)

∥∥
(Λk

h)−1 +
(√

ν(δ) +
√
γ(δ)

)∥∥φkh(s, a)
∥∥

(Σk
h)−1 ,

with probability at least 1− (δ + 2cM0).

Lemma E.2. Let λ = 1 in Algorithm 1. For any δ > 0, conditioned on the event G(K,H, δ), for all (s, a, h, k) ∈
S ×A× [H]× [K], we have

∣∣∣ϕ(s, a)>ŵkh + φkh(s, a)>θ̂kh − rh(s, a)− PhV kh+1(s, a)
∣∣∣ ≤ √d∥∥ϕ(s, a)

∥∥
(Λk

h)−1 +
√
ν(δ)

∥∥φkh(s, a)
∥∥

(Σk
h)−1 ,

with probability 1− δ.

Proof. Using triangle inequality, we obtain∣∣∣ϕ(s, a)>ŵkh + φkh(s, a)>θ̂kh − rh(s, a)− PhV kh+1(s, a)
∣∣∣

≤
∣∣ϕ(s, a)>ŵkh − rh(s, a)

∣∣︸ ︷︷ ︸
(i)

+
∣∣φkh(s, a)>θ̂kh − PhV kh+1(s, a)

∣∣︸ ︷︷ ︸
(ii)

. (E.17)

In the following we will analyze term (i) and (ii) in (E.17) separately and derive an upper bound for each of them.

Term (i). Note that∣∣ϕ(s, a)>ŵkh − rh(s, a)
∣∣

=
∣∣ϕ(s, a)>ŵkh − ϕ(s, a)>wh

∣∣
=
∣∣∣ϕ(s, a)>(Λkh)−1

(k−1∑
i=1

rh(sih, a
i
h)ϕ(sih, a

i
h)−

k−1∑
i=1

ϕ(sih, a
i
h)ϕ(sih, a

i
h)>wh − λwh

)∣∣∣
=
∣∣∣ϕ(s, a)>(Λkh)−1

(k−1∑
i=1

ϕ(sih, a
i
h)
(
rh(sih, a

i
h)− ϕ(sih, a

i
h)>wh

)
− λwh

)∣∣∣
=
∣∣∣ϕ(s, a)>(Λkh)−1

(k−1∑
i=1

ϕ(sih, a
i
h)
(
ϕ(sih, a

i
h)>wh − ϕ(sih, a

i
h)>wh

)
− λwh

)∣∣∣
= λ|ϕ(s, a)>(Λkh)−1wh|, (E.18)

Submission and Formatting Instructions for ICML 2021

where in the penultimate step, we used the fact rh(s, a) = ϕ(s, a)>wh from Assumption 2.1. Applying Cauchy-Schwarz
inequality we obtain,

λ|ϕ(s, a)>(Λkh)−1wh| ≤ λ‖ϕ(s, a)‖(Λk
h)−1‖wh‖(Λk

h)−1

≤
√
λ‖ϕ(s, a)‖(Λk

h)−1‖wh‖2
≤
√
λd‖ϕ(s, a)‖(Λk

h)−1 . (E.19)

Here the second inequality follows from observing that the smallest eigenvalue of Λkh is at least λ and thus the largest
eigenvalue of (Λkh)−1 is at most 1/λ. The last inequality follows from Assumption 2.1 that ‖wh‖2 ≤

√
d. Combining (E.18)

and (E.19) we get

∣∣ϕ(s, a)>ŵkh − rh(s, a)
∣∣ ≤ √λd‖ϕ(s, a)‖(Σk

h)−1 . (E.20)

Term (ii). Recall that

φkh(s, a) =

∫
S
ψ(s, a, s′)V kh+1(s′)ds′.

Now,

PhV kh+1(s, a) =

∫
S
ψ(s, a, s′)>µh · V kh+1(s′)ds′

= φkh(s, a)>µh

= φkh(s, a)>(Σkh)−1(Σkh)µh

= φkh(s, a)>(Σkh)−1
(k−1∑
i=1

φih(sih, a
i
h)φih(sih, a

i
h)> + λI

)
µh

= φkh(s, a)>(Σkh)−1
(k−1∑
i=1

φih(sih, a
i
h)φih(sih, a

i
h)>µh + λµh

)
= φkh(s, a)>(Σkh)−1

(k−1∑
i=1

φih(sih, a
i
h)
(∫
S
ψ(sih, a

i
h, s
′)>V ih+1(s′)ds′

)
µh + λµh

)
= φkh(s, a)>(Σkh)−1

(k−1∑
i=1

φih(sih, a
i
h)
(∫
S
ψ(sih, a

i
h, s
′)>µh · V ih+1(s′)ds′

)
+ λµh

)
= φkh(s, a)>(Σkh)−1

(k−1∑
i=1

φih(sih, a
i
h)(PhV ih+1)(sih, a

i
h) + λµh

)
, (E.21)

where in the last step we invoke the definition of Ph.

Submission and Formatting Instructions for ICML 2021

Since (Σkh)−1 � 0, by Cauchy-Schwarz inequality and Lemma 4.7, with probability at least 1− δ, we have∣∣φkh(s, a)>θ̂kh − PhV kh+1(s, a)
∣∣

=
∣∣∣φkh(s, a)>(Σkh)−1

k−1∑
i=1

φih(sih, a
i
h) · V ih+1

− φkh(s, a)>(Σkh)−1
(k−1∑
i=1

φih(sih, a
i
h)(PhV ih+1)(sih, a

i
h) + λµh

)∣∣∣
≤
∣∣∣φkh(s, a)>(Σkh)−1

(k−1∑
i=1

φih(sih, a
i
h) ·

[(
V ih+1 − PhV ih+1

)
(sih, a

i
h)
])∣∣∣+ λ

∣∣φkh(s, a)>(Σkh)−1µh
∣∣

≤
∥∥∥k−1∑
i=1

φih(sih, a
i
h)
[(
V kh+1 − PhV kh+1

)
(sih, a

i
h)
]∥∥∥

(Σk
h)−1

∥∥φkh(s, a)
∥∥

(Σk
h)−1

+ λ‖φkh(s, a)‖(Σk
h)−1‖µh‖(Σk

h)−1

≤
(√

β(δ) +
√
λd
)∥∥φkh(s, a)

∥∥
(Σk

h)−1 . (E.22)

Similar to (E.19), applying Cauchy-Schwarz inequality, we get

−λφ(s, a)>(Σkh)−1〈µh, V kh+1〉S ≤ λ‖φ(s, a)‖(Σk
h)−1‖〈µh, V kh+1〉S‖(Σk

h)−1

≤
√
λ‖φ(s, a)‖(Σk

h)−1‖〈µh, V kh+1〉S‖2

≤
√
λ‖φ(s, a)‖(Σk

h)−1

(d∑
i=1

‖µih‖21
) 1

2 ‖V kh+1‖∞

≤ H
√
λd‖φ(s, a)‖(Σk

h)−1 . (E.23)

Here the second inequality follows using the same observation we did for term (i). The last inequality follows from∑d
i=1 ‖µih‖21 ≤ d in Assumption 2.1 and the clipping operation performed in Line 1 of Algorithm 1. Now combining (E.22),

(E.20) and (E.23), and letting λ = 1, we get,

∣∣rh(s, a) + PhV kh+1(s, a)− ϕ(s, a)>ŵkh − φkh(s, a)>θ̂kh
∣∣ ≤ √d∥∥ϕ(s, a)

∥∥
(Λk

h)−1 +
√
ν(δ)

∥∥φ(s, a)kh
∥∥

(Σk
h)−1 ,

with probability 1− δ.

E.3. Proof of Lemma 4.5

Proof. Recall from Definition D.4 that,

G(K,H, δ′) =
⋂
k≤K

⋂
h≤H

(
Gkh(ξ, δ′) ∩ Gkh(ε, δ′)

)
.

By Lemma 4.6, we have, for any fixed t and k, the event Gkh(ξ, δ′) occurs with probability at least 1−Mδ′. Similarly, for
any fixed t and k, the event Gkh(ε, δ′) occurs with probability at least 1−Mδ′.

Now taking union bound over all (t, k) ∈ [H]× [K], we have

P

 ⋂
k≤K

⋂
h≤H

(
Gkh(ξ, δ′) ∩ Gkh(ε, δ′)

) ≥ 1− 2MTδ′ = 1− δ,

which completes the proof.

Submission and Formatting Instructions for ICML 2021

F. Regret Bound
In this section we prove the main regret bound for Algorithm 1.

F.1. Regret Decomposition

We begin our analysis with the following regret decomposition which is independent of the linear setting in Assumption 2.1.

Lemma F.1 (Lemma 4.2 in (Cai et al., 2019b)). It holds that

Regret(T) =

K∑
k=1

(
V ∗1 (sk1)− V πk

1 (sk1)
)

=

K∑
k=1

H∑
t=1

Eπ∗
[〈
Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

〉 ∣∣ s1 = sk1

]
︸ ︷︷ ︸

(i)

+

K∑
k=1

H∑
t=1

Dkh︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
t=1

Mk
h︸ ︷︷ ︸

(iii)

+

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(sh, ah) | s1 = sk1

]
− lkh(skh, a

k
h)
)

︸ ︷︷ ︸
(iv)

, (F.1)

where

Dkh := 〈(Qkh −Qπ
k

h)(skh, ·), πkh(·, skh)〉 − (Qkh −Qπ
k

h)(skh, a
k
h), (F.2)

Mk
h := (Ph(V kh+1 − V π

k

h+1))(skh, a
k
h)− (V kh+1 − V π

k

h+1)(skh). (F.3)

In the remaining parts of the section, we will show how to upper bound term (i), (ii), (iii) and (iv) in (F.1).

F.2. Regret Upper Bound

We will first upper bound term (i) in (F.1). Note that term (i) corresponds to the performance difference bound in Lemma
H.1 with the Q-function replaced by the estimation Qkh, which is derived from the policy evaluation step in Algorithm 1.

Lemma F.2. For the policy πkh at time-step k of episode h, it holds that

K∑
k=1

H∑
t=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1

]
≤
√

2H3T log |A|, (F.4)

where T = HK.

Submission and Formatting Instructions for ICML 2021

Proof. Using Lemma H.2, we obtain

K∑
k=1

H∑
t=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1

]
≤

K∑
k=1

H∑
t=1

(
αH2

2
+

1

α
Eπ∗

[
DKL(π∗h(· | sh)

∥∥πkh(· | sh))

−DKL(π∗h(· | sh)
∥∥πk+1

h (· | sh))
∣∣ s1 = sk1

])
≤ αH3K

2
+

1

α

H∑
h=1

Eπ∗
[
DKL(π∗h(· | sh)

∥∥π1
h(· | sh))

∣∣ s1 = sk1
]

≤ αH3K

2
+

1

α
H log |A|,

where the second last inequality holds by the non-negativity of the KL-divergence, and the last inequality follows from the
initial values of the Q-function and policy at the beginning of Algorithm 1. Specifically, setting α =

√
2 log |A|/H2K in

Line (1) of Algorithm 1 completes the proof.

We now focus on upper bounding term (ii) and (iii) in (F.1), which are two sequences of martingales.

Lemma F.3 (Bound on Martingale Difference Sequence). For any δ > 0, it holds with probability 1− 2δ/3 that

K∑
k=1

H∑
t=1

Dkh +

K∑
k=1

H∑
t=1

Mk
h ≤ 2

√
2H2T log(3/δ). (F.5)

Proof. Recall that

Dkh := 〈(Qkh −Qπ
k

h)(skh, ·), πkh(·, skh)〉 − (Qkh −Qπ
k

h)(skh, a
k
h),

Mk
h := Ph((V kh+1 − V π

k

h+1))(skh, a
k
h)− (V kh+1 − V π

k

h+1)(skh).

Note that in line 1 of Algorithm 1, we truncate Qkh to the range [0, H − h]. Thus for any (k, t) ∈ [K] × [H], we have,
|Dkh| ≤ 2H . Moreover, since E[Dkh|Fkh,1] = 0, Dkh is a martingale difference sequence. So, applying Azuma-Hoeffding
inequality we have with probability at least 1− δ/3,

K∑
k=1

H∑
t=1

Dkh ≤
√

2H2T log(3/δ), (F.6)

where T = KH .

Similarly,Mk
h is a martingale difference sequence since for any (k, t) ∈ [K] × [H], |Mk

h| ≤ 2H and E[Mk
h|Fkh,1] = 0.

Applying Azuma-Hoeffding inequality we have with probability at least 1− δ/3,

K∑
k=1

H∑
t=1

Mk
h ≤

√
2H2T log(3/δ). (F.7)

Applying union bound on (F.6) and (F.7) gives (F.5) and completes the proof.

We now upper bound the term (iv) in (F.1).

Submission and Formatting Instructions for ICML 2021

Lemma F.4. Let λ = 1 in Algorithm 1. For any δ > 0, conditioned on the event G(K,H, δ), we have,

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(sh, ah)

∣∣ s1 = sk1
]
− lkh(skh, a

k
h)
)
≤
(√

α(δ) +
√
ν(δ) +

√
γ(δ) +

√
d
)√

2dHT log(1 +K), (F.8)

with probability 1− (δ + 2cM0).

Proof. By Lemma 4.8, with probability 1− (δ + 2cM0) it holds that

K∑
k=1

H∑
h=1

Eπ∗
[
lkh(sh, ah)

∣∣ s1 = sk1
]
≤ 0, (F.9)

and

K∑
k=1

H∑
h=1

−lkh(skh, a
k
h) ≤

K∑
k=1

H∑
h=1

(√
α(δ) +

√
d
)∥∥ϕ(s, a)

∥∥
(Λk

h)−1 +

K∑
k=1

H∑
h=1

(√
ν(δ) +

√
γ(δ)

)∥∥φkh(s, a)
∥∥

(Σk
h)−1

=
(√

α(δ) +
√
d
) K∑
k=1

H∑
h=1

∥∥ϕ(s, a)
∥∥

(Λk
h)−1 +

(√
ν(δ) +

√
γ(δ)

) K∑
k=1

H∑
h=1

∥∥φkh(s, a)
∥∥

(Σk
h)−1

≤
(√

α(δ) +
√
d
) H∑
h=1

√
K
(K∑
k=1

∥∥ϕ(skh, a
k
h)
∥∥2

(Λk
h)−1

)1/2

+
(√

ν(δ) +
√
γ(δ)

) H∑
h=1

√
K
(K∑
k=1

∥∥φkh(skh, a
k
h)
∥∥2

(Σk
h)−1

)1/2

≤
(√

α(δ) +
√
d
)
H
√

2dK log(1 +K) +
(√

ν(δ) +
√
γ(δ)

)
H
√

2dK log(1 +K)

=
(√

α(δ) +
√
ν(δ) +

√
γ(δ) +

√
d
)
H
√

2dK log(1 +K)

=
(√

α(δ) +
√
ν(δ) +

√
γ(δ) +

√
d
)√

2dHT log(1 +K).

(F.10)

Here the second and the third inequality follow from the Cauchy-Schwarz inequality and Lemma H.4 respectively. Combining
(F.9) and (F.10) completes the proof.

F.3. Proof of Theorem 4.1

By conditioning our analysis on the good event as formalized in Lemma 4.5 and using concentration result for model
prediction error from Lemma F.4, we are ready to prove our main theoretical result, Theorem 4.1.

Proof of Theorem 4.1. Let δ′ = δ/9. From Lemma 4.5, the event G(K,H, δ′) happens with probability 1− δ′. Combining
Lemma F.4 and Lemma 4.5 we have that the event G(K,H, δ′) occurs and it holds that

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(sh, ah)|s1 = sk1

]
− lkh(skh, a

k
h)
)
≤
(√

α(δ′) +
√
ν(δ′) +

√
γ(δ′) +

√
d
)√

2dHT log(1 +K), (F.11)

with probability at least (1− δ′)(1− (δ′+ 2cM0)). Note that cM0 = δ′/2 and (1− δ′)(1− (δ′+ 2cM0)) > 1− 3δ′ = 1− δ/3.
The martingale inequalities from Lemma F.3 happens with probability 1− 2δ/3. Applying union bound on (F.4), (F.5) and
(F.11) and using the fact that log |A| = O(d3[log(dT/δ)]2), we get the final regret bound of Õ(d3/2H3/2

√
T). Therefore,

we conclude the proof of Theorem 4.1.

Remark F.5. When reduced to tabular setting, we just set d = S2A. This directly leads to regret of Õ(S3A3/2H3/2
√
T).

Submission and Formatting Instructions for ICML 2021

G. Bounds on Gaussian Noise
Here, we provide concentration inequalities for Gaussian random variables.

Lemma G.1 (Gaussian Concentration (Vershynin, 2018)). Consider a d-dimensional multivariate normal distribution
η ∼ N(0, AΣ−1) where A is a scalar. For any δ > 0, with probability 1− δ,

‖η‖Σ ≤ c
√
dA log(d/δ),

where c is some absolute constant.

G.1. Proof of Lemma 4.6

Proof. From Lemma G.1, for a fixed j ∈ [M], with probability at least 1− δ we would have

‖η‖Σ ≤ c
√
dA log(d/δ).

Applying union bound over all M samples completes the proof.

H. Auxiliary Lemmas
In this section we present several auxiliary lemmas.

H.1. Performance Difference Lemma and Proximal Descent Lemma

The following lemma shows how the difference between two policies can be stated in terms of the difference between their
total rewards through the Q-function of one policy and the future state distribution of the other policy.

Lemma H.1 (Performance Difference Lemma; Lemma 3.2 in (Cai et al., 2019b)). Given two policies π and π′, starting at
state s1, we have

V π
′

1 (s1)− V π1 (s1) = Eπ′
[H∑
t=1

〈
Qπh(sh, ·), π′h(· | sh)− πh(· | sh)

〉 ∣∣∣ s1

]
.

As discussed in Section 3, for the policy improvement step in Algorithm 1, we solve an objective which is regularized by a
KL-divergence term as in natural policy gradient (NPG) (Kakade, 2002) and our updated policy πk takes the following
closed form

πkh(· | s) ∝ πk−1
h (· | s) · exp{αQk−1

h (s, ·)}.
We use the following lemma to characterize this closed form policy update.

Lemma H.2 (Proximal Descent Lemma; Lemma 3.3 in (Cai et al., 2019b)). For any distributions p∗, p ∈ ∆(A), state
s ∈ S, and function Q : S ×A → [0, H], if p′ ∈ ∆(A) is such that p′(·) ∝ p(·) · exp {αQ(s, ·)}, then

〈
Q(s, ·), p∗(·)− p(·)

〉
≤ αH2

2
+

1

α

(
DKL

(
p∗(·)

∥∥ p(·))−DKL

(
p∗(·)

∥∥ p′(·))).
H.2. Some Useful Inequalities

Lemma H.3 (Hoeffding’s Lemma (Vershynin, 2018)). Let X be any real-valued random variable with E[X] = µ, such that
a ≤ X ≤ b almost surely. Then, for all λ ∈ R,

E[exp (λX)] ≤ exp

(
λµ+

λ2(b− a)2

8

)
.

Lemma H.4 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Using the same notation as defined in this paper, we have

K∑
k=1

∥∥φkh(skh, a
k
h)
∥∥2

(Σk
h)−1 ≤ 2d log

(λ+K

λ

)
.

Submission and Formatting Instructions for ICML 2021

0 1 2 3 4 5 6
Training Episodes ×102

−5

0

5

10

15

20

25

30

Ep
is

od
e

R
et

ur
n

Random MDPs: best run

RLSPO
OPPO
OPPO - bonus

(a) Episode returns for best runs

0 1 2 3 4 5 6
Training Episodes ×102

−5

0

5

10

15

20

25

30

Ep
is

od
e

R
et

ur
n

Random MDPs: average runs

RLSPO
OPPO
OPPO - bonus

(b) Episode returns for all runs

Figure 3: Comparison of RLSPO, OPPO and OPPO without bonus on the random MDP environment. a) Mean episode
returns for best runs, after hyperparameter optimization. b) Mean episode returns, averaged over all hyperparameter
combinations tested. The shaded areas represent one standard deviation. When well tuned to the task, OPPO can perform as
well if not slightly better than RLSPO. However, RLSPO is much more robust to hyperparameter changes, as seen on the
right, making it easier to tune.

I. Additional Details on Experiments
Our experimental results are demonstrated on two different environments, RiverSwim and Random MDP environments.
Here, we provide additional details on the experimetnal setup and the results for both environments.

The RiverSwim Environment: Experimental results for the RiverSwim environment are provided in Fig. 1 and 2, where
we compare the bandit feedback variant of OPPO (Cai et al., 2019a), OPPO without bonus, and our proposed algorithm
RLSPO. Here, we briefly provide additional details describing the RiverSwim environment. The RiverSwim environment,
as proposed in (Osband et al., 2013a) consists of six states as a chain MDP, where the agent starts from the leftmost state
and chooses to swim left or right. This simulates an agent trying to swim against a water current to reach the land. The
best policy is to swim right along the chain (against with the river current), while a bad policy would be to move left with
the flow of current. Upon taking a right action, despite incurring a small negative reward, the environment stochastically
transitions the agent to the right. The left action, although not incurring any immediate negative reward, almost surely
transitions the agent to a left state. Maximal reward is obtained when the agent arrives at the right-end of the MDP. As
introduced in (Osband et al., 2013a), such an environment requires efficient exploration to obtain an optimal policy, and is
often considered a hard exploration task since the agent must figure out the optimal swimming action against the current
flow, and the reward is given at the end of the chain. Agents that perform in this environment must demonstrate the ability
to prioritize future potential rewards while not being locally optimal. Our experimental results show that the Thompson
Sampling based RLSPO can solve the exploration task effectively while having higher robustness to hyperparameter tuning
compared to the UCB based OPPO (Cai et al., 2019b).

Random MDP Experiments : We include additional results and ablation studies for randomly generated MDPs. For these
sets of experiments, we use randomly generated non-stationary linearly parameterized MDPs with 10 states, 4 actions, an
episode length of H = 100 and a sparse transition matrix. As a training setup, we use 4 random MDPs. For each MDP, we
use 5 seeds for a total of 20 runs per hyperparameter combination. The experimental results in Fig. 3 compares our proposed
RLSPO algorithm with OPPO (Cai et al., 2019a) (with and without bonus) across multiple runs. We further include our
sensitivity analysis for the posterior inflation factor σ1 for RLSPO and the bonus scaling factor β for OPPO as described in
Fig. 4.

Submission and Formatting Instructions for ICML 2021

0 1 2 3 4 5 6
Training Episodes ×102

−10

0

10

20

30

Ep
is

od
e

R
et

ur
n

Random MDPs - RLSPO: hyperparam sensitivity

σ2 = 5.0× 10−4

σ2 = 2.0× 10−3
σ2 = 5.0× 10−2

σ2 = 2.0× 10−1
σ2 = 5.0× 100

σ2 = 2.0× 101

(a) RLSPO episode returns for different σ2

0 1 2 3 4 5 6
Training Episodes ×102

−10

0

10

20

30
Ep

is
od

e
R

et
ur

n

Random MDPs - OPPO: hyperparam sensitivity

β = 5.0× 10−4

β = 2.0× 10−3

β = 5.0× 10−2

β = 2.0× 10−1

β = 5.0× 100

β = 2.0× 101

(b) OPPO episode returns for different β

Figure 4: Algorithm sensitivity to their main hyperparameter, tested in random MDP. a) Mean RLSPO episode returns for
different σ2

1 values. b) Mean OPPO episode returns for different β values. In both figures, the baseline is the optimal policy
and the shaded areas represent one standard deviation. OPPO performance is significantly more sensitive to β than RLSPO
is to σ2

1 , even if α was optimized individually for each run.

