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Abstract

The focus of this paper is on sample complex-
ity guarantees of average-reward reinforcement
learning algorithms, which are known to be more
challenging to study than their discounted-reward
counterparts. To the best of our knowledge, we
provide the first known finite sample guarantees
using both constant and diminishing step sizes of
(i) average-reward TD(λ) with linear function ap-
proximation for policy evaluation and (ii) average-
reward Q-learning in the tabular setting to find an
optimal policy. A major challenge is that since the
value functions are agnostic to an additive con-
stant, the corresponding Bellman operators are
no longer contraction mappings under any norm.
We obtain the results for TD(λ) by working in
an appropriately defined subspace that ensures
uniqueness of the solution. For Q-learning, we
exploit the span seminorm contractive property
of the Bellman operator and construct a novel
Lyapunov function obtained by infimal convolu-
tion of the generalized Moreau envelope and the
indicator function of a set.

1. Introduction
The average-reward setting is a classical setting for for-
mulating the goal in an infinite-horizon Markov decision
process (MDP) (Sutton, 1988). The need to maximize the
average reward has been demonstrated in many applications,
including scheduling automatic guided vehicles (Tadepalli
et al., 1994), inventory management in supply chains (Gi-
annoccaro & Pontrandolfo, 2002), communication system
control and routing (Marbach et al., 2000) and cooperative
multi-robot learning (Tangamchit et al., 2002). In these
problems, the discounted-reward criterion usually leads to
poor long-time performance since the system operates over
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an extended period of time and the main objective is to
perform consistently well over the long run.

Even though there is a well developed theory of average-
reward MDPs (Howard, 1960; Blackwell, 1962; Puterman,
2014), the theoretical understanding of average-reward rein-
forcement learning (RL) methods is still quite limited. Most
existing results are focused only on asymptotic convergence
(Tsitsiklis & Van Roy, 1999; Abounadi et al., 2001; Wan
et al., 2020; Zhang et al., 2021). The focus of this paper
is to understand the sample efficiency. How much data is
required to guarantee a given level of accuracy?

Recent literature obtains finite sample guarantees for dis-
counted reward TD and Q learning algorithms (Bhandari
et al., 2018; Srikant & Ying, 2019; Chen et al., 2019; Qu
& Wierman, 2020; Chen et al., 2020) by developing novel
analytical techniques. Such a study of average-reward RL
algorithms is not undertaken. Analysis of average-reward
RL algorithms is known to be more challenging to study
than their discounted-reward counterparts. The key property
that is exploited in the study of discounted-reward problems
is the contraction property of the underlying Bellman op-
erator. In the average-reward setting, such a contraction
property does not hold under any norm, and the Bellman
equation is known to have multiple fixed points.

In this work, we take the first step toward understanding
finite sample guarantees of model-free average-reward RL
algorithms. Specifically, we consider (i) average-reward
TD(λ) with linear function approximation for policy eval-
uation, and (ii) average-reward tabular Q-learning in the
synchronous setting for the control problem.

1.1. Contributions and Summary of Our Techniques

We establish the first finite sample convergence guarantees
of average-reward TD(λ) with linear function approximation
and average-reward Q-learning in the literature.

TD(λ) Results. We study the average-reward TD(λ) with
linear function approximation under a general asynchronous
update. We present finite-sample bounds under both con-
stant and diminishing step sizes. With a constant step-size,
the iterates converge at an exponential rate to a small cylin-
der around the set of TD fixed points. With properly chosen
diminishing step sizes, the mean-square distance of the iter-
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ates to this set converges with an Õ
(

1
T

)
rate, and this leads

to a sample complexity of Õ
(

1
ε2

)
. Our sample complexity

bound suggests a trade-off in choosing λ, i.e., the optimal
λ should be neither too large nor too small. The depen-
dence on the effective horizon plays a key role in the study
of discounted-reward RL algorithms (Pananjady & Wain-
wright, 2020; Chen et al., 2021). There is no such effective
horizon in average-reward problems, and the spectral gap of
an appropriately defined matrix plays a key role instead.

TD(λ) Analysis. A major challenge in the analysis is that
the projected Bellman operator is not a contraction under
any norm. Moreover, even though the projected Bellman
equation can be written as a linear set of equations, they are
underdetermined. So existing techniques (Bhandari et al.,
2018; Srikant & Ying, 2019) are not directly applicable.
Since the value function is unique up to an additive constant,
we have a unique solution of the projected Bellman equation
when restricted to an appropriately defined subspace. We
exploit this property and work in this subspace and use a
quadratic Lyapunov function to obtain finite sample guaran-
tees.

Q-learning Results. We consider a J-step synchronous Q-
learning algorithm. We present finite sample error bounds
under diminishing step-sizes. The span seminorm of a vec-
tor is defined to be the difference between the maximum
and minimum element. Since the optimal value function,
Q∗, is agnostic up to an additive constant, we show that the
mean-square of the span seminorm of the error Qt − Q∗
converges at O( 1

t ) rate. This implies a sample complexity
of O( 1

ε2 ) to find an ε-optimal differential Q-function.

Q-learning Analysis. While the average reward Bellman
operator is not a contraction under any norm, it is known
to be a contraction under the span seminorm. The span
seminorm can be interpreted as the `∞ distance to the space
spanned by the all-ones vector. Finite sample bounds for
stochastic approximation of `∞-norm contractive operators
were obtained in (Chen et al., 2020) by using generalized
Moreau envelope as a smooth Lyapunov function. Here,
we generalize this approach and introduce a new Lyapunov
function to study span seminorm contractive operators. Our
Lyapunov function is obtained by applying an infimal convo-
lution with respect to an indicator function to the generalized
Moreau envelop used in (Chen et al., 2020).

1.2. Related Literature

Average-Reward MDP. There is an extensive body of lit-
erature on average-reward MDPs. Several authors have
made early contributions to the average-reward problem
(Gillette, 2016; Howard, 1960; Blackwell, 1962; Brown,
1965; Veinott, 1966). There are well known classical dy-
namic programming algorithms for finding optimal policies
such as policy iteration (Howard, 1960) and value iteration

(White, 1963). However, these algorithms require knowl-
edge of the state transition probabilities, and are also com-
putationally intractable in large state spaces (Mahadevan,
1996).

Average-Reward Policy Evaluation. Tsitsiklis and Van
Roy (Tsitsiklis & Van Roy, 1999) proved the convergence
of an average-reward TD(λ) with linear function approxima-
tion, and provided approximation error bounds. The paper
did not study finite-sample bounds. Yu and Bertsekas (Yu
& Bertsekas, 2009) proved the convergence of an average-
reward LSPE(λ) and its rate of convergence for constant
step size. Both TD(λ) and LSPE(λ) aim to solve the same
projected Bellman equation. However, LSTD(λ) uses simu-
lation to construct directly the low-dimensional quantities
defining the equation, instead of only the solution itself like
TD(λ). Both papers assumed that the set of basis functions
are independent of the all-ones vector, which apparently
does not hold in the tabular setting. We do not require
such an assumption in this paper. Note that both algorithms
above are on-policy. Recently, in addition to a convergent
off-policy tabular method presented in (Wan et al., 2020),
Zhang et al. (Zhang et al., 2021) introduced a convergent
off-policy linear function approximation algorithm. Both
did not study finite-time convergence guarantees.

Average-Reward Control. The earliest control algorithms
were those introduced by Schwartz (Schwartz, 1993) and
Singh (Singh, 1994) without convergence proofs. The first
provably convergent algorithms are RVIQ-learning and SSP
Q-learning, introduced by Abounadi, Bertsekas, and Borkar
(Abounadi et al., 2001). SSP Q-learning and the algorithm
introduced later by Gosavi (Gosavi, 2004) are limited to
MDPs with a special state that is recurrent under all sta-
tionary policies, whereas RVI Q-learning is convergent for
more general MDPs. Recently, Wan et al.(Wan et al., 2020)
introduced an algorithm without a reference function, which
is needed in RVI Q-learning, and proved its convergence
with the techniques that are a slight generalization of those
in (Abounadi et al., 2001). To the best of our knowledge, our
paper is the first work in the literature that studies the finite
sample guarantees of a general average-reward Q-learning
algorithm.

Stochastic Approximation. Many RL algorithms can be
viewed through the lens of stochastic approximation (SA).
There is a well developed asymptotic theory of SA (Kushner
& Yin, 2003; Borkar, 2009; Benveniste et al., 2012). The
ODE method is a dominant approach used in most asymp-
totic convergence proofs in RL (Borkar & Meyn, 2000).
However, this is a coarse tool, since it is not able to generate
insight into an algorithm’s sensitivity to noise in the system
and step-size choices. Driven by the interest in finite-sample
guarantees of RL algorithms, recent years have witnessed a
focus shifted from asymptotic analysis to non-asymptotic
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analysis of SA schemes. For example, a finite-time bound
for linear SA is given in (Srikant & Ying, 2019), which leads
to finite time error bounds for TD learning. (Qu & Wierman,
2020) provides a finite-time analysis of asynchronous non-
linear SA, which yields finite-time bounds on asynchronous
Q-learning.

Others. There are other related papers which are beyond
the scope of the present paper. For instance, there is a line
of work (Jaksch et al., 2010; Abbasi-Yadkori et al., 2019;
Wei et al., 2020) on regret guarantees, which is a different
focus compared to our work, for learning in average-reward
MDPs. In addition, there are RL methods based on linear
programming (Wang, 2017; Neu et al., 2017), or learning
automata (Wheeler & Narendra, 1986; Chang, 2009).

1.3. The Average-Reward Problem Setting

We consider an infinite-horizon average-reward MDP de-
scribed by (S,A,R, p), where S = {1, 2, · · · , n} is a finite
state space, A = {1, 2, · · · ,m} is a finite action space,
R : S × A → [0, 1] is the reward function (i.e., R(s, a)
is the immediate reward received upon executing action a
while in state s), and p : S×S×A → [0, 1] is the transition
dynamics of the environment (i.e., p(s′|s, a) is the proba-
bility of transitioning into state s′ upon taking action a in
state s). An agent interacts with the environment according
to the following protocol: at each time step t = 0, 1, 2, · · · ,
the agent is in a state st ∈ S and selects an action at ∈ A,
then receives from the environment an immediate reward
R(st, at) and the next state st+1 which is a sample drawn
from p(·|st, at). The average reward per step of a determin-
istic stationary policy µ : S → A starting from state s ∈ S
is defined as

rµ(s) := lim inf
T→∞

1

T
E

[
T−1∑
t=0

R(st, µ(st))|s0 = s

]
. (1)

Let r∗(s) := supµ∈M rµ(s), whereM is the set of deter-
ministic stationary policies. A policy µ∗ ∈M is said to be
optimal if it satisfies rµ

∗
(s) = r∗(s) for all s ∈ S.

2. Policy Evaluation Algorithm: TD Learning
2.1. Problem Formulation and Average-Reward TD(λ)

We consider the problem of evaluating a given policy µ ∈
M in an average-reward MDP when the data is generated by
applying the policy µ. Since the environment is an induced
Markov reward process, we employ the notation R(s) :=
R(s, µ(s)) for rewards, and P (s, s′) := p(s′|s, µ(s)) for
transition probabilities. We make the following standard as-
sumption to ensure there is a unique stationary distribution
π with π(i) > 0 for all i ∈ S. Let Eπ[·] stand for expec-
tation with respect to π and D = diag(π1, · · · , πn) denote
the diagonal matrix consisting of π. The D-weighted norm,

‖x‖D =
√
x>Dx, is helpful.

Assumption 1. The Markov chain associated with P is
irreducible and aperiodic.

Under Assumption 1, it is known that the average reward sat-
isfies rµ(s) = r(µ) := Eπ[R(st)] for all s ∈ S , and the set
of differential value functions takes the form {vµ + ce|c ∈
R}, where vµ : S → R, known as the basic differential
value function, is given by vµ :=

∑∞
t=0 P

t (R− r(µ)e).

We consider approximation to differential value functions
using a function of the form Vθ(i) = φ(i)>θ for all i ∈ S,
where φ(i) := [φ1(i), · · · , φd(i)]> ∈ Rd is the feature
vector for state i ∈ S and θ ∈ Rd is a tunable parameter
vector. Here, {φk : S → R|k = 1, 2, · · · , d} is a given set
of d basis functions with d ≤ n. With this notation, Vθ can
be expressed compactly in the form Vθ = Φθ, where Φ is
an n× d matrix whose k-th column is φk. We assume that
Φ has full column rank and ‖φ(i)‖2 ≤ 1 for all i ∈ S.

Algorithm 1: TD(λ) with linear function approxi-
mation

Input : initial guess r̄0 and θ0, basis functions
{φk}dk=1, step-size sequence {βt}t∈N and
positive constant cα.

Initialize: z−1 = 0, λ ∈ [0, 1).
for t = 0, 1, . . . do

Observe tuple: Ot = (st,R(st), st+1)
Get TD error:
δt(θt) = R(st)− r̄t+φ(st+1)>θt−φ(st)

>θt
Update eligibility trace: zt = λzt−1 + φ(st)
Update average-reward estimate:
r̄t+1 = r̄t + cαβt(R(st)− r̄t)

Update parameter vector:
θt+1 = θt + βtδt(θt)zt

end

We present in Algorithm 1 the average-reward TD(λ) with
linear function approximation introduced by (Tsitsiklis &
Van Roy, 1999). Tsitsiklis and Van Roy proved the asymp-
totic convergence of Algorithm 1 and provided approxima-
tion error bounds. However, they did not study finite-sample
bounds, and to ensure the TD(λ) limit point is unique, they
assumed that the set of basis functions are independent of
the all-ones vector, which apparently does not hold in the
tabular setting. We do not require such an assumption in
this paper.

2.2. Finite-Time Bounds for Average-Reward TD(λ)

We study the drift of an appropriately chosen Lyapunov
function to obtain an upper bound on the mean-square
error. Denote by S(Φ, e) := span ({θ|Φθ = e}) the lin-
ear span of solutions to Φθ = e. Since Φ has full rank,
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S(Φ, e) = {0} if e 6∈ W := {Φθ|θ ∈ Rd}; otherwise,
S(Φ, e) = {cθe|Φθe = e, c ∈ R}. Let E be the orthogonal
complement of S(Φ, e). We can think of E as the set of
equivalent classes with the equivalence relation ∼ on Rd
defined by θ1 ∼ θ2 if and only if θ1 − θ2 is in S(Φ, e). The
following lemma characterizes the set of TD(λ) limit points.
Lemma 1. Under Assumption 1, the set of TD(λ) limit
points is L := {θ∗ + cθe · 1{e ∈ W}|c ∈ R},
where θ∗ ∈ E is the fixed point of the projected Bell-
man equation Φθ = ΠD,W∗T

(λ)Φθ. Here, ΠD,W∗(·)
is the projection operator onto the subspace W ∗ :=
{Φθ|θ ∈ E} with respect to the norm ‖·‖D, and
T (λ) is the TD(λ) operator defined by T (λ)v = (1 −
λ)
∑∞
m=0 λ

m
(∑m

t=0 P
t (R− r(µ)e) + Pm+1J

)
.

We consider the Lyapunov function Φ(r̄, θ) :=

(r̄ − r(µ))
2

+ ‖Π2,E (θ − θ∗)‖22. Here, Π2,E is the
projection matrix onto the subspace E with respect to the
2-norm. Note that ‖Π2,E (θ − θ∗)‖22 measures the distance
between θ and the set of TD(λ) limit points. With the
following lemma, we can show that the Lyapunov function
Φ has a one-time-step negative drift.
Lemma 2. Under Assumption 1, we have ∆ :=
min‖θ‖2=1,θ∈E θ

>Φ>D
(
I − P (λ)

)
Φθ > 0, where

P (λ) = (1− λ)
∑∞
m=0 λ

mPm+1.

To handle the Markovian noise, we use the conditioning
argument along with the geometric mixing of the underlying
Markov chain {Xt := (st, st+1, zt)} (see Lemma 6.7 in
(Bertsekas & Tsitsiklis, 1996)).
Lemma 3. Under Assumption 1, the Markov chain {Xt}
has a geometric mixing time, i.e., there exists a constant
K ≥ 1 such that given a small positive constant ε, τ(ε) ≤
K ln

(
1
ε

)
.

We now state two finite-time bounds on the performance
of TD(λ). Part (a) studies TD(λ) applied with sufficiently
small constant step-size, which is common in practice. In
this case, the iterate θt will never converge to TD(λ) limit
points due to the noise variance, but our result shows that the
expected distance to the set of TD(λ) fixed points decreases
at an exponential rate below some level that depends on the
choice of step-size. Part (b) attains an Õ

(
1
T

)
convergence

rate to TD(λ) limit points with a carefully chosen decaying
step-size sequence.
Theorem 1. Consider iterates {(r̄t, θt)} gen-
erated by Algorithm 1 with Assumption 1
and cα ≥ ∆ +

√
1

∆2(1−λ)4 − 1
(1−λ)2 . Let

ξ1 = 8

(√
r̄2
0 + ‖θ0‖22 +

√
r(µ)

2
+ ‖θ∗‖22 + 1

)2

and ξ2 = 228η2

(√
r(µ)

2
+ ‖θ∗‖22 + 1

)2

, where

η :=
√
c2α + 5

(1−λ)2 .

(a) If βt = β for all t, where positive con-
stant β is properly chosen such that ∆β < 2 and
βτ(β) ≤ min{ 1

4η ,
∆

228η2 }. Then, for all T ≥

τ(β), we have E
[
(r̄T − r(µ))

2
+ ‖Π2,E (θT − θ∗)‖22

]
≤

ξ1
(
1− ∆

2 β
)T−τ(β)

+ ξ2
βτ(β)

∆ .

(b) If βt = c1
t+c2

where positive constants c1 and
c2 are properly chosen such that 2 < ∆c1 <
2c2 and there exists a smallest positive integer t∗

such that
∑t∗−1
k=0 βk ≤ 1

2η , and for all t ≥ t∗,∑t−1
k=t−τ(βt)

βk ≤ min{ 1
4η ,

∆
228η2 }. Then, for all T ≥

t∗, we have E
[
(r̄T − r(µ))

2
+ ‖Π2,E (θT − θ∗)‖22

]
≤

ξ1

(
t∗+c2
T+c2

)∆c1
2

+ ξ2
8eKc21
∆c1−2

ln(T+c2)−ln(c1)
T+c2+1 .

With an appropriate step-size, the following sample com-
plexity of TD(λ) can be obtained.
Corollary 1. For any ε > 0, it takes at most

Õ
(
K log( 1

∆ )‖θ∗‖22
∆4(1−λ)4ε2

)
number of samples to find a pair

(r̄t, θt) with E
[
(r̄t − r(µ))

2
+ ‖Π2,E (θt − θ∗)‖22

]
≤ ε.

3. Control Algorithm: Q-learning
3.1. Problem Formulation and Synchronous Q-learning

We consider the problem of finding an optimal policy µ∗ ∈
M under the following unichain assumption (see Section
8.4 in (Puterman, 2014)).
Assumption 2. An MDP is called unichain if the induced
Markov chain consists of a single recurrent class plus a
possibly empty set of transient states for any stationary
deterministic policy.

Under Assumption 2, it is known that the optimal aver-
age reward has equal components, i.e., r∗(s) = r∗ for
all s ∈ S, and that there exists Q∗ : S × A → R
(unique up to an additive constant) such that the Bell-
man optimality equation Q∗(s, a) = H(Q∗)(s, a) − r∗

holds for all s ∈ S and a ∈ A, where H(Q)(s, a) :=
R(s, a) +

∑
s′∈S p(s

′|s, a) maxa′∈AQ(s′, a′). Note that
the optimal policy µ∗ can be recovered by µ∗(s) =
argmaxa∈AQ

∗(s, a) for all s ∈ S.

Next we will use J-step synchronous Q-learning presented
in Algorithm 2 to solve for Q∗ approximately with a prov-
able convergence guarantee. Notice that we include an offset
function f(·) to ensure numerical stability (see Section 2.2
of (Abounadi et al., 2001)). If J = 1 and the offset function
f : Rn×m → R satisfies Assumption 2.2 in (Abounadi et al.,
2001), Algorithm 2 recovers the RVI Q-learning algorithm.

Let µQ(s) := arg maxaQ(s, a) denote the Q-
improving policy, and the J-step Bellman op-
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erator be defined as HJ(Q)(s, a) = R(s, a) +
Es1∼p(·|s,a),...,sJ∼p(·|sJ−1,µQ(sJ−1)) [ R(s1, µQ(s1)) +

. . .+R(sJ−1, µQ(sJ−1)) +Q(µJ , µQ(sJ))
]
.

Clearly, the associated Bellman optimality equation
Q(s, a) = HJ(Q)(s, a)− r∗ has the same solutions as the
above Bellman optimality equation.

3.2. Finite-Time Analysis

The existing approaches for showing convergence to a fixed
point, e.g. (Chen et al., 2020), is no longer applicable be-
cause the Bellman operator HJ is indifferent to any con-
stant shifting: HJ(Q + ce) = HJ(Q) + ce. And the in-
duced Q-improving policy and its suboptimality gap are the
same for any constant shifted Q (Puterman, 2014). Thus
it is sensible to view all constant shifts of a Q function,
QĒ := {Q + ce : c ∈ R}, as an equivalent class and di-
rectly analyze the convergence of those equivalent classes.
We make a span contraction assumption on the operator
HJ . Such an assumption is not restrictive because the aperi-
odic transformation suggested in Section 8.5.4 of (Puterman,
2014) can always be applied in the synchronous setting to
ensure its satisfaction (with J ≤ n).

Assumption 3. The Bellman operator HJ is a span
contraction for some J ≥ 1, i.e., there exists a γ ∈
[0, 1) such that for any Q1 and Q2 defined on S × A,∥∥HJQ1 −HJQ2

∥∥
sp
≤ γ ‖Q1 −Q2‖sp, where ‖Q‖sp :=

maxs,aQ(s, a)−mins,aQ(s, a).

Now we construct a Lyaponov function to analyze the con-
vergence of {Qt}. The key insight is that the span seminorm
‖·‖sp can be interpreted as the infimal convolution of the
`∞-norm and the indicator function of the set Ē := {ce :
c ∈ R}, i.e., ‖x‖sp = (‖·‖∞�δĒ)(x) := infy ‖x− y‖∞+

δĒ(y), where δĒ(x) :=

{
0, x ∈ Ē,
∞, otherwise.

The inifi-

mal convolution operator has many desirable properties.
For example, it is commutative, associative, convexity-
preserving and smoothness-preserving. These nice prop-
erties allow us to design the Lyaponov function MĒ(x) :=
M�δĒ(x) for the equivalent classes by exploiting the
smoothed Lyaponuv function proposed in (Chen et al.,

2020), M(Q) := 1
2 (‖·‖2∞�

‖·‖2p
µ )(Q) with p := 4 log(mn)

and µ := ( 1
2 + 1

2γ )2 − 1.

We now state the finite-time error bound for Q-learning
under diminishing step-sizes. Our result shows that the
mean-square of the span seminorm of the error Qt − Q∗
converges at O( 1

t ) rate.

Theorem 2. Let {Qt} be generated by Algorithm
2 with decreasing step sizes ηt = 2

1−γ
1

t+K where

K = 288
(1−γ)2 log(mn), then we have E

[
‖Qt −Q∗‖2sp

]
≤

Algorithm 2: J-step Synchronous Q-learning
Input : initial guess Q0, step-size sequence

{ηt}t∈N, offset function f : Rn×m → R
for t = 0, 1, . . . do

Compute the Q-improving policy
µt(s) = arg maxa∈AQt(s, a).

for (s, a) ∈ S ×A do
Sample s1 ∼ p(·|s, a), s2 ∼
p(·|s1, µt(s

1)), . . . , sJ ∼
p(·|sJ−1, µt(s

J−1)).

Compute Qt+1(s, a)← Qt(s, a) +

ηt
[
R(s, a) +

∑J−1
j=1 R(sj , µt(s

j)) +

Qt(s
J , µt(s

J))−Qt(s, a)− f(Qt)
]
.

end
end

C

(
‖Q0−Q∗‖2sp log(mn)2

(1−γ)4t2 +
(J2+‖Q∗‖2sp) log(mn)

(1−γ)3t

)
, for

some universal constant C.

With the fact ‖Q∗‖sp ≤
J

1−γ , the following sample com-
plexity of Q-learning can be derived, which is similar to
the sample complexity of discounted Q-learning algorithm
(Wainwright, 2019; Chen et al., 2020).

Corollary 2. For any ε > 0, it takes at most
Õ
(

mnJ3

(1−γ)5ε2

)
number of samples to find a Qt such that

E
[
‖Qt −Q∗‖sp

]
≤ ε.

4. Conclusion
We establish the first finite-sample convergence bounds of
(i) average-reward TD(λ) with linear function approxima-
tion under Markovian observation noise, and (ii) average-
reward tabular Q-learning in the synchronous setting. These
RL algorithms can be viewed as stochastic approximation
schemes to solve average-reward Bellman equations. How-
ever, the Bellman operators are not contractive under any
norm. To resolve this difficulty, we construct Lyapunov
functions using projection and infimal convolution to an-
alyze the convergence of equivalent classes generated by
these algorithms. Our approach is simple and general, so
we expect it to have broader applications in other problems.

When analyzing the average-reward Q-learning algorithm,
we made a J-step span contraction assumption, which is
not needed for the asymptotic convergence (Abounadi et al.,
2001). However, it is unclear if such an assumption is nec-
essary for establishing any finite time convergence bound.
Since our results are the first finite sample bounds, a future
research direction is on relaxing this assumption.
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