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Abstract
In this paper we propose a model-based offline
reinforcement learning algorithm that explicitly
handles model misspecification and distribution
mismatch. Theoretically, we prove a safe policy
improvement theorem by establishing pessimism
approximations to the value function. Our algo-
rithm can output the best policy in the given pol-
icy class with interpretable error terms measuring
misspecification level, distribution mismatch, and
statistical deviation. In addition, as long as the
model family can approximate the transitions of
state-action pairs visits by a policy, we can ap-
proximate the value of that particular policy. We
visualize the effect of error terms in the LQR set-
ting, and show that the experiment results match
our theory.

1. Introduction
Offline reinforcement learning (RL) could unlock an enor-
mous amount of observational data and make it useful for
data-driven decision making, such as marketing (Thomas
et al., 2017), robotics (Quillen et al., 2018; Yu et al., 2020;
2021; Swazinna et al., 2020; Singh et al., 2020), recom-
mendation systems (Swaminathan, Joachims, 2015), etc.
Unlike online RL, which may involve unsafe exploration
policies, an offline RL algorithm utilizes existing historical
data, and outputs a policy with promising behavior. As a
result, it is easier to deploy offline RL algorithms in real
world applications.

However, there is a fundamental challenge of distribution
shift between the data collected before and the type of data
we might collect under a new policy. While extensive re-
searches for offline RL in the tabular setting (Yin, Wang,
2020; Kallus, Uehara, 2020; Yin et al., 2020; 2021; Ren
et al., 2021; Kidambi et al., 2020) and linear setting (Duan
et al., 2020; Jin et al., 2020; Chen et al., 2021) yield promis-
ing results, offline RL with general function approximation
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is still a challenging task. In fact, in a large or continuous
state space, it is non-trivial to even evaluate a given policy
using only pre-collected data. To make progress we must
rely on certain assumptions.

Existing work largely falls into one of two extremes. One
extreme is to require only no confounding and minimal as-
sumptions. Some of the works don’t even require a Markov
structure or a function class (Dudík et al., 2011; Li et al.,
2015; Thomas, Brunskill, 2016). However, these approaches
usually suffer from exponentially high variance (Liu et al.,
2018b), and are hence hard to scale to long-horizon prob-
lems unless with enormous amounts of data. Marginalized
importance sampling (MIS) methods (Liu et al., 2018a; Xie
et al., 2019; Yin, Wang, 2020; Liu et al., 2020a) help address
this but rely on system being Markov in the underlying state
space.

Another extreme is to make strong assumptions on the do-
main satisfying the Markov assumption and that the mod-
eling assumptions enable realizability everywhere. Most
existing work in this space assumed not only the above
two assumptions, but also required strong data coverage on
any possible policy (Xie, Jiang, 2020; Chen, Jiang, 2019),
which is extremely strong and unlikely to hold in real world
applications. More recent work directly considers the lim-
ited data available and tries to find good policies within
this set, using model-based (Yu et al., 2020; 2021; Kidambi
et al., 2020), model-free (Liu et al., 2020b) or policy search
methods (Curi et al., 2020; Hasselt van et al., 2019).

Such work still relies on realizability. For model-free ap-
proaches, a common assumption is that the value function
is realizable, normally not just for optimal policy but all
policies. Liu et al. (2020b) assume that the value function
class is close under (modified) Bellman backups. A recent
exception is the work of Xie, Jiang (2020), who only re-
quires the optimal Q-function to be representable by the
value function class. As a compromise, their sample com-
plexity scales non-optimally (Xie, Jiang, 2020, Theorem 2),
and they also make strong assumptions on the data coverage
— essentially the dataset must visit all states with sufficient
probability.

On the other hand, model-based approaches such as Ma-
lik et al. (2019) assume realizability of the dynamics class.
The recent effort of Voloshin et al. (2021), while requiring
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Markov structures, take a model-based approach and can
tolerate certain violations of realizability. Their MML al-
gorithm minimizes a value-aware model error that upper
bounds the difference of policy value in learned and real
models. The model error remains an upper bound when the
model misspecification is small, but it’s unclear in which
cases the model error can be optimized to zero with a mis-
specified model class.

Our insight is that the algorithm may be able to leverage
misspecified models and still leverage Markov assumption
for increased data efficiency. In particular, we only need to
find dynamics that work well over the space of state-action
pairs that a policy would visit. In other words, if modeling
the whole domain is hard with our available dynamics class,
we can still model parts of the domain, and optimize a policy
thereafter.

In this paper, we build a lower bound for the value of every
policy based on the pessimism principle. We prove a finite
sample bound that directly accounts for model misspecifica-
tion (see Lemma 3.3). With both theoretical and empirical
evidence, we show that the misspecification error of our
method is much tighter than other approaches, because we
only look at model’s ability to represent visited state-action
pairs for a particular policy (see Section A and Section B).
In that sense, we say our algorithm relies on small local mis-
specification. Because of the tighter pessimistic estimation,
we can prove a novel safe policy improvement theorem (see
Theorem 3.4) for offline policy optimization (OPO).

The key ingredient of our algorithm is to jointly optimize
policy and dynamics. Prior model-based offline RL algo-
rithms typically estimate dynamics first, and then optimize
a policy w.r.t. the learned dynamics (Yu et al., 2020; 2021;
Voloshin et al., 2021). But without realizability, there may
not exist a unique “good dynamics” that can approximate
the value of every policy. As a result, the learned policy may
have a huge virtual reward (under learned dynamics), but
still performs poorly in the real environment. Indeed, in The-
orem A.1 we show that without realizability assumptions,
decoupling the learning of policy and dynamics is subopti-
mal. Empirically, we also show that our algorithm achieves
a much smaller off-policy optimization error compared with
Voloshin et al. (2021) in a one-dimensional environment.

2. Problem Setup
A Markov Decision Process (MDP) is defined by a tuple
〈T, r,S,A, γ〉 . S and A denote the state and action spaces.
T : S × A → ∆(S) is the transition and r : S × A → R+

is the reward. γ ∈ [0, 1) is the discount factor. For a policy
π : S → ∆(A), the value function is defined as

V πT (s) = Es0=s,at∼π(st),st+1∼T (st,at)[
∑∞
t=0 γ

tr(st, at)].

(1)

Let Rmax , maxs,a r(s, a) be the maximal reward and
Vmax , Rmax/(1 − γ). Without loss of generality, we
assume that the initial state is fixed as s0. We use η(T, π) ,
V πT (s0) to denote the expected value of policy π. Let ρπT be
the normalized state-action distribution when we execute
policy π in dynamics T.

In this paper we assume the reward function is known. An
offline reinforcement learning algorithm takes a dataset
D = {(si, ai, s′i)}ni=1 as input, where n is the size of the
dataset. Each (si, ai, s

′
i) tuple is drawn independently from

a (known) behavior distribution µ. We assume that µ is con-
sistent with the MDP in the sense that µ(· | s, a) = T (s, a)

for all (s, a). For simplicity, we use Ê to denote the empiri-
cal distribution over the dataset D.

The algorithm can access three (finite) function classes
G, T ,Π. G is a class of value functions, T a class of
dynamics and Π a class of policies. We assume that
g(s, a) ∈ [0, Vmax] for all g ∈ G. In the following, we
use T ? to denote the ground-truth dynamics. Our goal is to
compute a policy π ∈ Π such that η(T ?, π) is maximized.

3. Main Results
We sketch our main results in this section. As a starting
point, we invoke the simulation lemma.

Lemma 3.1 (Simulation Lemma (Yu et al., 2020; Kakade,
Langford, 2002)). Consider two MDPs with dynamics
T, T ? and the same reward function. Then,

η(T, π)− η(T ?, π) =
γ

1− γ
E(s,a)∼ρπT

[
Es′∼T (s,a)[V

π
T?(s′)]− Es′∼T?(s,a)[V

π
T?(s′)]

]
.

For a fixed ground-truth dynamics T ?, define GπT (s, a) =
Es′∼T (s,a)[V

π
T?(s′)] − Es′∼T?(s,a)[V

π
T?(s′)]. The simula-

tion lemma states that the dynamics is good enough to es-
timate the value of a policy if Es′∼T (s,a)[V

π
T?(s′)] matches

Es′∼T?(s,a)[V
π
T?(s′)]. In other words, we want to minimize

the model error GπT (s, a) to have an accurate estimation,

For a value function g ∈ G and a dynamics T , let fgT (s, a) ,
Es′∼T (s,a)[g(s′)]. Recall that Ê denotes the empirical expec-
tation over dataset D. For a density ratio w : S ×A → R+,
the model loss is defined as

`w(T, g) = |Ê[w(s, a)(fgT (s, a)− g(s′))]|. (2)

We aim to upper bound policy evaluation error by the loss
function even if there are state action pairs with small prob-
ability mass under µ (i.e., the offline dataset doesn’t have
a perfect coverage). Following Liu et al. (2020b), we treat
the unknown state-action pairs pessimistically. Let ζ be a
fixed parameter. For a policy π and dynamics T , we use
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wπ,T (s, a) , I
[
ρπT (s,a)
µ(s,a) ≤ ζ

]
ρπT (s,a)
µ(s,a) to denote the trun-

cated density ratio. For a fixed policy π, when w = wπ,T ,∣∣∣E(s,a)∼ρπT [GπT (s, a)]
∣∣∣

≤
∣∣∣∣E(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
≤ ζ
]
GπT (s, a)

]∣∣∣∣
+

∣∣∣∣E(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]
GπT (s, a)

]∣∣∣∣
≤ |E(s,a)∼µ[w(s, a)GπT (s, a)]|

+ Vmax

∣∣∣∣E(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]]∣∣∣∣.
As a result, ignoring statistical error due to finite dataset, we
can upper bound the estimation error |η(T ?, π)− η(T, π)|
by

γ

1− γ

(
sup
g∈G

∣∣`wπ,T (g, T )
∣∣︸ ︷︷ ︸

(a)

(3)

+ VmaxE(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]]
︸ ︷︷ ︸

(b)

)
. (4)

Intuitively, term (a) measures the error caused by imperfect
dynamics T , and term (b) comes from distribution mis-
match.

3.1. Pessimistic Policy Optimization with Model
Misspecification

Now we explicitly consider misspecifications of the function
class G, T . As argued in Sec 1, most of the prior works make
strong assumptions regarding realizability.

Our key observation is that for a given dynamics T and
policy π, computing the density ratio wπ,T is statistically ef-
ficient. That is, to compute wπ,T we don’t need any sample
from the true dynamics. Therefore, we can explicitly utilize
the density ratio to get a relaxed realizability assumption.
Definition 3.2. The model misspecification error model
misspecification error is defined by the following quantity.

εV (T, π)

, inf
g∈G
|E(s,a)∼µ[wπ,T (s, a)(Es′∼T (s,a)[(g − V πT?)(s′)]

+ Es′∼T?(s,a)[(g − V πT?)(s′)])]|.

The term εV measures the misspecification of the value func-
tion class. We call εV (T, π) local misspecification because
the error is not evaluated on the state-action pairs that policy
π doesn’t visit.

With the local misspecification error, we can establish a pes-
simistic estimation of the true reward. Let E be a high prob-
ability event under which the loss function `wπ,T (T, g) is

close to its expectation (randomness comes from the dataset
D). In Appendix D.1 we define the event formally and prove
that Pr(E) ≥ 1 − δ. The following lemma gives a lower
bound on the true reward.
Lemma 3.3. Let ι = log(2|G||T ||Π|/δ). For any fixed
dynamics T and policy π, define

lb(T, π) = η(T, π)− 1

1− γ

(
sup
g∈G

`wπ,T (g, T ) (5)

+VmaxE(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]])
. (6)

Then under the event E we have

η(T ?, π) ≥ lb(T, π)− εV (T, π)

1− γ
− 2Vmax

1− γ

√
ζι

n
. (7)

Proof of Lemma 3.3 is deferred to Appendix D.2. Accord-
ingly, we design an offline policy optimization algorithm,
stated in Alg. 1.

Algorithm 1 Model-based Offline RL with Local Misspeci-
fication Error

1: Require: parameter ζ.
2: for π ∈ Π, T ∈ T do
3: Compute wπ,T (s, a) = I

[
ρπT (s,a)
µ(s,a) ≤ ζ

]
ρπT (s,a)
µ(s,a) .

4: Compute the lower bound lb(T, π) by Eq. (5).
5: end for
6: π ← argmaxπ∈Π maxT∈T lb(T, π).

The algorithm enumerates every policy and dynamics and
computes the truncated density ratio wπ,T . Note that com-
puting wπ,T doesn’t require collecting new samples from
the true dynamics T ?. Then, the algorithm computes a lower
bound lb(T, π). Finally, it outputs a policy that maximizes
the lower bound. Compared with existing model-based algo-
rithms (Yu et al., 2020; Voloshin et al., 2021), our algorithm
optimizes dynamics and policy jointly, which potentially
leads to a better performance.

3.2. Safe Policy Improvement

In the sequel we show that the Alg. 1 guarantees a safe
policy improvement up to error terms given below. For a
fixed policy π, define

ερ(π) , inf
T∈T

E(s,a)∼ρπ
T?

[TV (T (s, a), T ?(s, a))], (8)

εµ(π) , E(s,a)∼ρπ
T?

[
I
[
ρπT?(s, a)

µ(s, a)
> ζ/2

]]
. (9)

The term ερ measures the quality of the dynamics class,
and εµ measure the quality of the dataset. In the following
theorem, we prove that the true value of the policy computed
by Alg. 1 is lower bounded by that of the optimal policy in
the function class with some error terms.
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Theorem 3.4. Consider a fixed parameter ζ. Let π̂
be the policy computed by Algorithm 1 and T̂ =
argmaxT lb(T, π̂). Let ι = log(2|G||T ||Π|/δ). Then with
probability at least 1− δ we have

η(T ?, π̂) ≥ sup
π

{
η(T ?, π)− 6Vmaxερ(π)

(1− γ)2
− Vmaxεµ(π)

1− γ

}
− εV (T̂ , π̂)

1− γ
− 4Vmax

1− γ

√
ζι

n
. (10)

Compared with Voloshin et al. (2021) and Yu et al. (2020),
our safe policy improvement theorem is novel. In fact, the es-
timation in Voloshin et al. (2021) could be over-pessimistic
without realizability (see Section A). Thanks to the density
ratio wπ,T in our loss function, the terms ερ(π) and εµ(π)
are also only evaluated on the state-action pairs that policy
π visits.

To prove Theorem 3.4, we show that the lower bound com-
puted by Alg. 1 is tight. In other words, the lower bound
maxT lb(T, π) is at least as high as the true value of the pol-
icy with some errors. Consequently, maximizing the lower
bound also maximizes the true value of the policy. Formally
speaking, we have the following Lemma.

Lemma 3.5. For any policy π ∈ Π, under the event E we
have

max
T∈T

lb(T, π) ≥ η(T ?, π)− 6Vmaxερ(π)

(1− γ)2

− Vmaxεµ(π)

1− γ
− 2Vmax

1− γ

√
ζι

n
.

In the sequel we present a proof sketch for Lemma 3.5. In
this proof sketch we hide 1/(1 − γ) factors in the big-O
notation. For a fixed policy π, let T̂ be the minimizer of
Eq. (8). We prove Lemma 3.5 by analyzing the three terms
in the definition of lb(T̂ , π) (Eq. (5)) separately.

i. Following the definition of Eq. (8), we can show
that ‖ρπ

T̂
− ρπT?‖1≤ O(ερ(π)). Consequently we get

η(T̂ , π) ≥ η(T ?, π)−O(ερ(π)).

ii. Recall that we assume g(s, a) ∈ [0, Vmax],∀g ∈
G. As a result, for any (s, a) we have
supg∈G

∣∣∣Es′∼T̂ (s,a)g(s′)− Es′∼T?(s,a)g(s′)]
∣∣∣ ≤

VmaxTV
(
T̂ (s, a), T ?(s, a)

)
. Combining the defini-

tion of `w(g, T ), Eq. (8) and statistical error we get
supg∈G `wπ,T (g, T ) ≤ Õ(ερ(π)) + O(1/

√
n) under

event E .

iii. For the last term regarding distribution mismatch, we
combine Eq. (9) and Lemma E.1. We can upper bound
this term by O(ερ(π) + εµ(π)).

Proof of Lemma 3.5 is deferred to Appendix D.3. Theo-
rem 3.4 follows directly from combining Lemma 3.3 and
Lemma 3.5, and is shown in Appendix D.4.

3.3. Concrete Examples and Experiments

In Section A, we construct a concrete example where the
dynamics class can only model a part of the state-action
space. In this case, we prove that

i. it is suboptimal to first learn a dynamics, and then
optimize a policy w.r.t. the learned dynamics (see
Theorem A.1), and

ii. for off-policy estimation problem, the estimation error
in Voloshin et al. (2021) is as large as a constant (see
Proposition A.2).

Our safe policy improvement theorem together with these
negative results show that Alg. 1 is more robust to model
misspecification.

In Section B, we illustrate how we can use our approach to
obtain the optimal policy in offline model-based reinforce-
ment learning with model and distribution mismatch. We
implement Alg. 1 in a misspecified one-dimensional LQR
problem, and visualizes the result (see Figure 1). Table 1
shows that Alg. 1 indeed outperforms Voloshin et al. (2021)
with model-misspecification and distribution mismatch.

4. Conclusion
This paper studies model-based offline reinforcement learn-
ing with local model misspecification errors, and proves a
novel safe policy improvement theorem. By theory and ex-
periment, we show that our algorithm outperforms existing
ones in settings without realizability. For future work, we
raise the following open questions:

1. We assume that the data distribution µ is known in order
to compute the density ratio wπ,T (s, a). Can we still
guarantee safe policy improvement when µ is estimated,
or even unknown?

2. The objective lb(T, π) involves the density ratio
wπ,T (s, a). In our implementation this term is not dif-
ferentiable. As a result, the optimization problem in
Line 5 of Alg. 1 is hard to solve for complex function
classes such as neural networks. Can we design differ-
entiable methods to compute the objective lb(T, π) and
implement our algorithm for neural networks?
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A. Concrete Examples
In this section we show a concrete example where Alg. 1 has better performance than existing approaches. The intuition is
quite simple. We construct an MDP whose state space is partitioned into several parts. The function class is restricted in a
sense that every function can only model one part of the state space. Transitions are designed so that every deterministic
policy only visits one part of the state space. As a result, the local misspecification error is small. In contrast, if the dynamics
is learned to fit the whole state space, the estimation error will be huge.

For a fixed parameter d, consider a tabular MDP where S = {s0, · · · , sd} ∪ {sg, sb}. There are d actions for each state
in {s0, · · · , sd}, denoted by a1, · · · , ad. We assume that there is an known feature map φ : S × A → Rd, which will be
specified later. The transition function is given as follows.

T ?(s0, ai) = si, (11)

T ?(si, aj) =

{
sg, w.p. 1

2

(
1 + φ(si, aj)

>θ?i
)
,

sb, w.p. 1
2

(
1− φ(si, aj)

>θ?i
)
,

(12)

T ?(sg, ai) = sg,∀i ∈ [d], (13)
T ?(sb, ai) = sb,∀i ∈ [d]. (14)

And the reward function is non-zero only for state sg . That is, r(sg, ai) = 1,∀i ∈ [d]. Note that the state spaces are layered.
The first layer contains state s0. The second layer is {s1, · · · , sd} and the third layer is {sg, sd}. The feature map (for the
second layer) is defined as φ(si, aj) = ej .

The transition function class is parameterized by θ ∈ Rd with ‖θ‖2 = 1. For a fixed θ, the transition at second layer is given
by

Tθ(si, aj) =

{
sg, w.p. 1

2

(
1 + φ(si, aj)

>θ
)
,

sb, w.p. 1
2

(
1− φ(si, aj)

>θ
)
,

(15)

And the transition at other layers is exactly the same as T ?. Note that for the ground-truth transition T ?, the parameter
θ?i varies across different states. But transition Tθ in the function class must use the same parameter θ to approximate the
dynamics in every state. As a result, the standard realizability assumptions do not hold in this example.

Optimal policy with respect to a learned dynamics is suboptimal. We consider a family of transitions denoted by
{Tκ}dκ=1, where in Tκ we set θ?i = I [i = κ] ei. Consequently, the optimal action for state s0 is aκ. Note that for any fixed
θ, the transitions at s1, · · · , sd are identical in Tθ. Therefore the optimal action induced by Tθ is suboptimal. In other words,
algorithms that decouples the learning of dynamics and policy are suboptimal.

Theorem A.1. Consider any (possibly stochastic) algorithm A that outputs an estimated policy Tθ. Let πθ be the greedy
policy w.r.t. Tθ (with ties breaking data-independently). Then for d ≥ 2 we have

sup
A

max
κ

(
max
π

η(Tκ, π)− η(Tκ, πθ)
)
≥ γ2

2(1− γ)
. (16)

Proof of Theorem A.1 is deferred to Appendix D.5.

Error bounds in Voloshin et al. (2021) is not tight. Theorem A.1 proves the suboptimality of any algorithm (including
MOPO (Yu et al., 2020) and MML (Voloshin et al., 2021)) that learns a dynamics first and output the optimal policy. In the
sequel, we prove that for off-policy estimation problem, the estimation error in Voloshin et al. (2021) can be large without
realizability.

In this case, we consider a fixed true dynamics T ? where θ?i = ei. Voloshin et al. (2021) require an density ratio class
W : S ×A → R+. Theorem 3.1 of (Voloshin et al., 2021) states that when wπ,T ∈ W and V πT? ∈ G,

|η(T, π)− η(T ?, π)| ≤ γ min
T∈T

max
w∈W,g∈G

|`w(g, T )|. (17)

But we have the following proposition.
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Proposition A.2. Consider the set the dynamics class T = {Tθ : θ ∈ Sd−1}. Let Π = {πx : x ∈ [d]} where πx(si) = ax
for 0 ≤ i ≤ d and πx(sg) = πx(sb) = a1. LetW be the density ratio induced by π. Even with G = {V πxT? : x ∈ [d]} and
infinite number of data, we have

min
T∈T

max
w∈W,g∈G

|`w(g, T )| ≥ γ

4(1− γ)
. (18)

Proposition A.2 is proved by explicitly computing the right hand side of Eq. (17). We defer the proof to Appendix D.6. In
contrast, error terms in Theorem 3.4 converges to zero when ζ > poly(d, 1/(1− γ)) and n→∞ in the same setting.

B. Experiments
We illustrate how we can use our approach to obtain the optimal policy in offline model-based reinforcement learning
with model and distribution mismatch. We empirically evaluate our method on Linear-Quadratic Regulator (LQR), a
commonly used environment in optimal control theory (Bertsekas, others, 2000). We seek to answer the following question:
Does algorithm 1 return the optimal policy when we have both model and distribution mismatch? We first describe the
environment, the baseline algorithm we compare against, and then provide the results.

Linear-Quadratic Regulator (LQR) The Linear-Quadratic Regulator (LQR) is defined by a linear transition dynamics
in the form of st+1 = Ast + Bat + η, where st ∈ Rn and at ∈ Rm are state and action and time step t, respectively.
η ∼ N (0, σ2I) is random noise in the system. LQR has quadratic reward function R(s, a) = −(sTQs + aTRa) with
Q ∈ Rn×n and R ∈ Rm×m being positive semi-definite matrices, Q,R � 0.

The optimal controller in LQR to maximize the sum of future rewards
∑H
t=1−(sTt Qst + aTt Rat) until the end of horizon H

has the form at = −Kst for some K ∈ Rm×n (Bertsekas, others, 2000). Additionally, the value function is also a quadratic
function, V (s) = sTUs+ q for some constant q and positive semi-definite matrix U � 0 (Voloshin et al., 2021).

Data Generation We use 1D version of LQR in our experiments with A(x) = (1 + x/10), B(x) = (−0.5 − x/10),
Q = 1, R = 1 and noise η ∼ N (0, 0.01). The true model has x = 6 with the optimal policy K = 1.0. We use K = 0.8
to generate 100 trajectories each with 100 steps, starting from the initial state distribution s0 ∼ N (1.0, 0.1). This process
generates the dataset D that we use for both our algorithm and the baseline to compute the optimal policy.

Baseline We compare our algorithm to minimizing MML loss as described in the OPO algorithm of Voloshin et al. (2021,
Algorithm 2). MML strictly outperformed VAML (Farahmand et al., 2017) as shows in the experiments of Voloshin et al.
(2021); hence, we only compare to MML in our experiments.

B.1. Results and Discussion

We use the following model class T (x) ∈ T parametrized by x,

T (x) =

{
st < 0.05 : st+1 = (1 + x/10)st − (0.5 + x/10)at

st ≥ 0.05 : st+1 = −(1 + x/10)st − (0.5 + x/10)at

These models are mis-specified in two way, first they are deterministic, whereas the true model is stochastic and second,
for s ≥ 0.05 they show a completely different behaviour. We consider x ∈ {0, 2, 4, 6, 8} in our experiments. Test function
class G consist of quadratic function corresponding to value functions of different model, policy pairs (we used the same
class for value function V in MML). Similarly for the MML loss, we compute the weight function w(s, a) corresponding to
the same model, policy pair. For more information reader may refer to the supplementary materials.

Table 1 shows the result of our experiments. We compare the OPO loss, |η(T ?, π?
T̂

)− η(T ?, π?T?)|, that is the difference
of the return in the true model of the optimal policy versus the best policy based on the method. These results shows that
our method, will pick the optimal policy for the true model. This is in contrast to MML that picks the wrong model and
therefore the wrong policy. The 0.148 difference is about 5.7% difference in the return. We note that, optimization in our
experiment is over a discrete set so there is no randomness caused by initialization. In 10 runs it obtained the same optimal
value. That is both ours and MML picked the same policy over 10 different runs. We reported average difference between
the policy values in Table 1.

Hence we did not put any confidence interval, as mentioned in the main text.
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Table 1. LQR OPO error

Algorithm MML(Voloshin et al., 2021) Ours
OPO Error 0.148 0
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Figure 1. Left: Visualization of negative lower bounds lb(T, π) for different policies and models. Distribution mismatch error in this case
is mild. Note that in our algorithm, the model loss also depends on the policy. Right: Visualization of true policy value η(T ?, π). Our
algorithm picks the optimal policy, whereas MML picks a suboptimal policy.

This result highlights the main benefit of our method over the baseline. Since all models in the model class are misspecified,
the maximization over weight function w in the MML loss results in an unrealistically large loss value for some models.
However, if the chosen policy does not explore the part of the state space with a large model mismatch, there is no need to
incur a high penalty. This is exactly why our method accounts for weights separately and can extract the optimal policy even
with the misspecified model.

B.2. Visualization of Lower Bounds

We visualize the effect of three terms in the definition of lb(T, π) in Figure 1. We can see that the model loss for different
policy is different (e.g., model loss for (K,x) = (−0.7, 6) is significantly larger than (−1.1, 6), even if the dynamics is the
same). This is because the model loss is evaluated with a different density ratio. The MML algorithm evaluates model loss
by taking a maximum over all possible density ratios, and consequently, over penalize imperfect models.

C. Related Works
The most related result to our paper is Voloshin et al. (2021). The loss function for model learning in (Voloshin et al., 2021)
is almost the same as ours, except that we explicitly compute the density ratio where Voloshin et al. (2021) maximize over
all possible ratios. We also consider distribution mismatch explicitly. The differences enable us to show the tightness of our
estimation (see Lemma 3.5 and Proposition A.2). Algorithmically, we optimize dynamics and policy at the same time. The
MML algorithm (Voloshin et al., 2021) learns the dynamics first, and then optimizes a policy. We also show in Theorem A.1
that this decoupling in the learning of dynamics and policy is suboptimal.

There are extensive researches on model-free methods for offline reinforcement learning. Nachum et al. (2019) and their
follow-ups (Zhang et al., 2019; 2020) learn a distribution correction term, on top of which they perform evaluation or policy
optimization tasks. Uehara et al. (2020); Jiang, Huang (2020) study the duality between learning Q-functions and learning
importance weights. Liu et al. (2020b) explicitly consider the distribution shift in offline reinforcement learning and propose
conservative Bellman equations. There are also several papers that study the pessimism principle in different settings (Jin
et al., 2020; Rashidinejad et al., 2021; Xiao et al., 2021; Buckman et al., 2020).

Another line of research uses model-based methods (Kidambi et al., 2020; Yu et al., 2021; Matsushima et al., 2020; Swazinna
et al., 2020; Fu, Levine, 2021). Instead of using maximum likelihood loss, Farahmand et al. (2017) propose a value-aware
loss function for model learning using linear function approximator. Yu et al. (2020) build an uncertainty quantification on
top of the learned dynamics, and select a policy that optimizes the lower confidence bound. Other papers focus on policy
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optimization instead of model learning (Argenson, Dulac-Arnold, 2020; Zhan et al., 2021).

We also consider the effect of finite dataset. In Table 2, we compare the finite sample error bounds. Our bound is better or at
least comparable with existing results.

Table 2. Comparison of statistical errors

Algorithm VAML(Farahmand et al., 2017) MBS-PI(Liu et al., 2020b) MML(Voloshin et al., 2021) Ours

Statistical Error Õ
(

p√
n

)
1 Õ

(
Vmaxζ

(1−γ)2
√
n

)
Rn

2 Õ
(
Vmax

1−γ

√
ζ
n

)

In addition to the flourish researches in offline reinforcement learning algorithms, there are also several lower bounds with
linear function approximation (Zanette, 2020; Wang et al., 2020; 2021). Our results do not contradict these lower bounds
because we assume that the offline dataset covers the state-action space, where the lower bounds focus on covering the
feature space.

D. Missing Proofs
D.1. High Probability Events

In this section we introduce concentration inequalities and define the high probability events.

Define the following quantities

L(π, g, T ) = E(s,a,s′)∼µ
[
wπ,T (s, a)(Ex∼T (s,a)[g(x)]− Ex∼T?(s,a)[g(x)])

]
, (19)

l(π, g, T ) = E(s,a,s′)∼D[wπ,T (s, a)(fgT (s, a)− g(s′))]. (20)

Recall that ι = log(2|G||T ||Π|/δ). Consider the event

E =

{
|L(π, g, T )− l(π, g, T )| ≤ 2Vmax

√
ζι

n
, ∀π ∈ Π, g ∈ G, T ∈ T

}
. (21)

In the following we show that

Pr (E) ≥ 1− δ. (22)

Recall that D = {(si, ai, s′i)}ni=1 where (si, ai, s
′
i) ∼ µ are i.i.d. samples from distribution µ. For fixed π ∈ Π, g ∈ G, T ∈

T , we have E[l̂(π, g, T )] = l(π, g, T ). Meanwhile, note that

|wπ,T (s, a)(fgT (s, a)− g(s′))| ≤ Vmaxζ, (23)

E(s,a,s′)∼µ[wπ,T (s, a)2(fgT (s, a)− g(s′))2] (24)

≤ E(s,a,s′)∼ρπT [wπ,T (s, a)(fgT (s, a)− g(s′))2] ≤ V 2
maxζ. (25)

By Bernstein inequality, with probability at least 1− δ/(|G||T ||Π|),

|L(π, g, T )− l(π, g, T )| ≤
√

2V 2
maxζ log(2|G||T ||Π|/δ)

n
+
Vmaxζ

3n
log(2|G||T ||Π|/δ) (26)

Recall that ι = log(2|G||T ||Π|/δ). When n ≥ ζ we have

|L(π, g, T )− l(π, g, T )| ≤ 2Vmax

√
ζι

n
. (27)

Note that when n < ζ, E trivially holds. As a result, applying union bound we prove Eq. (22).

2p is the dimension of the feature vector.
2Rademacher complexity of an induced function class. For finite hypothesis, the best known upper bound is in the same order of ours.
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D.2. Proof of Lemma 3.3

Proof. In the following we consider a fixed policy π and dynamics T ∈ T . We use w to denote wπ,T when the context is
clear.

By basic algebra we get∣∣∣E(s,a)∼ρπT [GπT (s, a)]
∣∣∣ (28)

≤
∣∣∣∣E(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
≤ ζ
]
GπT (s, a)

]∣∣∣∣+ E(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]
|GπT (s, a)|

]
(29)

≤
∣∣E(s,a)∼µ[w(s, a)GπT (s, a)]

∣∣+ VmaxE(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]]
. (30)

Consequently, in the following we prove

∣∣E(s,a)∼µ[w(s, a)GπT (s, a)]
∣∣ ≤ sup

g∈G
`w(g, T ) + εV (T, π) + 2Vmax

√
ζι

n
.

Let Lw(g, T ) =
∣∣E(s,a,s′)∼µ

[
w(s, a)(Ex∼T (s,a)[g(x)]− Ex∼T?(s,a)[g(x)])

]∣∣ be the population error. Recall that under the
high probability event E in Eq. (21), for any g ∈ G and T ∈ T

|Lw(g, T )− `w(g, T )| ≤ 2Vmax

√
ζι

n
. (31)

Now by the definition of GπT (s, a), for any g ∈ G we have∣∣E(s,a)∼µ[w(s, a)GπT (s, a)]
∣∣ (32)

=
∣∣E(s,a)∼µ

[
w(s, a)

(
Es′∼T (s,a)[V

π
T?(s′)]− Es′∼T?(s,a)[V

π
T?(s′)]

)]∣∣ (33)

≤
∣∣E(s,a)∼µ

[
w(s, a)

(
Es′∼T (s,a)[g(s′)]− Es′∼T?(s,a)[g(s′)]

)]∣∣ (34)

+
∣∣E(s,a)∼µ

[
w(s, a)

(
Es′∼T (s,a)[g(s′)− V πT?(s′)] + Es′∼T?(s,a)[g(s′)− V πT?(s′)]

)]∣∣. (35)

Define
ĝ = argmin

g∈G

∣∣E(s,a)∼µ
[
w(s, a)

(
Es′∼T (s,a)[g(s′)− V πT?(s′)] + Es′∼T?(s,a)[g(s′)− V πT?(s′)]

)]∣∣.
Since g is arbitrarily, continuing Eq. (35) and recalling Definition 3.2 we get∣∣E(s,a)∼µ[w(s, a)GπT (s, a)]

∣∣ (36)

≤
∣∣E(s,a)∼µ

[
w(s, a)

(
Es′∼T (s,a)[ĝ(s′)]− Es′∼T?(s,a)[ĝ(s′)]

)]∣∣+ εV (T, π) (37)

≤ sup
g∈G

∣∣E(s,a)∼µ
[
w(s, a)

(
Es′∼T (s,a)[g(s′)]− Es′∼T?(s,a)[g(s′)]

)]∣∣+ εV (T, π). (38)

Combining Eq. (38) and Eq. (31) we get,∣∣E(s,a)∼µ[w(s, a)GπT (s, a)]
∣∣ ≤ sup

g∈G
Lw(g, T ) + εV (T, π) (39)

≤ sup
g∈G

`w(g, T ) + εV (T, π) + 2Vmax

√
ζι

n
. (40)

Now plugging in Eq. (30) we get,∣∣∣E(s,a)∼ρπT [GπT (s, a)]
∣∣∣

≤ sup
g∈G

`w(g, T ) + εV (T, π) + 2Vmax

√
ζι

n
+ VmaxE(s,a)∼ρπT

[
I
[
ρπT (s, a)

µ(s, a)
> ζ

]]
.

Finally, combining with simulation lemma (Lemma 3.1) we finish the proof.
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D.3. Proof of Lemma 3.5

Proof of Lemma 3.5. Consider a fixed π ∈ Π. When the context is clear, we use ερ and εµ to denote ερ(π) and εµ(π)
respectively.

Consider the dynamics

T̂ = argmin
T∈T

E(s,a)∼ρπ
T?

[TV (T (s, a), T ?(s, a))]. (41)

By the definition of ερ we get

E(s,a)∼ρπ
T?

[
TV

(
T̂ (s, a), T ?(s, a)

)]
≤ ερ.

Applying Lemma E.2 we get ∥∥ρπ
T̂
− ρπT?

∥∥
1
≤ ερ

(1− γ)
. (42)

The rest of the proof is organized in the following way. We bound the three terms in RHS of Eq. (5) respectively as follows

η(T̂ , π) ≥ η(T ?, π)− Vmax

1− γ
ερ, (43)

sup
g∈G

`w(g, T̂ ) ≤ 2Vmaxερ
1− γ

+ 2Vmax

√
ζι

n
, (44)

E(s,a)∼ρπ
T̂

[
I

[
ρπ
T̂

(s, a)

µ(s, a)
> ζ

]]
≤ εµ +

3ερ
(1− γ)

. (45)

Then we combine these inequalities together to prove Lemma 3.5.

Step 1: Proving Eq. (43). Note that for every T and π, η(T, π) = 1
1−γ 〈ρ

π
T , r〉 where r is the reward function. Then we

have
η(T ?, π)− η(T̂ , π) =

1

1− γ
〈
ρπT? − ρπT̂ , r

〉
≤ 1

1− γ
∥∥ρπT? − ρπT̂∥∥1

‖r‖∞ . (46)

Combining with Eq. (42) we get Eq. (43).

Step 2: Proving Eq. (44). For any fixed function g ∈ G. Let w = wπ,T̂ be a shorthand. Define

Lw(g, T ) =
∣∣E(s,a,s′)∼µ[w(s, a)(fgT (s, a)− g(s′))]

∣∣
to be the population error. Then we have

Lw(g, T̂ )

=
∣∣∣E(s,a)∼µ

[
w(s, a)

(
Es′∼T̂ (s,a)[g(s′)]− Es′∼T?(s,a)[g(s′)]

)]∣∣∣
=

∣∣∣∣∣E(s,a)∼ρπ
T̂

[
I

[
ρπ
T̂

(s, a)

µ(s, a)
≤ ζ

](
Es′∼T̂ (s,a)[g(s′)]− Es′∼T?(s,a)[g(s′)]

)]∣∣∣∣∣ (By the definition of w.)

≤ VmaxE(s,a)∼ρπ
T̂

[
I

[
ρπ
T̂

(s, a)

µ(s, a)
≤ ζ

]
TV

(
T̂ (s, a), T ?(s, a)

)]

≤ VmaxE(s,a)∼ρπ
T?

[
TV

(
T̂ (s, a), T ?(s, a)

)]
+
Vmaxερ
1− γ

(By Eq. (42))

≤ Vmax

(
ερ +

ερ
1− γ

)
≤ 2Vmaxερ

1− γ
.

Under event E we have

`w(g, T̂ ) ≤ Lw(g, T̂ ) + 2Vmax

√
ζι

n
. (47)
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Because g is arbitrary, we get Eq. (44).

Step 3: Proving Eq. (45). Note that

E(s,a)∼ρπ
T̂

[
I
[
ρπ̂T (s, a)

µ(s, a)
> ζ

]]
(48)

= E(s,a)∼ρπ
T̂

[
I

[
ρπ
T̂

(s, a)

ρπT?(s, a)

ρπT?(s, a)

µ(s, a)
> ζ

]]
(49)

≤ E(s,a)∼ρπ
T̂

[
I

[
ρπ
T̂

(s, a)

ρπT?(s, a)
> 2

]]
+ E(s,a)∼ρπ

T̂

[
I
[
ρπT?(s, a)

µ(s, a)
> ζ/2

]]
. (50)

With the help of Lemma E.1, we can upper bound the first term of Eq. (50) by the total variation between ρπ
T̂

and ρπT? .
Combining Lemma E.1 and Eq. (42) we get

E(s,a)∼ρπ
T̂

[
I
[
ρπ̂T (s, a)

ρπT?(s, a)
> 2

]]
≤ 2ερ

1− γ
. (51)

On the other hand, combining Eq. (42) and definition of εµ we get

E(s,a)∼ρπ
T̂

[
I
[
ρπT?(s, a)

µ(s, a)
> ζ/2

]]
≤ E(s,a)∼ρπ

T?

[
I
[
ρπT?(s, a)

µ(s, a)
> ζ/2

]]
+

ερ
1− γ

≤ εµ +
ερ

1− γ
.

Consequently, we get Eq. (45).

Now we stitch Eq. (42), Eq. (43) and Eq. (44) together. Combining with the definition of lb(T̂ , π) in Eq. (5), we have

lb(T̂ , π) = η(T̂ , π)− 1

1− γ

(
sup
g∈G

∣∣∣`wπ,T (g, T̂ )
∣∣∣+ VmaxE(s,a)∼ρπT

[
I

[
ρπ
T̂

(s, a)

µ(s, a)
> ζ

]])

≥ η(T ?, π)− Vmaxερ
1− γ

− 2Vmaxερ
(1− γ)2

+
2Vmax

1− γ

√
ζι

n
− Vmax

1− γ

(
3ερ

1− γ
+ εµ

)
≥ η(T ?, π)− 6Vmaxερ

(1− γ)2
− Vmaxεµ

1− γ
− 2Vmax

1− γ

√
ζι

n
.

Note that T̂ ∈ T , we have

max
T∈T

lb(T, π) ≥ lb(T̂ , π), (52)

which finishes the proof.

D.4. Proof of Theorem 3.4

Proof of Theorem 3.4. Let T̂ , π̂ ← argmaxT∈T ,π∈Π lb(T, π) be the dynamics and policy that maximizes the lower bound.
Note hat π̂ is the output of Algorithm 1.

Now under the event E , by Lemma 3.5, for any policy π we have

max
T∈T

lb(T, π) ≥ η(T ?, π)− 6Vmaxερ(π)

(1− γ)2
− Vmaxεµ(π)

1− γ
− 2Vmax

1− γ

√
ζι

n
. (53)

On the other hand, under the event E , by Lemma 3.3 we get

η(T ?, π) ≥ lb(T̂ , π̂)− εV (T̂ , π̂)

1− γ
− 2Vmax

1− γ

√
ζι

n
. (54)
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By the optimality of T̂ , π̂, we have lb(T̂ , π̂) ≥ supT∈T lb(T, π) for any π. As a result, combining with Eq. (53) and
Eq. (54) we get

η(T ?, π̂) ≥ lb(T̂ , π̂)− εV (T̂ , π̂)

1− γ
− 2Vmax

1− γ

√
ζι

n
(55)

≥ sup
π∈Π

sup
T∈T

lb(T, π)− εV (T̂ , π̂)

1− γ
− 2Vmax

1− γ

√
ζι

n
(56)

≥ sup
π

{
η(T ?, π)− 6Vmaxερ(π)

(1− γ)2
− Vmaxεµ(π)

1− γ

}
− εV (T̂ , π̂)

1− γ
− 4Vmax

1− γ

√
ζι

n
. (57)

D.5. Proof of Theorem A.1

Proof of Theorem A.1. Note that for any θ ∈ Rd, the transition function for state s1, · · · , sd are identical. As a result,
V πTθ (s1) = V πTθ (s2) = · · · = V πTθ (sd) for any policy π. Since the tie-breaking strategy is data-independent, there exists a
distribution p ∈ ∆(A) such that πθ(s0) = p, ∀θ.

Now consider κ = argmini∈[d] p(i). We claim that η(Tκ, πθ) is suboptimal. Indeed, notice that V ?Tκ(si) = γ
1−γ I [i = κ] for

all i ∈ [d]. As a result, η(Tκ, πθ) ≤ γ2

1−γ p(i) ≤
γ2

2(1−γ) . On the other hand, we have maxπ η(Tκ, π) = γ2

1−γ . As a result,

sup
A

max
κ

(
max
π

η(Tκ, π)− η(Tκ, πθ)
)
≥ γ2

2(1− γ)
. (58)

D.6. Proof of Proposition A.2

In the following we show that, even with G = {V πT?} and infinite number of data, the upper bound given by Eq. (17) is loose.
Recall that we set the dynamics class T = {Tθ : θ ∈ Sd−1}. Let Π = {πx : x ∈ [d]} where πx(si) = ax for 0 ≤ i ≤ d and
πx(sg) = πx(sb) = a1. LetW be the density ratio induced by π. For any x ∈ [d], we can compute

ρπxT?(s0, ai) = (1− γ)I [i = x] , ρπxT?(si, aj) = γ(1− γ)I [i = x, j = x] , (59)

ρπxT?(sg, aj) = ρπT?(sb, aj) = γ2(1− γ)I [j = 1] . (60)

Let µ be uniform distribution over 3d+ d2 state action pairs. Then we can defineW = {wx : x ∈ [d]} where wx(s, a) ,
1

1−γ
ρπx
T?

(s,a)

µ(s,a) .

Now for any fixed θ ∈ Sd−1, consider

max
w∈W,g∈G

|`w(g, Tθ)|. (61)

Let x = argmini[θ]i.
3 We claim that

`wx(V πxT? , Tθ) ≥
γ

4(1− γ)
.

Indeed, with infinite data we have

`wx(V πxT? , Tθ) =
∣∣E(s,a)∼µ

[
wx(s, a)

(
Es′∼T (s,a)[V

πx
T? (s′)]− Es′∼T?(s,a)[V

πx
T? (s′)]

)]∣∣
=

1

1− γ

∣∣∣E(s,a)∼ρπx
T?

[(
Es′∼T (s,a)[V

πx
T? (s′)]− Es′∼T?(s,a)[V

πx
T? (s′)]

)]∣∣∣.
Recall that Tθ = T ? for states in the first and third layer. As a result, we continue the equation by

1

1− γ

∣∣∣E(s,a)∼ρπx
T?

[(
Es′∼T (s,a)[V

πx
T? (s′)]− Es′∼T?(s,a)[V

πx
T? (s′)]

)]∣∣∣
3We use [θ]i to denote the i-th coordinate of θ.
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= γ
∣∣Es′∼T (sx,ax)[V

πx
T? (s′)]− Es′∼T?(sx,ax)[V

πx
T? (s′)]

∣∣ (by the definition of ρ)

= γ

∣∣∣∣12(1 + [θ]x)V πxT? (sg) +
1

2
(1− [θ]x)V πxT? (sb)− V πxT? (sg)

∣∣∣∣ (by the definition of Tθ)

=
γ

2
(1− [θ]x)(V πxT? (sg)− V πxT? (sb)).

By basic algebra, V πxT? (sg) = (1− γ)−1 and V πxT? (sb) = 0. As a result, we get

`wx(V πxT? , Tθ) ≥
γ

2(1− γ)
(1− [θ]x) ≥ γ

4(1− γ)
, (62)

where the last inequality comes from the choice of x.

E. Helper Lemmas
In this section, we present several helper lemmas used in Appendix D.

Lemma E.1. For two distribution p, q over x ∈ X , if we have ‖p− q‖1 ≤ ε, then for any ζ > 1,

Ex∼p
[
I
[
p(x)

q(x)
> ζ

]]
≤ ζ

ζ − 1
ε.

Proof. Define E(x) = I
[
p(x)
q(x) > ζ

]
. Note that under event E(x) we have

p(x) > q(x)ζ =⇒ p(x)− q(x) > q(x)(ζ − 1). (63)

As a result,

ε ≥ ‖p− q‖1 ≥
∫
|p(x)− q(x)|E(x) dx (64)

≥
∫

(ζ − 1)q(x)E(x) dx = Ex∼q[E(x)](ζ − 1) (65)

≥ (Ex∼p[E(x)]− ε)(ζ − 1). (66)

By algebraic manipulation we get Ex∼p[E(x)] ≤ ζ
ζ−1ε.

Lemma E.2. Consider a fixed policy π and two dynamics model T, T̄ . Suppose

E(s,a)∼ρπT

[
TV

(
T (s, a), T̄ (s, a)

)]
≤ ε,

we get ∥∥ρπT − ρπT̄∥∥1
≤ 1

1− γ
ε. (67)

Proof. First of all let G, Ḡ be the transition kernel from S ×A to S ×A induced by T, π and T̄ , π respectively. Then for
any distribution ρ ∈ ∆(S ×A) we have∥∥Gρ− Ḡρ∥∥

1
≤ E(s,a)∼ρ

[
TV

(
T̄ (s, a), T (s, a)

)]
. (68)

Let ρh (or ρ̄h) be the state-action distribution on step h under dynamics T (or T̄ ). Then we have

ρh − ρ̄h =
(
Gh − Ḡh

)
ρ0 =

h−1∑
h′=0

Ḡh−h
′−1
(
G− Ḡ

)
Gh

′
ρ0. (69)

As a result,

‖ρh − ρ̄h‖1 ≤
h−1∑
h′=0

∥∥∥Ḡh−h′−1
(
G− Ḡ

)
Gh

′
ρ0

∥∥∥
1

(70)
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≤
h−1∑
h′=0

∥∥∥(G− Ḡ)Gh′
ρ0

∥∥∥
1
≤

h−1∑
h′=0

E(s,a)∼ρh′
[
TV

(
T̄ (s, a), T (s, a)

)]
. (71)

It follows that

∥∥ρπT − ρπT̄∥∥1
≤ (1− γ)

∞∑
h=0

γh ‖ρh − ρ̄h‖1 (72)

≤(1− γ)

∞∑
h=0

γh
h−1∑
h′=0

E(s,a)∼ρh′
[
TV

(
T̄ (s, a), T (s, a)

)]
(73)

≤(1− γ)

∞∑
h=0

γh

1− γ
E(s,a)∼ρh

[
TV

(
T̄ (s, a), T (s, a)

)]
(74)

=

∞∑
h=0

γhE(s,a)∼ρh
[
TV

(
T̄ (s, a), T (s, a)

)]
(75)

=
1

1− γ
E(s,a)∼ρπT

[
TV

(
T̄ (s, a), T (s, a)

)]
. (76)

F. Experimental Details
In our experiments as described in the main text, we used the function class T (x) ∈ T parameterized by x.

T (x) =

{
st < 0.05 : st+1 = (1 + x/10)st − (0.5 + x/10)at

st ≥ 0.05 : st+1 = −(1 + x/10)st − (0.5 + x/10)at

We used X = {0, 2, 4, 6, 8}. In order to compute the weight function and the value function, we considered policies with
values, K = {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}. That is we run the policies k ∈ K in the transition dynamics generated by the
x ∈ X ,

st+1 = (1 + x/10)st − (0.5 + x/10)at

and the reward function generated by Q = 1, R = 1. For our model, we discretized the state action space with 10 bins, and
the support of LQR is s ∈ {−0.3, 0.3}.


