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Abstract

We study the statistical theory of offline reinforce-
ment learning (RL) with deep ReLU network
function approximation. We analyze a variant
of fitted-Q iteration (FQI) algorithm under a new
dynamic condition that we call Besov dynamic
closure, which encompasses the conditions from
prior analyses for deep neural network function
approximation. Under Besov dynamic closure,
we prove that the FQI-type algorithm enjoys an
improved sample complexity than the prior results.
Importantly, our sample complexity is obtained
under the new general dynamic condition and a
data-dependent structure where the latter is either
ignored in prior algorithms or improperly handled
by prior analyses. This is the first comprehensive
analysis for offline RL with deep ReLU network
function approximation under a general setting.

1. Introduction
Offline reinforcement learning (Levine et al., 2020) is a prac-
tical paradigm of reinforcement learning (RL) where logged
experiences are abundant but a new interaction with the envi-
ronment is limited or even prohibited. The fundamental of-
fline RL problems are how well previous experiences could
be used to evaluate a new target policy, known as off-policy
evaluation (OPE) problem, or to learn the optimal policy,
known as off-policy learning (OPL) problem. We study
these offline RL problems with infinitely large state spaces,
where the agent must use function approximation such as
deep neural networks to generalize across states from an
offline dataset without any further exploration. Such prob-
lems form the core of modern RL in practical settings, but
relatively few work provide a comprehensive and adequate
analysis of the statistical efficiency for the problems.
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On the theoretical side, predominant sample efficiency re-
sults in offline RL focus on tabular environments with small
finite state spaces (Yin and Wang, 2020; Yin et al., 2021;
Yin and Wang, 2021), but as these methods scale with the
number of states, they are infeasible for infinitely large state
space settings. While this tabular setting has been extended
to large state spaces via linear environments (Duan and
Wang, 2020), the linearity assumption does not hold for
many RL problems in practice. More relevant theoretical
progress has been achieved for more complex environments
with general and deep neural network function approxima-
tions, but these results are either inadequate or relatively
disconnected from practical settings (Munos and Szepesvári,
2008; Yang et al., 2019; Le et al., 2019). In particular, their
finite-sample results either (i) depend on a so-called inher-
ent Bellman error (Munos and Szepesvári, 2008; Le et al.,
2019), which could be arbitrarily large or uncontrollable in
practice, (ii) avoid the data-dependent structure in their al-
gorithms at the cost of losing sample efficiency (Yang et al.,
2019) or improperly ignore it in their analysis (Le et al.,
2019), or (iii) rely on relatively strong dynamics assumption
(Yang et al., 2019).

In this paper, we study a variation of fitted-Q iteration (FQI)
(Bertsekas et al., 1995; Sutton and Barto, 2018) for OPE
and OPL where we approximate the target Q-function from
an offline data using a deep ReLU network. The algorithm
is appealingly simple: it iteratively estimates the target Q-
function via regression on the offline data and the previous
estimate. This procedure forms the core of many current
offline RL methods. With linear function approximation,
(Duan and Wang, 2020) show that this procedure yields
a minimax-optimal sample efficient algorithm, provided
the environment dynamics satisfy certain linear properties.
While their assumptions generalize the tabular settings, they
are restrictive for more complex environment dynamics
where non-linear function approximation is required. More-
over, as they highly exploit the linearity structure, it is un-
clear how their analysis can accommodate non-linear func-
tion approximation such as deep ReLU networks.

In this paper, we provide the statistical theory of a FQI-
type algorithm for both OPE and OPL problems with deep
ReLU networks. In particular, we provide the first compre-
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hensive analysis for offline RL under deep ReLU network
function approximation. We achieve this generality in our
result via two novel considerations. First, we introduce
Besov dynamic closure which is, to our knowledge, the
most general assumption that encompasses the previous
dynamic assumptions in offline RL. Unlike the previous
dynamic conditions that permit only integer smoothness of
the underlying MDP, our Besov dynamic closure general-
izes the previous dynamic conditions by allowing fractional
smoothness that describes the regularity of the MDP more
precisely. Moreover, the MDP under our Besov dynamic
closure needs not be continuous, differentiable or spatially
homogeneous in smoothness. Second, as each estimate in a
regression-based offline RL algorithm depends on the previ-
ous estimates and the entire offline dataset, a complicated
data-dependent structure is induced. This data-dependent
structure plays a central role in the statistical efficiency of
the algorithm. While the prior results ignore such a struc-
ture, either in their algorithm or their analysis, resulting a
loss of sample efficiency or improper analysis, resp., we
consider it in a FQI-type algorithm and effectively handle it
in our analysis. Under these considerations, we establish the
sample complexity of offline RL with deep ReLU network
function approximation that is both more general and more
sample-efficient than the prior results.

2. Related Work
The majority of the theoretical results for offline RL focus
on tabular settings and mostly on OPE task where the state
space is finite and an importance sampling -related approach
is possible (Precup et al., 2000; Dudı́k et al., 2011; Jiang
and Li, 2015; Thomas and Brunskill, 2016; Farajtabar et al.,
2018; Kallus and Uehara, 2019). The main drawback of the
importance sampling -based approach is that it suffers high
variance in long horizon problems. The high variance prob-
lem is later mitigated by the idea of formulating the OPE
problem as a density ratio estimation problem (Liu et al.,
2018; Nachum et al., 2019a; Zhang et al., 2020a;b; Nachum
et al., 2019b) but these results do not provide sample com-
plexity guarantees. The sample efficiency guarantees for
offline RL are obtained in tabular settings in (Xie et al.,
2019; Yin and Wang, 2020; Yin et al., 2021; Yin and Wang,
2021). A lower bound for tabular offline RL is obtained in
(Jiang and Li, 2016) which in particular show a Cramer-Rao
lower bound for discrete-tree MDPs.

For the function approximation setting, as the state space
of MDPs is often infinite or continuous, some form of func-
tion approximation is deployed in approximate dynamic
programming such as fitted Q-iteration, least squared policy
iteration (Bertsekas and Tsitsiklis, 1995; Jong and Stone,
2007; Lagoudakis and Parr, 2003; Grünewälder et al., 2012;
Munos, 2003; Munos and Szepesvári, 2008; Antos et al.,

2008; Tosatto et al., 2017), and fitted Q-evaluation (FQE)
(Le et al., 2019). A recent line of work studies offline RL
in non-linear function approximation (e.g, general function
approximation and deep neural network function approxi-
mation) (Le et al., 2019; Yang et al., 2019). In particular,
Le et al. (2019) provide an error bound of OPE and OPL
with general function approximation but they ignore the
data-dependent structure in the FQI-type algorithm, result-
ing in an improper analysis. Moreover, their error bounds
depend on the inherent Bellman error that can be large and
controllable in practical settings. More closely related to our
work is (Yang et al., 2019) which also considers deep neural
network approximation. In particular, Yang et al. (2019)
focused on analyzing deep Q-learning using a fresh batch
of data for each iteration. Such approach is considerably
sample-inefficient in offline RL as it undesirably does not
leverage the past data. As a result, their sample complex-
ity scales with the number of iterations K which is very
large in practice. In addition, they rely on a relatively re-
stricted smoothness assumption of the underlying MDPs
that hinders their results from being widely applicable in
more practical settings. We summarize the key differences
between our work and the prior results in Table 1 which will
be elaborated further in Subsection 4.3.

Since the initial version of this paper appeared, a concurrent
work studies offline RL with general function approxima-
tion via local Rademacher complexities (Duan et al., 2021).
While both papers independently have the same idea of
using local Rademacher complexities as a tool to study
sample complexities in offline RL, our work differs from
(Duan et al., 2021) in three main aspects. First, we focus
on infinite-horizon MDPs while (Duan et al., 2021) work
in finite-horizon MDPs. Second, we focus on a practical
setting of deep neural network function approximation with
an explicit sample complexity while the sample complexity
in (Duan et al., 2021) depends on the critical radius of local
Rademacher complexity. Bounding the critical radius for a
complex model under the data-dependent structure is highly
non-trivial. Duan et al. (2021) provided the specialized
sample complexity for finite classes, linear classes, kernel
spaces and sparse linear spaces but it is unclear how their
result applies to more complex models such as a deep ReLU
network. Importantly, we propose a new Besov dynamic
closure and a uniform-convergence argument which appear
absent in Duan et al. (2021).

3. Preliminaries
We consider MDP(S,A, P,R, γ, ρ) where R : S × A →
P([0, 1]) is the reward distribution supported on [0, 1]. We
consider continuous state space and action space, and for
notational simplicity, we assume that X := S×A ⊆ [0, 1]d.
Denote T ∗ and Tπ be the optimality Bellman operator and
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the Bellman operator, resp. for any policy π. Let Qπ be the
Q-function of policy π and Q∗ = arg maxπ Q

π, V π(s) =
〈Qπ(s, ·), π(·|s)〉A, and V ∗(·) = maxaQ

∗(·, a).

We consider the offline RL setting where the agent cannot
explore further the environment but has access to a fixed
logged data D = {(si, ai, s′i, ri)}ni=1 collected a priori by

certain behaviour policy η where (si, ai)
i.i.d.∼ µ(·, ·) :=

1
1−γ

∑∞
t=0 γ

tP (st = ·, at = ·|ρ, η), s′i ∼ P (·|si, ai) and
ri ∼ R(si, ai). Here µ is the (sampling) state-action
visitation distribution. The goals of OPE and OPL are to
estimate V π and V ∗, resp. from D, and in this paper we
measure performance by sub-optimality gaps.

For OPE. Given a fixed target policy π, for any value
estimate V̂ computed from the offline data D, the sub-
optimality of OPE is defined as SubOpt(V̂ ;π) = |V π− V̂ |.

For OPL. For any estimate π̂ of the optimal policy π∗ that is
learned from the offline dataD, we define the sup-optimality
of OPL as SubOpt(π̂) = Eρ [V ∗(s)−Q∗(s, π̂(s))] where
Eρ is the expectation w.r.t. s ∼ ρ.

3.1. Deep ReLU Networks as Function Approximation

A L-height, m-width ReLU network on Rd takes the form
fL,mθ (x) = W (L)σ(. . . σ(W (1)σ(x) + b(1)) . . .) + b(L),
where W (L) ∈ R1×m, b(L) ∈ R, W (1) ∈ Rm×d,
b(1) ∈ Rm, W (l) ∈ Rm×m, b(l) ∈ Rm, ∀1 < l < L,
θ = {W (l), b(l)}1≤l≤L, and σ is the element-wise ReLU
function. We define Φ(L,m, S,B) as the space of L-height,
m-width ReLU functions fL,mθ (x) with sparsity constraint
S, and norm constraintB, i.e.,

∑L
l=1(‖W (l)‖0 +‖b(l)‖0) ≤

S,max1≤l≤L ‖W (l)‖∞ ∨ ‖b(l)‖∞ ≤ B where ‖ · ‖0 is the
0-norm, i.e., the number of non-zero elements, and a ∨ b =
max{a, b}. Finally, for some L,m ∈ N and S,B ∈ (0,∞),
we define the unit ball of ReLU network function space
FNN as FNN := {f ∈ Φ(L,m, S,B) : ‖f‖∞ ≤ 1}.

3.2. Regularity

A regularity assumption on the target function is necessary
to obtain a nontrivial rate of convergence (Györfi et al.,
2002). A common way to measure regularity of a function
is through the Lp-norm of its local oscillations (e.g., of its
derivatives if they exist). This regularity encompasses Lips-
chitz, Hölder and Sobolev spaces. In particular in this work,
we consider Besov spaces. Unlike the previous spaces con-
sidered in offline RL such as Hölder and Sobolev spaces that
permit only integer smoothness, Besov spaces allow frac-
tional smoothness that describes the regularity of a function
more precisely and generalizes the previous smoothness no-
tions. We characterize the smoothness in Besov spaces via

moduli of smoothness, following (Giné and Nickl, 2016).

Definition 1 (Moduli of smoothness). For f ∈ Lp(X ) for
some p ∈ [1,∞], we define its r-th modulus of smoothness
as ωt,pr (f) := sup0≤h≤t ‖∆r

h(f)‖p, t > 0, r ∈ N where the
r-th order translation-difference operator ∆r

h = ∆h ◦∆r−1
h

is recursively defined as ∆r
h(f)(·) := (f(·+ h)− f(·))r =∑r

k=0

(
r
k

)
(−1)r−kf(·+ k · h).

Definition 2 (Besov space Bαp,q(X )). For 1 ≤ p, q ≤ ∞
and α > 0, we define the norm ‖ · ‖Bαp,q of the Besov space
Bαp,q(X ) as ‖f‖Bαp,q := ‖f‖p + |f |Bαp,q where

|f |Bαp,q :=


(∫∞

0
(
ωt,pbαc+1

(f)

tα )q dtt

)1/q

, 1 ≤ q <∞,

supt>0

ωt,pbαc+1
(f)

tα , q =∞,

is the Besov seminorm. Then, Bαp,q := {f ∈ Lp(X ) :
‖f‖Bαp,q <∞}.

Intuitively, the Besov seminorm |f |Bαp,q roughly describes
the Lq-norm of the lp-norm of the α-order smoothness
of f . Besov spaces are considerably general that encom-
pass Hölder spaces and Sobolev spaces as well as func-
tions with spatially inhomogeneous smoothness (Triebel,
1983; Sawano, 2018; Suzuki, 2018; Cohen, 2009; Nickl
and Pötscher, 2007). In particular, the Besov space Bαp,q
reduces into the Hölder space Cα when p = q = ∞
and α is a positive non-integer while it reduces into the
Sobolev space Wα

2 when p = q = 2 and α is a posi-
tive integer. We further consider the unit ball of Bαp,q(X ):
B̄αp,q(X ) := {g ∈ Bαp,q : ‖g‖Bαp,q ≤ 1 and ‖g‖∞ ≤ 1}.

To obtain a non-trivial guarantee, certain assumptions on
the distribution shift and the MDP regularity are necessary.
The first assumption is a common restriction that handles
distribution shift in offline RL.

Assumption 3.1 (Concentration coefficient). ∃κµ < ∞
such that ‖ dνdµ‖∞ ≤ κµ for any realizable distribution ν.

Here, ν is realizable if there exists t ≥ 0 and policy π1 such
that ν(s, a) = P(st = s, at = a|s1 ∼ ρ, π1),∀s, a. Intu-
itively, Assumption 3.1 asserts that the sampling distribution
µ is not too far away from any realizable distribution uni-
formly over the state-action space. κµ is finite for a reason-
ably large class of MDPs, e.g., for any finite MDP, any MDP
with bounded transition kernel density, and equivalently any
MDP whose top-Lyapunov exponent is negative (Munos
and Szepesvári, 2008). Chen and Jiang (2019) further pro-
vide natural problems with rich observations generated from
hidden states that has low concentration coefficients. These
suggest that low concentration coefficients can be found in
fairly many interesting problems in practice.

Assumption 3.2 (Besov dynamic closure). For some p, q ∈
[1,∞], α > d

p∧2 , ∀f ∈ FNN (X ),∀π, Tπf ∈ B̄αp,q(X ) .
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The assumption signifies that for any policy π, Tπ applied
on any ReLU network in FNN (X ) results in a Besov func-
tion in B̄αp,q(X ). Moreover, as Tπf f = T ∗f where πf is
the greedy policy w.r.t. f , Assumption 3.2 also implies that
T ∗f ∈ B̄αp,q(X ) if f ∈ FNN (X ). Such an assumption
is relatively standard and common in the offline RL liter-
ature (Chen and Jiang, 2019). A natural example for this
assumption to hold is when both the expected reward func-
tion r(s, a) and the transition density P (s′|s, a) for each
fixed s′ are Besov functions.

Importantly, our Besov dynamic closure is considerably
general that encompasses the conditions considered in prior
results (Yang et al., 2019). In particular, the Besov dynamic
closure only requires the boundedness of a very general
notion of local oscillations of the underlying MDP which
are allowed to be discontinuous or non-differentiable (e.g.,
when α ≤ 1/2 and p = 2), or even have spatially inhomo-
geneous smoothness (e.g., when p < 2). This flexibility is
novel w.r.t. the prior results. The condition α > d

p∧2 guar-
antees a finite bound for the compactness and the (local)
Rademacher complexity of the considered Besov space.

4. Algorithm and Main Result
4.1. Algorithm

Now we turn to the main algorithm and the main result. We
study least-squares value iteration (LSVI) for both OPE and
offline learning, with the pseudo-code presented in Algo-
rithm 1 where we denote ρπ(s, a) = ρ(s)π(a|s).

On the computational side, solving the non-convex opti-
mization at line 1 of Algorithm 1 can be highly involved and
(stochastic) gradient descent (GD) is a dominant optimiza-
tion method for such a task in deep learning. In particular,
GD is guaranteed to converge to a global minimum under
certain structural assumptions (Nguyen, 2021). Here, as
we focus on the statistical properties of LSVI, not on the
optimization problem, we assume that a global minimizer
at line 1 is attainable. Such a oracle assumption is common
when analyzing the statistical properties of an RL algorithm
with non-linear function approximation (Yang et al., 2019;
Chen and Jiang, 2019; Duan et al., 2021; Wang et al., 2019;
2020; Jin et al., 2021).

Algorithm 1 Least-squares value iteration (LSVI)
1: Initialize Q0 ∈ FNN .
2: for k = 1 to K do
3: If OPE: yi ← ri + γ

∫
AQk−1(s′i, a)π(da|s′i)

4: If OPL: yi ← ri + γmaxa′∈AQk−1(s′i, a
′)

5: Qk ← arg inff∈FNN
∑n
i=1(f(si, ai)− yi)2

6: end for
7: If OPE, return VK = ‖QK‖ρπ
8: If OPL, return the greedy policy πK w.r.t. QK .

4.2. Data-dependent structure

The target variable yi computed in the algorithm depends
on the previous estimate Qk−1 which in turn depends
on the covariate xi := (si, ai). This induces a com-
plex data-dependent structure across all iterations where
the current estimate depends on all the previous esti-
mates and the past data. Specifically, conditioned on
each xi, the target variable yi is no longer centered at
[T ∗Qk−1](xi) for OPL (or at [TπQk−1](xi) for OPE, resp.),
i.e., E [[T ∗Qk−1](xi)− yi|xi] 6= 0. This data-dependent
structure hinders the use of any standard non-parametric
regression analysis and concentration phenomenon typically
used in supervised learning. Prior results either improperly
ignore the data-dependent structure in their analysis (Le
et al., 2019) or directly avoid it by estimating each Qk on a
separate subset of D (Yang et al., 2019). While the latter re-
moves the data-dependent structure, it pays the cost of scal-
ing the sample complexity with the number of iterations K
as it requires splitting the original data into K disjoint sub-
sets. In our work, we consider the data-dependent structure
in LSVI and effectively handle it via a uniform-convergence
argument and local Rademacher complexities.

4.3. Main Result

Our main result is a sup-optimality bound for LSVI in
both OPE and OPL settings under Assumption 3.1 and As-
sumption 3.2. Before stating the main result, we introduce
the necessary notations of asymptotic relations: we write
f(ε, n) . g(ε, n) if there is an absolute constant c such that
f(ε, n) ≤ c · g(ε, n),∀ε > 0, n ∈ N. We write f(ε, n) �
g(ε, n) if f(ε, n) . g(ε, n) and g(ε, n) . f(ε, n).

Theorem 1. Under Assumptions 3.1-3.2, for any ε, δ,K >

0, for n &
(

1
ε2

)1+ d
α log6 n+ 1

ε2 (log(1/δ)+log log n), with
probability ≥ 1− δ, the sup-optimality of Algorithm 1 isSubOpt(VK ;π) ≤

√
κµ

1−γ ε+ γK/2

(1−γ)1/2
for OPE,

SubOpt(πK) ≤ 4γ
√
κµ

(1−γ)2 ε+ 4γ1+K/2

(1−γ)3/2
for OPL.

In addition, the optimal deep ReLU network Φ(L,m, S,B)
that obtains such sample complexity (for both OPE and
OPL) satisfies: L � logN,m � N,S � N, and B �
N1/d+(2ι)/(α−ι), where ι := d(p−1−(1+bαc)−1)+, N �
n

(β+1/2)d
2α+d , and β = (2 + d2

α(α+d) )−1.

The result states that LSVI incurs a sub-optimality which
consists of the statistical error (the first term) and the algo-
rithmic error (the second term). While the algorithmic error
enjoys the fast linear convergence to 0, the statistical error
reflects the fundamental difficulty of the problems. The sta-
tistical errors for both OPE and OPL cases are bounded by
the distributional shift κµ, the effective horizon 1/(1− γ),
and the user-specified precision ε for n satisfying the in-
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Function Approx. Regularity Tasks Complexity Remark
Yin and Wang (2020) Tabular Tabular OPE Õ

(
κ
ε2 (|S||A|)2

)
minimax-optimal

Duan and Wang (2020) Linear Linear OPE Õ
(
κ · d · ε−2

)
minimax-optimal

Le et al. (2019) General General OPE/OPL N/A improper analysis

Yang et al. (2019) ReLU Hölder OPL Õ
(
K · κ2+ d

α · ε−2− d
α

)
no data reuse

Ours ReLU Besov OPE/OPL Õ
(
κ1+ d

α · ε−2− 2d
α

)
data reuse

Table 1. Recent advances in the sample complexity of offline RL with various function approximations where κ is a distributional shift
measure, ε is the user-specified precision, d is the dimension of the input space, α is the smoothness parameter of the MDP, and K is the
algorithmic iteration number.

equality given in Theorem 1. In particular, the sample com-
plexity does not depend on the number of states as in tabular
MDPs (Yin and Wang, 2020; Yin et al., 2021; Yin and Wang,
2021) or the inherent Bellman error as in the general func-
tion approximation (Munos and Szepesvári, 2008; Le et al.,
2019). Instead, it explicitly scales with the smoothness α
of the MDP and the dimension d of the input space. Impor-
tantly, this guarantee is established under the general Besov
dynamic closure and the data-dependent structure of the al-
gorithm. Thus, Theorem 1 is the most comprehensive result
we are aware of for offline RL with deep neural networks.

Moreover, to develop further intuition on our sample com-
plexity, we compare it with prior results. Regarding the tight-
ness of our result, our sample complexity ε−2−2d/α (ignor-
ing the log factor and the factor pertaining to κµ and effec-
tive horizon) nearly matches the nonparametric regression’s
minimax-optimal sample complexity ε−2−d/α (Kerkyachar-
ian and Picard, 1992; Giné and Nickl, 2016) even though we
deal with a more complicated data-dependent structure in a
value iteration problem instead of a standard non-parametric
regression problem. This gap is expected due to the data-
dependent structure in the algorithm. We remark that it is
possible to retain the rate ε−2−d/α if we split the offline
data D into K disjoint subsets and estimate each Qk in Al-
gorithm 1 using a separate disjoint subsets. This however
comes at the cost that the sample complexity scales with K
which could be arbitrarily large in practice.

To show the significance of our sample complexity, we sum-
marize our result and compare it with the prior results in
Table 1. The “data reuse” in Table 1 means the data is reused
across all iterations instead of being splitted into disjoint
subsets for each iteration. First, with simpler models such as
tabular and linear MDPs, it requires less samples to achieve
the same sub-optimality precision ε than more complex en-
vironments such as Hölder and Besov MDPs. This should
not come as a surprise as the simpler regularities are much
easier to learn while they are too strong as a condition to
hold in practice. Second, as remarked earlier, our Besov
smoothness is more general than Hölder smoothness consid-
ered in (Yang et al., 2019), thus our setting is more practical.

Moreover, the LSVI algorithm obtains an improved sample
complexity as compared to that in (Yang et al., 2019) where
we are able to get rid of the dependence on the algorithmic
iteration number K which can be arbitrarily large in prac-
tice. On the technical side, we provide an unifying analysis
that accounts for the data-dependent structure in the algo-
rithm and handle the complex deep ReLU network function
approximation. This can also be considered as a substantial
technical improvement over (Le et al., 2019) as (Le et al.,
2019) improperly ignores the data-dependent structure in
their analysis. In addition, (Le et al., 2019) does not provide
an explicit sample complexity as it depends on an unknown
inherent Bellman error. Thus, our sample complexity is
one of the most general result in practical and comprehen-
sive settings with an improved performance. We provide a
detailed proof for Theorem 1 in the supplementary.

5. Conclusion and Discussion
This paper presents the sample complexity of offline
RL with deep ReLU network function approximation.
We prove that the FQI-type algorithm with the data-
dependent structure obtains an improved sample complexity
of Õ

(
κ1+d/α · ε−2−2d/α

)
under a standard condition of

distributional shift and a new dynamic condition namely
Besov dynamic closure which encompasses the dynamic
conditions considered in the prior results. Established under
the data-dependent structure and the Besov dynamic closure,
our sample complexity is the most general result for offline
RL with deep ReLU network function approximation.

We close with some open problems. First, although the finite
concentration coefficient is a uniform data coverage assump-
tion that is relatively standard in offline RL, can we develop
a weaker, non-uniform assumption that can still accommo-
date offline RL with non-linear function approximation?
While such a weaker data coverage assumptions do exist
for offline RL in tabular settings (Rashidinejad et al., 2021),
it seems difficult to generalize this condition to function
approximation. Another important direction is to investigate
the sample complexity of pessimism principle (Buckman
et al., 2020) in offline RL with non-linear function approxi-
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mation, which is currently studied only in tabular and linear
settings (Rashidinejad et al., 2021; Jin et al., 2020).
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Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massi-
miliano Pontil, and Arthur Gretton. Modelling transition
dynamics in mdps with RKHS embeddings. In ICML.
icml.cc / Omnipress, 2012.
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Appendix A. Proof
We now provide a complete proof of Theorem 1. The proof has four main components: a sub-optimality decomposition
for error propagation across iterations, a Bellman error decomposition using a uniform convergence argument, a deviation
analysis for least squares with deep ReLU networks using local Rademacher complexities and a localization argument, and
a upper bound minimization step to obtain an optimal deep ReLU architecture.

STEP 1: A SUB-OPTIMALITY DECOMPOSITION

The first step of the proof is a sub-optimality decomposition, stated in Lemma 1, that applies generally to any least-squares
Q-iteration methods.

Lemma 1 (A sub-optimality decomposition). Under Assumption 3.1, the sub-optimality of VK returned by Algorithm 1 is
bounded as

SubOpt(VK) ≤


√
κµ

1−γ max
0≤k≤K−1

‖Qk+1 − TπQk‖µ +
γK/2

(1− γ)1/2
for OPE,

4γ
√
κµ

(1−γ)2 max
0≤k≤K−1

‖Qk+1 − T ∗Qk‖µ +
4γ1+K/2

(1− γ)3/2
for OPL.

where we denote ‖f‖µ :=
√∫

µ(dsda)f(s, a)2,∀f : S ×A → R.

The lemma states that the sub-optimality decomposes into a statistical error (the first term) and an algorithmic error (the
second term). While the algorithmic error enjoys the fast linear convergence rate, the statistical error arises from the
distributional shift in the offline data and the estimation error of the target Q-value functions due to finite data. Crucially,
the contraction of the (optimality) Bellman operators Tπ and T ∗ allows the sup-optimality error at the final iteration K to
propagate across all iterations k ∈ [0,K − 1]. Note that this result is agnostic to any function approximation form and does
not require Assumption 3.2. The result uses a relatively standard argument that appears in a number of works on offline RL
(Munos and Szepesvári, 2008; Le et al., 2019).

Proof of Lemma 1. We will prove the sup-optimality decomposition for both settings: OPE and OPL.

(i) For OPE. We denote the right-linear operator by Pπ· : {X → R} → {X → R} where

(Pπf)(s, a) :=

∫
X
f(s′, a′)π(da′|s′)P (ds′|s, a),

for any f ∈ {X → R}. Denote Denote ρπ(dsda) = ρ(ds)π(da|s). Let εk := Qk+1 − TπQk,∀k ∈ [0,K − 1] and
εK = Q0 −Qπ . Since Qπ is the (unique) fixed point of Tπ , we have

Qk −Qπ = TπQk−1 − TπQπ + εk−1 = γPπ(Qk−1 −Qπ) + εk−1.

By recursion, we have

QK −Qπ =

K∑
k=0

(γPπ)kεk =
1− γK+1

1− γ

K∑
k=0

αkAkεk

where αk := (1−γ)γk

1−γK+1 ,∀k ∈ [K] and Ak := (Pπ)k,∀k ∈ [K]. Note that
∑K
k=0 αk = 1 and Ak’s are probability kernels.

Denoting by |f | the point-wise absolute value |f(s, a)|, we have that the following inequality holds point-wise:

|QK −Qπ| ≤
1− γK+1

1− γ

K∑
k=0

αkAk|εk|.
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We have

‖QK −Qπ‖2ρπ ≤
(1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

(
K∑
k=0

αkAk|εk|(s, a)

)2

(a)

≤ (1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

K∑
k=0

αkA
2
kε

2
k(s, a)

(b)

≤ (1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

K∑
k=0

αkAkε
2
k(s, a)

(c)

≤ (1− γK+1)2

(1− γ)2

(∫
ρ(ds)π(da|s)

K−1∑
k=0

αkAkε
2
k(s, a) + αK

)
(d)

≤ (1− γK+1)2

(1− γ)2

(∫
µ(ds, da)

K−1∑
k=0

αkκµε
2
k(s, a) + αK

)

=
(1− γK+1)2

(1− γ)2

(
K−1∑
k=0

αkκµ‖εk‖2µ + αK

)

≤ κµ
(1− γ)2

max
0≤k≤K−1

‖εk‖2µ +
γK

(1− γ)
.

The inequalities (a) and (b) follow from Jensen’s inequality, (c) follows from ‖Q0‖∞, ‖Qπ‖∞ ≤ 1, and (d) follows from
Assumption 3.1 that ρπAk = ρπ(Pπ)k ≤ κµµ. Thus we have

SubOpt(VK ;π) = |VK − V π|

=

∣∣∣∣Eρ,π[QK(s, a)]− Eρ[Qπ(s, a)]

∣∣∣∣
≤ Eρ,π [|QK(s, a)−Qπ(s, a)|]

≤
√
Eρ,π [(QK(s, a)−Qπ(s, a))2]

= ‖QK −Qπ‖ρπ

≤
√
κµ

1− γ
max

0≤k≤K−1
‖εk‖µ +

γK/2

(1− γ)1/2
.

(ii) For OPL. The sup-optimality for the OPL setting is more complex than the OPE setting but the technical steps are
relatively similar. In particular, let εk−1 = T ∗Qk−1 −Qk,∀k and π∗(s) = arg maxaQ

∗(s, a),∀s, we have

Q∗ −QK = Tπ
∗
Q∗ − Tπ

∗
QK−1 + Tπ

∗
QK−1 − T ∗QK−1︸ ︷︷ ︸

≤0

+εK−1

≤ γPπ
∗
(Q∗ −QK−1) + εK−1

≤
K−1∑
k=0

γK−k−1(Pπ
∗
)K−k−1εk + γK(Pπ

∗
)K(Q∗ −Q0)(by recursion). (1)

Now, let πk be the greedy policy w.r.t. Qk, we have

Q∗ −QK = Tπ
∗
Q∗︸ ︷︷ ︸

≥TπK−1Q∗

−TπK−1QK−1 + TπK−1QK−1 − T ∗QK−1︸ ︷︷ ︸
≥0

+εK−1

≥ γPπK−1(Q∗ −QK−1) + εK−1

≥
K−1∑
k=0

γK−k−1(PπK−1 . . . Pπk+1)εk + γK(PπK−1 . . . Pπ0)(Q∗ −Q0). (2)
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Now, we turn to decompose Q∗ −QπK as

Q∗ −QπK = (Tπ
∗
Q∗ − Tπ

∗
QK) + (Tπ

∗
QK − TπKQK)︸ ︷︷ ︸

≤0

+(TπKQK − TπKQπK )

≤ γPπ
∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK ).

Thus, we have

(I − γPπK )(Q∗ −QπK ) ≤ γ(Pπ
∗
− PπK )(Q∗ −QK).

Note that the operator (I − γPπK )−1 =
∑∞
i=0(γPπK )i is monotone, thus

Q∗ −QπK ≤ γ(I − γPπK )−1Pπ
∗
(Q∗ −QK)− γ(I − γPπK )−1PπK (Q∗ −QK). (3)

Combining Equations (3) with (1) and (2), we have

Q∗ −QπK ≤ (I − γPπK )−1

(
K−1∑
k=0

γK−k(Pπ
∗
)K−kεk + γK+1(Pπ

∗
)K+1(Q∗ −Q0)

)
−

(I − γPπK )−1

(
K−1∑
k=0

γK−k(PπK . . . Pπk+1)εk + γK+1(PπK . . . Pπ0)(Q∗ −Q0)

)
.

Using the triangle inequality, the above inequality becomes

Q∗ −QπK ≤ 2γ(1− γK+1)

(1− γ)2

(
K−1∑
k=0

αkAk|εk|+ αKAK |Q∗ −Q0|

)
,

where

Ak =
1− γ

2
(I − γPπK )−1

(
(Pπ

∗
)K−k + PπK . . . Pπk+1

)
,∀k < K,

AK =
1− γ

2
(I − γPπK )−1

(
(Pπ

∗
)K+1 + PπK . . . Pπ0

)
,

αk = γK−k−1(1− γ)/(1− γK+1),∀k < K,

αK = γK(1− γ)/(1− γK+1).

Note that Ak is a probability kernel for all k and
∑
k αk = 1. Thus, similar to the steps in the OPE setting, for any policy π,

we have

‖Q∗ −QπK‖2ρπ ≤
[

2γ(1− γK+1)

(1− γ)2

]2
(∫

ρ(ds)π(da|s)
K−1∑
k=0

αkAkε
2
k(s, a) + αK

)

≤
[

2γ(1− γK+1)

(1− γ)2

]2
(∫

µ(ds, da)

K−1∑
k=0

αkκµε
2
k(s, a) + αK

)

=

[
2γ(1− γK+1)

(1− γ)2

]2
(
K−1∑
k=0

αkκµ‖εk‖2µ + αK

)

≤ 4γ2κµ
(1− γ)4

max
0≤k≤K−1

‖εk‖2µ +
4γK+2

(1− γ)3
.

Thus, we have

‖Q∗ −QπK‖ρπ ≤
2γ
√
κµ

(1− γ)2
max

0≤k≤K−1
‖εk‖µ +

2γK/2+1

(1− γ)3/2
.
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Finally, we have

SubOpt(πK) = Eρ [Q∗(s, π∗(s))−Q∗(s, πK(s))]

≤ Eρ [Q∗(s, π∗(s))−QπK (s, π∗(s)) +QπK (s, πK(s))−Q∗(s, πK(s))]

≤ ‖Q∗ −QπK‖ρπ∗ + ‖Q∗ −QπK‖ρπK

≤
4γ
√
κµ

(1− γ)2
max

0≤k≤K−1
‖εk‖µ +

4γK/2+1

(1− γ)3/2
.

STEP 2: A BELLMAN ERROR DECOMPOSITION

The next step of the proof is to decompose the Bellman errors ‖Qk+1 − TπQk‖µ for OPE and ‖Qk+1 − T ∗Qk‖µ for OPL.
Since these errors can be decomposed and bounded similarly, we only focus on OPL here.

The difficulty in controlling the estimation error ‖Qk+1 − T ∗Qk‖2,µ is that Qk itself is a random variable that depends on
the offline data D. In particular, at any fixed k with Bellman targets {yi}ni=1 where yi = ri + γmaxa′ Qk(s′i, a

′), it is not
immediate that E [[T ∗Qk](xi)− yi|xi] = 0 for each covariate xi := (si, ai) as Qk itself depends on xi (thus the tower law
cannot apply here). A naive and simple approach to break such data dependency of Qk is to split the original data D into K
disjoint subsets and estimate each Qk using a separate subset. This naive approach is equivalent to the setting in (Yang et al.,
2019) where a fresh batch of data is generated for different iterations. This approach is however not efficient as it uses only
n/K samples to estimate each Qk. This is problematic in high-dimensional offline RL when the number of iterations K can
be very large as it is often the case in practical settings. We instead prefer to use all n samples to estimate each Qk. This
requires a different approach to handle the complicated data dependency of each Qk. To circumvent this issue, we leverage
a uniform convergence argument by introducing a deterministic covering of T ∗FNN . Each element of the deterministic
covering induces a different regression target {ri + γmaxa′ Q̃(s′i, a

′)}ni=1 where Q̃ is a deterministic function from the

covering which ensures that E
[
ri + γmaxa′ Q̃(s′i, a

′)− [T ∗Q̃](xi)|xi
]

= 0. In particular, we denote

yQki = ri + γmax
a′

Qk(s′i, a
′),∀i and f̂Qk := Qk+1 = arg inf

f∈FNN

n∑
i=1

l(f(xi), y
Qk
i ), and fQk∗ = T ∗Qk,

where l(x, y) = (x − y)2 is the squared loss function. Note that for any deterministic Q ∈ FNN , we have fQ∗ (x1) =

E[yQ1 |x1],∀x1, thus

E(lf − lfQ∗ ) = ‖f − fQ∗ ‖2µ,∀f, (4)

where lf denotes the random variable (f(x1)− yQ1 )2. Now letting fQ⊥ := arg inff∈FNN ‖f − f
Q
∗ ‖2,µ be the projection of

fQ∗ onto the function class FNN , we have

max
k
‖Qk+1 − T ∗Qk‖2µ = max

k
‖f̂Qk − fQk∗ ‖2µ

(a)

≤ sup
Q∈FNN

‖f̂Q − fQ∗ ‖2µ
(b)
= sup

Q∈FNN
E(lf̂Q − lfQ∗ )

(c)

≤ sup
Q∈FNN

{
E(lf̂Q − lfQ∗ ) + En(lfQ⊥

− lf̂Q)
}

= sup
Q∈FNN

{
(E− En)(lf̂Q − lfQ∗ ) + En(lfQ⊥

− lfQ∗ )
}

≤ sup
Q∈FNN

(E− En)(lf̂Q − lfQ∗ )︸ ︷︷ ︸
I1,empirical process term

+ sup
Q∈FNN

En(lfQ⊥
− lfQ∗ )︸ ︷︷ ︸

I2,bias term

, (5)

where (a) follows from that Qk ∈ FNN , (b) follows from Equation (4), and (c) follows from that En[lf̂Q ] ≤
En[lfQ ],∀f,Q ∈ FNN . That is, the error is decomposed into two terms: the first term I1 resembles the empirical
process in statistical learning theory and the second term I2 specifies the bias caused by the regression target fQ∗ not being
in the function space FNN .
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STEP 3: A DEVIATION ANALYSIS

The next step is to bound the empirical process term and the bias term via an intricate concentration, local Rademacher
complexities and a localization argument. First, the bias term in Equation (5) is taken uniformly over the function space, thus
standard concentration arguments such as Bernstein’s inequality and Pollard’s inequality used in (Munos and Szepesvári,
2008; Le et al., 2019) do not apply here. Second, local Rademacher complexities (Bartlett et al., 2005) are data-dependent
complexity measures that exploit the fact that only a small subset of the function class will be used. Leveraging a localization
argument for local Rademacher complexities (Farrell et al., 2018), we localize an empirical Rademacher ball into smaller
balls by which we can handle their complexities more effectively. Moreover, we explicitly use the sub-root function argument
to derive our bound and extend the technique to the uniform convergence case. That is, reasoning over the sub-root function
argument makes our proof more modular and easier to incorporate the uniform convergence argument.

Localization is particularly useful to handle the complicated approximation errors induced by deep ReLU network function
approximation.

STEP 3.A: BOUNDING THE BIAS TERM VIA A UNIFORM CONVERGENCE CONCENTRATION INEQUALITY

Before delving into our proof, we introduce relevant notations. Let F − G := {f − g : f ∈ F , g ∈ G}, let N(ε,F , ‖ ·
‖) be the ε-covering number of F w.r.t. ‖ · ‖ norm, H(ε,F , ‖ · ‖) := logN(ε,F , ‖ · ‖) be the entropic number, let
N[](ε,F , ‖ · ‖) be the bracketing number of F , i.e., the minimum number of brackets of ‖ · ‖-size less than or equal
to ε, necessary to cover F , let H[](ε,F , ‖ · ‖) = logN[](ε,F , ‖ · ‖) be the ‖ · ‖-bracketing metric entropy of F ,let
F|{xi}ni=1 = {(f(x1), ..., f(xn)) ∈ Rn|f ∈ F}, and let T ∗F = {T ∗f : f ∈ F}. Finally, for sample set {xi}ni=1, we

define the empirical norm ‖f‖n :=
√

1
n

∑n
i=1 f(xi)2.

We define the inherent Bellman error as dFNN := supQ∈FNN inff∈FNN ‖f − T ∗Q‖µ. This implies that

d2
FNN := sup

Q∈FNN
inf

f∈FNN
‖f − T ∗Q‖2µ = sup

Q∈FNN
E(lfQ⊥

− lfQ∗ ). (6)

We have

|lf − lg| ≤ 4|f − g| and |lf − lg| ≤ 8.

We have

H(ε, {lfQ⊥ − lfQ∗ : Q ∈ FNN}|{xi, yi}ni=1, n
−1‖ · ‖1)

≤ H(
ε

4
, {fQ⊥ − f

Q
∗ : Q ∈ FNN}|{xi}ni=1, n

−1‖ · ‖1)

≤ H(
ε

4
, (F − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1)

≤ H(
ε

8
,FNN |{xi}ni=1, n

−1‖ · ‖1) +H(
ε

8
, T ∗FNN |{xi}ni=1, n

−1‖ · ‖1)

≤ H(
ε

8
,FNN |{xi}ni=1, ‖ · ‖∞) +H(

ε

8
, T ∗FNN , ‖ · ‖∞)

For any ε′ > 0 and δ′ ∈ (0, 1), it follows from Lemma 3 with ε = 1/2 and α = ε′2, with probability at least 1− δ′, for any
Q ∈ FNN , we have

En(lfQ⊥
− lfQ∗ ) ≤ 3E(lfQ⊥

− lfQ∗ ) + ε′2 ≤ 3d2
FNN + ε′2, (7)

given that

n ≈ 1

ε′2

(
log(4/δ′) + logEN(

ε′2

40
, (FNN − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1)

)
.

Note that if we use Pollard’s inequality (Munos and Szepesvári, 2008) in the place of Lemma 3, the RHS of Equation (7)
is bounded by ε′ instead of ε′2(i.e., n scales with O(1/ε′4) instead of O(1/ε′2)). In addition, unlike (Le et al., 2019), the
uniform convergence argument hinders the application of Bernstein’s inequality. We remark that Le et al. 2019 makes
a mistake in their proof by ignoring the data-dependent structure in the algorithm (i.e., they wrongly assume that Qk in
Algorithm 1 is fixed and independent of {si, ai}ni=1). Thus, the uniform convergence argument in our proof is necessary.
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STEP 3.B: BOUNDING THE EMPIRICAL PROCESS TERM VIA LOCAL RADEMACHER COMPLEXITIES

For any Q ∈ FNN , we have

|lfQ⊥ − lfQ∗ | ≤ 2|fQ⊥ − f
Q
∗ | ≤ 2,

V[lfQ⊥
− lfQ∗ ] ≤ E[(lfQ⊥

− lfQ∗ )2] ≤ 4E(fQ⊥ − f
Q
∗ )2.

Thus, it follows from Lemma 1 (with α = 1/2) that with any r > 0, δ ∈ (0, 1), with probability at least 1− δ, we have

sup{(E− En)(lf̂Q − lfQ∗ ) : Q ∈ FNN , ‖f̂Q − fQ∗ ‖2µ ≤ r}

≤ sup{(E− En)(lf − lg) : f ∈ FNN , g ∈ T ∗F , ‖f − g‖2µ ≤ r}

≤ 3ERn
{
lf − lg : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r

}
+ 2

√
2r log(1/δ)

n
+

28 log(1/δ)

3n

≤ 6ERn
{
f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r

}
+ 2

√
2r log(1/δ)

n
+

28 log(1/δ)

3n
.

STEP 3.C: BOUNDING ‖Qk+1 − T ∗Qk|µ USING LOCALIZATION ARGUMENT VIA SUB-ROOT FUNCTIONS

We bound ‖Qk+1 − T ∗Qk‖µ using the localization argument, breaking down the Rademacher complexities into local
balls and then build up the original function space from the local balls. Let ψ be a sub-root function (Bartlett et al., 2005,
Definition 3.1) with the fixed point r∗ and assume that for any r ≥ r∗, we have

ψ(r) ≥ 3ERn
{
f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r

}
. (8)

We recall that a function ψ : [0,∞) → [0,∞) is sub-root if it is non-negative, non-decreasing and r 7→ ψ(r)/
√
r is

non-increasing for r > 0. Consequently, a sub-root function ψ has a unique fixed point r∗ where r∗ = ψ(r∗). In addition,
ψ(r) ≤ √rr∗,∀r ≥ r∗. In the next step, we will find a sub-root function ψ that satisfies the inequality above, but for this
step we just assume that we have such ψ at hand. Combining (5), (7), and (8), we have: for any r ≥ r∗ and any δ ∈ (0, 1), if
‖f̂Qk−1 − fQk−1

∗ ‖22,µ ≤ r, with probability at least 1− δ,

‖f̂Qk−1 − fQk−1
∗ ‖22,µ ≤ 2ψ(r) + 2

√
2r log(2/δ)

n
+

28 log(2/δ)

3n
+ 3d2

F + ε′2

≤
√
rr∗ + 2

√
2r log(2/δ)

n
+

28 log(2/δ)

3n
+ (
√

3dF + ε′)2,

where

n ≈ 1

4ε′2

(
log(8/δ) + logEN(

ε′2

20
, (FNN − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1)

)
.

Consider r0 ≥ r∗ (to be chosen later) and denote the events

Bk := {‖f̂Qk−1 − fQk−1
∗ ‖22,µ ≤ 2kr0},∀k ∈ {0, 1, ..., l},

where l = log2( 1
r0

) ≤ log2( 1
r∗

). We have B0 ⊆ B1 ⊆ ... ⊆ Bl and since ‖f − g‖2µ ≤ 1,∀|f |∞, |g|∞ ≤ 1, we have

P (Bl) = 1. If ‖f̂Qk−1 − fQk−1
∗ ‖2µ ≤ 2ir0 for some i ≤ l, then with probability at least 1− δ, we have

‖f̂Qk−1 − fQk−1
∗ ‖22,µ ≤

√
2ir0r∗ + 2

√
2i+1r0 log(2/δ)

n
+

28 log(2/δ)

3n
+ (
√

3dFNN + ε′)2

≤ 2i−1r0,

if the following inequalities hold √
2ir∗ + 2

√
2i+1 log(2/δ)

n
≤ 1

2
2i−1√r0,

28 log(2/δ)

3n
+ (
√

3dFNN + ε′)2 ≤ 1

2
2i−1r0.
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We choose r0 ≥ r∗ such that the inequalities above hold for all 0 ≤ i ≤ l. This can be done by simply setting

√
r0 =

2

2i−1

(√
2ir∗ + 2

√
2i+1 log(2/δ)

n

)∣∣∣∣
i=0

+

√
2

2i−1

(
28 log(2/δ)

3n
+ (
√

3dFNN + ε′)2

)∣∣∣∣
i=0

. dFNN + ε′ +

√
log(2/δ)

n
+
√
r∗.

Since {Bi} is a sequence of increasing events, we have

P (B0) = P (B1)− P (B1 ∩Bc0) = P (B2)− P (B2 ∩Bc1)− P (B1 ∩Bc0)

= P (Bl)−
l−1∑
i=0

P (Bi+1 ∩Bci ) ≥ 1− lδ.

Thus, with probability at least 1− δ, we have

‖f̂Qk−1 − fQk−1
∗ ‖µ . dFNN + ε′ +

√
log(2l/δ)

n
+
√
r∗ (9)

where

n ≈ 1

4ε′2

(
log(8l/δ) + logEN(

ε′2

20
, (FNN − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1))

)
.

STEP 3.D: FINDING A SUB-ROOT FUNCTION AND ITS FIXED POINT

It remains to find a sub-root function ψ(r) that satisfies Equation (8) and thus its fixed point. The main idea is to bound
the RHS, the local Rademacher complexity, of Equation (8) by its empirical counterpart as the latter can then be further
bounded by a sub-root function represented by a measure of compactness of the function spaces FNN and T ∗FNN .

For any ε > 0, we have the following inequalities for entropic numbers:

H(ε,FNN − T ∗FNN , ‖ · ‖n) ≤ H(ε/2,FNN , ‖ · ‖n) +H(ε/2, T ∗FNN , ‖ · ‖n),

H(ε,FNN , ‖ · ‖n) ≤ H(ε,FNN |{xi}ni=1, ‖ · ‖∞)
(a)

. N [(logN)2 + log(1/ε)], (10)
H(ε, T ∗FNN , ‖ · ‖n) ≤ H(ε, T ∗FNN , ‖ · ‖∞) ≤ H[](2ε, T

∗FNN , ‖ · ‖∞)

(b)

≤ H[](2ε, B̄
α
p,q(X ), ‖ · ‖∞)

(c)

. (2ε)−d/α, (11)

where N is a hyperparameter of the deep ReLU network described in Lemma 10, (a) follows from Lemma 10, and (b)
follows from Assumption 3.2, and (c) follows from Lemma 9. LetH := FNN − T ∗FNN , it follows from Lemma 6 with
{ξk := ε/2k}k∈N for any ε > 0 that

EσRn{h ∈ H −H : ‖h‖n ≤ ε} ≤ 4

∞∑
k=1

ε

2k−1

√
H(ε/2k−1,H, ‖ · ‖n)

n

≤ 4

∞∑
k=1

ε

2k−1

√
H(ε/2k,FNN , ‖ · ‖∞)

n
+ 4

∞∑
k=1

ε

2k−1

√
H(ε/2k, TπFNN , ‖ · ‖∞)

n

≤ 4ε√
n

∞∑
k=1

2−(k−1)
√
N ((logN)2 + log(2k/ε)) +

4ε√
n

∞∑
k=1

2−(k−1)

√( ε

2k−1

)−d/α
.

ε√
n

√
N((logN)2 + log(1/ε)) +

ε1−
d
2α

√
n
,

where we use
√
a+ b ≤

√
a+
√
b,∀a, b ≥ 0,

∑∞
k=1

√
k

2k−1 <∞, and
∑∞
k=1

(
1

21− d
2α

)k−1

<∞.
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It now follows from Lemma 5 that

EσRn{f ∈ F , g ∈ T ∗F : ‖f − g‖2n ≤ r}

≤ inf
ε>0

[
EσRn{h ∈ H −H : ‖h‖µ ≤ ε}+

√
2rH(ε/2,H, ‖ · ‖n)

n

]
.

[
ε√
n

√
N((logN)2 + log(1/ε)) +

ε1−
d
2α

√
n

+

√
2r

n

√
N((logN)2 + log(4/ε)) +

√
2r

n
(ε/2)

−d
2α

]∣∣∣∣
ε=n−β

� n−β−1/2
√
N(log2N + log n) + n−β(1− d

2α )−1/2 +

√
r

n

√
N(log2N + log n) +

√
rn−

1
2 (1− βdα ) =: ψ1(r),

where β ∈ (0, αd ) is an absolute constant to be chosen later.

Note that V[(f − g)2] ≤ E[(f − g)4] ≤ E[(f − g)2] for any f ∈ FNN , g ∈ T ∗FNN . Thus, for any r ≥ r∗, it follows from
Lemma 2 that with probability at least 1− 1

n , we have the following inequality for any f ∈ FNN , g ∈ T ∗FNN such that
‖f − g‖2µ ≤ r,

‖f − g‖2n

≤ ‖f − g‖2µ + 3ERn{(f − g)2 : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}+

√
2r log n

n
+

56

3

log n

n

≤ ‖f − g‖2µ + 3ERn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}+

√
2r log n

n
+

56

3

log n

n

≤ r + ψ(r) + r + r ≤ 4r,

if r ≥ r∗ ∨ 2logn
n ∨ 56logn

3n . For such r, denote Er = {‖f − g‖2n ≤ 4r}∩ {‖f − f∗‖2µ ≤ r}, we have P (Er) ≥ 1− 1/n and

3ERn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}
= 3EEσRn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}

≤ 3E
[
1ErEσRn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}+ (1− 1Er )

]
≤ 3E

[
EσRn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2n ≤ 4r}+ (1− 1Er )

]
≤ 3(ψ1(4r) +

1

n
)

. n−β−1/2
√
N(log2N + log n) + n−β(1− d

2α )−1/2 +

√
r

n

√
N(log2N + log n)

+
√
rn−

1
2 (1− βdα ) + n−1 =: ψ(r)

It is easy to verify that ψ(r) defined above is a sub-root function. The fixed point r∗ of ψ(r) can be solved analytically via
the simple quadratic equation r∗ = ψ(r∗). In particular, we have

√
r∗ . n−1/2

√
N(log2N + log n) + n−

1
2 (1− βdα ) + n−

β
2−

1
4 [N(log2N + log n)]1/4

+ n−
β
2 (1− d

2α )− 1
2 + n−1/2

. n−
1
4 ((2β)∧1)+1)

√
N(log2N + log n) + n−

1
2 (1− βdα ) + n−

β
2 (1− d

2α )− 1
2 + n−1/2 (12)

It follows from Equation (9) (where l . log(1/r∗)), the definition of dFNN , Lemma 10, and (12) that for any ε′ > 0 and
δ ∈ (0, 1), with probability at least 1− δ, we have

max
k
‖Qk+1 − T ∗Qk‖µ . N−α/d + ε′ + n−

1
4 ((2β)∧1)+1)

√
N(log2N + log n) + n−

1
2 (1− βdα )

+ n−
β
2 (1− d

2α )− 1
2 + n−1/2

√
log(1/δ) + log log n (13)



Sample Complexity of Offline Reinforcement Learning with Deep ReLU Networks

where

n &
1

4ε′2

(
log(1/δ) + log log n+ logEN(

ε′2

20
, (FNN − T ∗FNN )|{xi}ni=1, n

−1 · ‖ · ‖1))

)
. (14)

STEP 4: MINIMIZING THE UPPER BOUND

The final step for the proof is to minimize the upper error bound obtained in the previous steps w.r.t. two free parameters
β ∈ (0, αd ) and N ∈ N. Note that N parameterizes the deep ReLU architecture Φ(L,m, S,B) given Lemma 10. In
particular, we optimize over β ∈ (0, αd ) and N ∈ N to minimize the upper bound in the RHS of Equation (13). The RHS of
Equation (13) is minimized (up to log n-factor) by choosing

N � n
1
2 ((2β∧1)+1) d

2α+d and β =

(
2 +

d2

α(α+ d)

)−1

, (15)

which results in N � n
1
2 (2β+1) d

2α+d . At these optimal values, (13) becomes

max
k
‖Qk+1 − T ∗Qk‖µ . ε′ + n−

1
2 ( 2α

2α+d+ d
α )
−1

log n+ n−1/2
√

log(1/δ) + log log n, (16)

where we use inequalities n−
β
2 (1− d

2α )− 1
2 ≤ n− 1

2 (1− βdα ) � N−α/d = n−
1
2 ( 2α

2α+d+ d
α )
−1

.

Now, for any ε > 0, we set ε′ = ε/3 and let

n−
1
2 ( 2α

2α+d+ d
α )
−1

log n . ε/3 and n−1/2
√

log(1/δ) + log log n . ε/3.

It then follows from Equation (16) that with probability at least 1 − δ, we have maxk ‖Qk+1 − T ∗Qk‖µ ≤ ε if n
simultaneously satisfies Equation (14) with ε′ = ε/3 and

n &

(
1

ε2

) 2α
2α+d+ d

α

(log2 n)
2α

2α+d+ d
α and n &

1

ε2
(log(1/δ) + log log n) . (17)

Next, we derive an explicit formula of the sample complexity satisfying Equation (14). Using Equations (13), (17), and (15),
we have that n satisfies Equation (14) if

n & 1
ε2

[
n

2β+1
2

d
2α+d (log2 n+ log(1/ε))

]
,

n &
(

1
ε2

)1+ d
α ,

n & 1
ε2 (log(1/δ) + log log n) .

(18)

Note that β ≤ 1/2 and d
α ≤ 2; thus, we have(

1− 2β + 1

2

d

2α+ d

)−1

≤ 1 +
d

α
≤ 3.

Hence, n satisfies Equations (17) and (18) if

n &

(
1

ε2

)1+ d
α

log6 n+
1

ε2
(log(1/δ) + log log n).

Appendix B. Technical Lemmas
Lemma 2 (Bartlett et al. (2005)). Let r > 0 and let

F ⊆ {f : X → [a, b] : V ar[f(X1)] ≤ r}.
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1. For any λ > 0, we have with probability at least 1− e−λ,

sup
f∈F

(Ef − Enf) ≤ inf
α>0

(
2(1 + α)E [RnF ] +

√
2rλ

n
+ (b− a)

(
1

3
+

1

α

)
λ

n

)
.

2. With probability at least 1− 2e−λ,

sup
f∈F

(Ef − Enf) ≤ inf
α∈(0,1)

(
2(1 + α)

(1− α)
Eσ [RnF ] +

√
2rλ

n
+ (b− a)

(
1

3
+

1

α
+

1 + α

2α(1− α)

)
λ

n

)
.

Moreover, the same results hold for supf∈F (Enf − Ef).

Lemma 3 ( Györfi et al. (2002, Theorem 11.6)). Let B ≥ 1 and F be a set of functions f : Rd → [0, B]. Let Z1, ..., Zn be
i.i.d. Rd-valued random variables. For any α > 0, 0 < ε < 1, and n ≥ 1, we have

P

{
sup
f∈F

1
n

∑n
i=1 f(Zi)− E[f(Z)]

α+ 1
n

∑n
i=1 f(Zi) + E[f(Z)]

> ε

}
≤ 4EN(

αε

5
,F|Zn1 , n−1‖ · ‖1) exp

(
−3ε2αn

40B

)
.

Lemma 4 (Contraction property (Rebeschini, 2019)). Let φ : R→ R be a L-Lipschitz, then

EσRn (φ ◦ F) ≤ LEσRnF .

Lemma 5 (Lei et al. (2016, Lemma 1)). Let F be a function class and Pn be the empirical measure supported on
X1, ..., Xn ∼ µ, then for any r > 0 (which can be stochastic w.r.t Xi), we have

EσRn{f ∈ F : ‖f‖22,n ≤ r} ≤ inf
ε>0

[
EσRn{f ∈ F − F : ‖f‖2,µ ≤ ε}+

√
2r logN (ε/2,F , ‖ · ‖2,n)

n

]
where F − F := {f − g : f, g ∈ F}.

Lemma 6 (Refined entropy integral (modified from (Lei et al., 2016))). Let X1, ..., Xn be a sequence of samples and Pn be
the associated empirical measure. For any function class F and any monotone sequence {ξk}∞k=0 decreasing to 0, we have
the following inequality for any non-negative integer N

EσRn{f ∈ F : ‖f‖n ≤ ξ0} ≤ 4

N∑
k=1

ξk−1

√
logN (ξk,F , ‖ · ‖2,n)

n
+ ξN .

Lemma 7 (Pollard’s inequality). Let F be a set of measurable functions f : X → [0,K] and let ε > 0, N arbitrary. If
{Xi}Ni=1 is an i.i.d. sequence of random variables taking values in X , then

P

(
sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

f(Xi)− E[f(X1)]

∣∣∣∣ > ε

)
≤ 8E [N(ε/8,F|X1:N

)] e
−Nε2

128K2 .

Lemma 8 (Properties of (bracketing) entropic numbers). Let ε ∈ (0,∞). We have

1. H(ε,F , ‖ · ‖) ≤ H[](2ε,F , ‖ · ‖);

2. H(ε,F|{xi}ni=1, n
−1/p · ‖ · ‖p) = H(ε,F , ‖ · ‖p,n) ≤ H(ε,F|{xi}ni=1, ‖ · ‖∞) ≤ H(ε,F , ‖ · ‖∞) for all {xi}ni=1 ⊂

dom(F).

3. H(ε,F − F , ‖ · ‖) ≤ 2H(ε/2,F , ‖ · ‖)), where F − F := {f − g : f, g ∈ F}.
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Lemma 9 (Entropic number of bounded Besov spaces (Nickl and Pötscher, 2007, Corollary 2.2)). For 1 ≤ p, q ≤ ∞ and
α > d/p, we have

H[](ε, B̄
α
p,q(X ), ‖ · ‖∞) . ε−d/α.

Lemma 10 (Approximation power of deep ReLU networks for Besov spaces (Suzuki, 2018)). Let 1 ≤ p, q ≤ ∞ and
α ∈ ( d

p∧2 ,∞). For sufficiently large N ∈ N, there exists a neural network architecture Φ(L,m, S,B) with

L � logN,m � N logN,S � N, and B � Nd−1+ν−1

,

where ν := α−δ
2δ and δ := d(p−1 − (1 + bαc)−1)+ such that

sup
f∗∈B̄αp,q(X )

inf
f∈Φ(L,W,S,B)

‖f − f∗‖∞ . N−α/d.


