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1. Introduction
The key objective of Reinforcement Learning (RL) is to
learn an optimal agent’s behaviour in an unknown environ-
ment. A natural performance metric is given by the value
function V π which is the expected total reward of the agent
following π. Unfortunately, even a precise knowledge of V π

does not provide information on how far is the policy π from
the optimal one. To address this issue a popular quality mea-
sures are the regret bounds of the algorithm (Jaksch et al.,
2010) and suboptimality gap (policy error) (Szepesvári,
2010; Pires & Szepesvári, 2016). However, available esti-
mates of both quantities are typically pessimistic and rely on
the unknown quantities of the underlying Markov Decision
Processes (MDP). Moreover, even if the bounds are known,
they does not apply to the general policy π and depends
significantly on the particular algorithm which produced it
(Jin et al., 2018; Azar et al., 2017).

In this paper we are interested in deriving agnostic (model
independent) bounds for the policy error using the concept
of upper solutions to the Bellman optimality equation. Our
approach is substantially different from the ones known in
literature as it can be used to estimate the suboptimality gap
for an arbitrary given policy π. The concept of upper solu-
tions is closely related to martingale duality in optimal con-
trol and information relaxation approach, see (Belomestny &
Schoenmakers, 2018), and references therein. The concept
of upper solutions has also a connection to distributional
RL, as it can be formulated pathwise or using distributional
Bellman operator, see e.g. (Lyle et al., 2019).

The contributions of this paper are three-fold:

• We propose a novel approach to construct model free
confidence bounds for the optimal value function V ?

based on a notion of upper solutions.
• Given a policy π, we propose an upper value iterative

procedure (UVIP) for constructing an a.s. upper bound
for V π such that it coincides with V ? if π = π?.
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• We study convergence properties of the proposed al-
gorithm. In particular, we show that the variance of
the resulting upper bound is small if π is close to π∗

leading to the tight confidence bounds for V ?.

Definitions and notations A Markov Decision Process
(MDP) is a tuple (X,A,P, r, γ), where X is the state space,
A is the action space, P = (Pa)a∈A is the transition proba-
bility kernel, r = (ra)a∈A is the reward function, 0 < γ < 1
is the discount factor. A policy, is denoted as π. An opti-
mal policy π? is one that achieves the maximum possible
value amongst all policies in each state x ∈ X. The op-
timal value for state x is denoted by V ?(x). The value
function of a policy π in a state x ∈ X is denoted by V π(x),
similarly in a state x ∈ X and a ∈ A the action-value
function Qπ(x, a). Let us denote the space of bounded mea-
surable functions with domain X by B(X) equipped with
the norm ‖f‖X = supx∈X |f(x)| for any f ∈ B(X). The
Bellman return operator w.r.t P, TP : B(X) → B(X × A),
is defined by (TPV )(x, a) = ra(x) + γPaV (x), where
(PaV )(x) =

∫
V (x′)Pa(dx′|x). We also define the max-

imum selection operator M : B(X× A) → B(X) by
(MV ·)(x) = maxa V

a(x). Then MTP corresponds to the
Bellman optimality operator. The optimal value function
V ? satisfies a non-linear fixed-point equation

V ?(x) = MTPV
?(x). (1)

which is the Bellman optimality equation. We write
Y x,a, x ∈ X, a ∈ A for a random variable generated ac-
cording to Pa(·|x), and define a random Bellman operator
(T̃PV )(x) 7→ ra(x) + γV (Y x,a).

2. UVIP Algorithm
A straightforward approach to bound the policy error
∆π(x)

def
= V ?(x) − V π(x) requires the estimation of the

optimal value function V ?(x). Unfortunately, (1) does not
allow to represent V ? as an expectation. Thus the problem
of estimating V ? can not be naturally reduced to a stochastic
approximation problem. Moreover, for sequence of value
iteration procedure Vk+1 = MTPVk, if (Pa)a∈A is replaced
by its empirical estimate P̂a the desired upper biasedness
property Vk(x) ≥ V ?(x) is lost. Below we describe our
approach, which is based on the following key assumptions:
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• we consider infinite-horizon MDPs with discount fac-
tor γ < 1;

• we can sample from the conditional distribution
Pa(·|x) for any x ∈ X and a ∈ A.

The key concept of our algorithm is an upper solution, in-
troduced below.

Definition 2.1. We call a function V up an upper solution
to the Bellman optimality equation (1) if

V up(x) ≥ MTPV
up(x) ,∀x ∈ X .

Upper solutions can be used to build tight upper bounds for
the optimal value function V ?. Let Φ ∈ B(X) be a martin-
gale function w.r.t. the operator Pa, that is, PaΦ(x) = 0 for
all a ∈ A, x ∈ X. Define V up as a solution to the following
fixed point equation:

V up(x) = E[ max
a
{ra(x)+

+ γ(V up(Y x,a)− Φ(Y x,a))}], (2)

where Y x,a ∼ Pa(·|x). In terms of the random Bellman
operator T̃P, we can rewrite (2) as V up = E[MT̃P(V up −
Φ)]. It is easy to see that (2) defines an upper solution.
Indeed, for any x ∈ X,

V up(x) ≥ max
a

E[ra(x) + γ(V up(Y x,a)− Φ(Y x,a))]

= max
a
{ra(x) + γPaV up(x)} = MTPV

up(x) .

Note that unlike the optimal state value function V ?, the
upper solution V up is represented as an expectation, which
allows us to use various stochastic approximation methods
to compute V up. The Banach’s fixed-point theorem implies
that for iterates

V up
k+1 = E[MT̃P(V up

k − Φ)], k ∈ N,

we have convergence V up
k → V up as k → ∞. Moreover,

V up does not depend on V up
0 and V up

k (x) ≥ V ?(x) for
any k ∈ N, x ∈ X, provided that V up

0 (x) ≥ V ?(x). Given
a policy π and the corresponding value function V π, we
set Φx,aπ (y)

def
= V π(y) − (PaV π)(x). It is easy to check

that PaΦx,aπ (x) = 0. This leads to the upper value iterative
procedure (UVIP):

V up
k+1(x) = E[MT̃P(V up

k − Φx,·π )(x)] =

E
[
max
a
{ra(x) + γ(V up

k (Y x,a)− Φx,aπ (Y x,a))}
]

(3)

with V up
0 ∈ B(X). Further note that by taking Φx,a(y)

def
=

V ?(y)− (PaV ?)(x), we get with probability 1 :

V ?(x) = (MT̃P(V ? − Φx,·))(x) =

max
a
{ra(x) + γ(V ?(Y x,a)− Φx,a(Y x,a))}, (4)

that is, (4) can be viewed as an almost sure version of the
Bellman equation V ? = MTPV

?. The upper solutions can
be used to evaluate the quality of the policies and to con-
struct confidence intervals for V ?. It is clear that

V π(x) ≤ V ?(x) ≤ V up
k (x)

for any k ∈ N and x ∈ X, thus a policy π can be evaluated
by computing the difference ∆up

π,k(x)
.
= V up

k (x)−V π(x) ≥
∆π(x). Representations (3) and (4) imply∥∥V up

k+1 − V
?
∥∥
X
≤ γ ‖V up

k − V
?‖X + 2γ ‖V π − V ?‖X ,

k ∈ N. Hence, we derive that ∆up
π

.
= limk→∞∆up

π,k satis-
fies

‖∆π‖X ≤ ‖∆up
π ‖X ≤

(
1 + 2γ(1− γ)−1

)
‖V ? − V π‖X. (5)

As a result ∆up
π = 0 if π = π? and the corresponding confi-

dence intervals collapses into one point. The quantity ∆up
π,k

can be used to measure the quality of policies π obtained by
many well-known algorithms like Reinforce, A2C, etc.

For simplicity, below we will describe all the results for
finite state and action spaces (|X|, |A| ≤ ∞), providing a
short remark on a generalization of these results to continu-
ous ones. Basically, the general iteration procedure is given
by (3).

For all expectations in (3) we use empirical counterparts.
Algorithm 1 contains the pseudocode of UVIP.

Algorithm 1 UVIP

Input: V π ,V̂ up
0 , γ, ε,M1,M2

Output: V up

for x ∈ X, a ∈ A do
V (x, a) = M−11

∑M1

i=1 V
π(Y x,ai ), Y x,ai ∼ Pa(·|x)

for y ∈ X do
Φx,aπ (y) = V π(y)− V (x, a)

end for
end for
k = 1
while ‖V̂ up

k − V̂
up
k−1‖X > ε do

for x ∈ X do
V̂ up
k+1(x) = M−12

∑M2

i=1 [ maxa{ra(x)+

+γ(V̂ up
k (Y x,ai )− Φx,aπ (Y x,ai ))}],

Y x,ai ∼ Pa(·|x)
end for
k = k + 1

end while
V up = V̂ up

k

3. Convergence results

In this section, we analyze the distance between (V̂ up
k )k∈N

and V ?, where V̂ up
k (x) is the k-th iterate of Algorithm 1.
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Note that with V
up

k (x)
def
= E

[
V̂ up
k (x)

]
we have

V
up

k (x) ≥ max
a

{
ra(x) + γPaV

up

k−1(x)
}
, (6)

x ∈ X, k ∈ N. Furthermore, if V̂ up
0 (x) ≥ V ?(x) for

x ∈ X, then V
up

k (x) ≥ V ?(x) for any x ∈ X and k ∈ N.
Hence V̂ up

k is an upper-biased estimate of V ? for any k ≥
0. Before stating our convergence results, we first state a
number of technical assumptions.

A1. There exists a measurable mapping ψ : X×A×Rm →
X such that Y x,a = ψ(x, a, ξ),where ξ is a random variable
with values in Ξ ⊆ Rm and distribution Pξ on Ξ, that is,
ψ(x, a, ξ) ∼ Pa(·|x).

A2. For some Rmax > 0 and all a ∈ A, ‖ra‖X ≤ Rmax .

Suppose that for each k = 1, . . . ,K we use an i.i.d. sam-
ple ξk = (ξk,1 . . . , ξk,M1+M2) ∼ P

⊗(M1+M2)
ξ to generate

Y x,aj = ψ(x, a, ξk,j), j = 1, . . . ,M1 +M2, and these sam-
ples are independent for different k. We now state main
theorems that can be proved.

Theorem 3.1. Assume A1, A2. Then for any k ∈ N and
δ ∈ (0, 1) it holds with probability at least 1− δ that

‖V̂ up
k − V

∗‖X . γk
∥∥V̂ up

0 − V ∗
∥∥
X
+

+ ‖V π − V ∗‖X +

√
log(|X||A|/δ)

M1
. (7)

In the above bound . stands for inequality up to a constant
depending on γ and Rmax.

Variance of the estimator and confidence bounds. Our
next step is to bound the variance of the estimator V̂ up

k (x).
Denote

σk
def
= γk

∥∥V̂ up
0 − V ∗

∥∥
X
+

+ ‖V π − V ∗‖X +

√
log(|X||A|)

M1
. (8)

Note that under A1, A2, and
∥∥V̂ up

0

∥∥
X
≤ Rmax(1− γ)−1,

σk . ‖V π − V ?‖X , (9)

provided that k and M1 are large enough. The next theorem
implies that Var

[
V̂ up
k (x)

]
can be much smaller than the

standard rate 1/M2, provided that V π is close to V ∗ and
M1,K are large enough.

Theorem 3.2. Assume A1, A2. Then for any k ∈ N,

max
x∈X

Var
[
V̂ up
k (x)

]
. σ2

k log(e ∨ σ−1k )M−12 , (10)

Corollary 3.1. Recall that V̂ up
k is an upper biased estimate

of V ? in a sense that V
up

k (x) ≥ V ?(x) provided V̂ up
0 (x) ≥

V ?(x) for x ∈ X. Together with Theorem 3.2, it implies that
for any δ ∈ (0, 1), with probability at least 1− δ,

V π(x) ≤ V ?(x) ≤ V̂ up
k (x)

+ σk

√
C log(e ∨ σ−1k )δ−1M−12 . (11)

Note that bounds of type (11) are known in the literature
only in the case of specific policies π. For example, (Wain-
wright, 2019) proves bounds of this type for greedy policies
in tabular Q-learning. At the same time, (11) holds for
arbitrary policy π.

4. Numerical Results
In this section we demonstrate the performance of Algo-
rithm 1 on several tabular state-space RL problems. We
construct the upper confidence bounds for policy π, coming
from the Value iteration procedure and Reinforce algorithm.
Recall that the closer policy π is to the optimal one π?, the
smaller is the difference between V π(x) and V up,π(x).

Figure 1. The difference between V up,πi(x) and V πi(x). X-axis
represents states in a discrete environment for all pictures. Each
group of three pictures of the same color demonstrates the process
of learning the policy from the first iteration to the last. First
and second rows: Evaluation of the policies during the process
of Value iteration for Garnet and Frozen Lake. The policies are
obtained greedily from Qi(x, a) function at the i-th step. Third
row: Reinforce algorithm during learning for Frozen Lake.

We consider 2 popular tabular environments: Garnet
((Archibald et al., 1995)) and AI Gym Frozen Lake ((Brock-
man et al., 2016)). For each environment we perform K
updates of the Value iteration with known transition kernel
Pa. We denote the k-th step estimate of the action-value
function as Q̂k(x, a) and denote πk the greedy policy w.r.t.
Q̂k(x, a). Then we evaluate the policies πk with the Algo-
rithm 1 for certain iteration numbers k. Figure 1 displays
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the gap between V πk(x) and V up,πk(x), which converges
to zero while πk converges to the optimal policy π?. Data
for the upper bounds estimation is generated using off-policy
method. On the Frozen Lake environment we also apply the
tabular version of the Reinforce algorithm. We evaluate
policies πk obtained from the k−th Reinforce iteration. On
the Figure 1 we display V πk(x) and V up,πk(x) for different
time steps k. The difference V up,πk(x)− V πk(x) does not
converge to zero, indicating suboptimality of the Reinforce
policy.

5. Conclusion
We propose a new approach towards model-free evaluation
of the agent’s policies in RL, based on upper solutions to
the Bellman optimality equation (1). To the best of our
knowledge, the UVIP is the first procedure which allows
to construct the non-asymptotic confidence intervals for
the optimal value function V ? based on the value function
corresponding to an arbitrary policy π. In our analysis we
consider only infinite-horizon MDPs and assume that sam-
pling from the conditional distribution Pa(·|x) is feasible for
any x ∈ X and a ∈ A. A promising future research direction
is to generalize the algorithm to the case of finite-horizon
MDPs combining it with the idea of Real-time dynamic
programming (see (Efroni et al., 2019)).

It is worth to highlight that the Theorems 3.1 and 3.2 have a
generalization for the case of infinite state and action spaces,
which requires the introduction of the covering number of
set X × A, the Dudley’s integral, along with the proper
approximation for V up(x). Moreover, the UVIP can be
adapted for RL benchmarks with continuous state space
and discrete action space by performing an additional ap-
proximation step. It implies that for an arbitrary policy we
can construct the upper confidence bounds for such envi-
ronments as AI Gym CartPole and Acrobot. Nevertheless,
the success of the procedure relies on the policy evaluation
methods. We have to choose the approximation points prop-
erly to be able to assess the next states quality after one step
of the agent.
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