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Abstract
We study cooperative multi-agent reinforcement
learning in episodic Markov games with n agents.
While the global state and action spaces typically
grow exponentially in n in this setting, in this
paper, we introduce a novel framework that com-
bines function approximation and a graphical de-
pendence structure that restricts the decision space
to o(dn) for each agent, where d is the ambient di-
mensionality of the problem. We present a multi-
agent value iteration algorithm that, under mild
assumptions, provably recovers the set of Pareto-
optimal policies, with finite-sample guarantees on
the incurred regret. Furthermore, we demonstrate
that our algorithm is no-regret even when there are
only O(1) episodes with communication, provid-
ing a scalable and provably no-regret algorithm
for multi-agent reinforcement learning with func-
tion approximation. Our work provides a tractable
approach to multi-agent decision-making that is
provably efficient and amenable to large-scale col-
laborative systems.

Cooperative multi-agent reinforcement learning (MARL)
is becoming increasingly prevalent in applications such as
robotics (Ding et al., 2020), power grid management (Yu
et al., 2014), traffic control (Bazzan, 2009) and team
games (Zhao et al., 2019). In this setting, a group of n
agents, each with their own state and action spaces, interact
simultaneously to maximize their cumulative rewards. The
foundational challenge in these multi-agent environments
(also known as multi-agent MDPs (Boutilier, 1996) or co-
operative Markov games (Shapley, 1953)) is that despite
having small individual state and action spaces, the joint
space grows exponentially in n, introducing a curse of di-
mensionality that makes standard approaches intractable.
Furthermore, designing a globally optimal policy is difficult
owing to communication and computational constraints.
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In single-agent tabular reinforcement learning (RL), algo-
rithms exist that provably incur a regret over T episodes that
scales as Õ(H

√
|S||A|T )1, where S and A are the state

and action spaces, respectively, and H denotes the length
of each episode. Such settings normally are agnostic to the
low-rank structure present in many environments, and recent
work (Jin et al., 2020; Wang et al., 2020; Yang et al., 2020)
has explored a low-rank linear formulation of MDPs, where
the transition kernels and reward functions are assumed to
be linear functions of a known d−dimensional feature of
the state and action. Under this assumption, algorithms have
been proposed that provably incur a regret of Õ(H2

√
d3T ),

and when d3 � |S||A|, this low-rank structure can be ex-
ploited effectively in many environments. Concurrently, the
multi-agent RL literature has focused on establishing local
dependence structures (Qu and Li, 2019; Qu et al., 2020),
where the dynamics are assumed to be a function of only a
subset of agents, effectively reducing the dependence on n
from exponential to polynomial, providing localized algo-
rithms with provable asymptotic convergence. This comple-
ments the approaches based on factored MDPs (Guestrin
et al., 2002; 2001; Roth et al., 2007), where the rewards
incurred by any agent is decomposed into a sum of several
latent reward functions.

In this paper, we unify these two perspectives of low-rank
function approximation and local dependence structures to
present a scalable, provably efficient approach to cooper-
ative multi-agent reinforcement learning. Specifically, we
seek to answer the following open question - can we design
tractable, scalable and provably efficient cooperative MARL
algorithms with function approximation?

Contributions. We answer the question affirmatively under
mild environmental conditions. First, we present a character-
ization of cooperative Markov games based on a graphical
influence model, where a known (connected, undirected)
graph G determines the structure of influence (i.e., an edge
(i, j) exists in G if agents i and j influence each other). We
extend the single-agent low-rank MDP (Jin et al., 2020) en-
vironment to multi-player MDPs and provide a set of weak
assumptions, titled clique-dominance, that are sufficient to
reduce the effective size of the joint state-action space from
O((|S||A|)n) to o(dn), where d is the dimensionality of the

1The Õ notation ignores polylogarithmic factors.
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approximating function class. Next, we generalize the coop-
erative MARL objective from maximizing total reward to a
broader class of Pareto-optimal policies, and characterize
conditions in which this class of policies can be efficiently re-
covered by the method of scalarization (Knowles, 2006) by
minimizing Bayes regret. Thirdly, we introduce MultOVI,
a decentralized vector-valued optimistic value iteration al-
gorithm that even under partial observability conditions, ob-
tains a cumulative Bayes regret of Õ(θ(G)H2

√
d3T ) over

T episodes, where θ(G) denotes the clique covering number
of G. MultOVI runs in polynomial time and only requires
a communication budget of o(nd2 log T ) rounds per agent,
which can be much smaller for sparse G. This ensures that
MultOVI is scalable to very large environments and adapts
to the sparsity of influence as well. Furthermore, in contrast
to the existing work in cooperative MARL that converges
to the global optimal policy (i.e., maximizing total reward),
MultOVI can, under mild conditions, recover any subset of
policies in the Pareto frontier, additionally enabling adaptive
load-balancing (Schaerf et al., 1994). Moreover, a direct
corollary of our analysis also provides the first no-regret
algorithm for multi-objective RL (Mossalam et al., 2016)
with function approximation.

Organization. Section 2 presents assumptions about the
Markov game considered. Section 3 presents our perfor-
mance objective and recovery guarantees. Section 4 presents
our algorithm and associated regret upper and lower bounds.
We defer full proofs, a survey of related work, additional
remarks, and experiments to the Appendix for brevity.

2. Preliminaries
Notation. We denote vectors by lowercase solid letters,
i.e., x, matrices by uppercase solid letters X, and sets by
calligraphic letters, i.e., X , the ellipsoid norm of a vector
x as ‖x‖S =

√
x>Sx for some matrix S. We denote the

interval a, ..., b for b ≥ a by [a, b] and as [b] when a = 1.

Cooperative Markov Games. We consider the
simultaneous-move Markov game (Xie et al., 2020), which
is an extension of an MDP to multiple agents, and
is also known as a multi-agent MDP (Boutilier, 1996).
A Markov game (MG) can be formally described as
MG(S,M,A, H,P,R), where the set of agentsM is finite
and countable with size n, the state and action spaces are fac-
torized as S = S1×S2×. . .Sn andA = A1×A2×. . .An,
where Sν and Aν denote the individual state and action
space for agent ν respectively. The transition matrix
P = {Ph}h∈[H],Ph : S × A × S → [0, 1] determines
how the joint state evolves given an existing joint state-
action, and the reward function R = {rh}Hh=1, rh =
{rν,h}nν=1, rν,h : S × A → R denotes the reward ob-
tained by each agent ν in the MG. We further denote, for
any subset Z ⊆ M of agents, the marginal transition

probability for the subset as PZ = {PZh }Hh=1 such that
PZh : S × A ×

(∏
i∈Z Si

)
→ [0, 1]. Next, we consider

a graphical model of influence in order to remove the ex-
ponential dependence on n (a generalization of prior work,
e.g., Qu and Li (2019); Qu et al. (2020)), summarized below.

Assumption 1 (Local Influence). Let G = (M, E) denote
an undirected network of influence between agents inM,
i.e., E contains an edge (i, j) if the reward of agent i is a
function of agent j (and vice-versa), and let N+(ν) denote,
for any agent ν its neighborhood in G (including itself).
Alternatively, this implies that the reward for any agent ν
obeys rν,h = rν,h(x̃ν , ãν) where x̃ν = {xj}j∈N+(ν) and
ãν = {xj}j∈N+(ν) denote the local state-action for ν.

Ref. Remark 4 in Appendix B. We are not quite yet equipped
with a feasible learning model. This is evident as Assump-
tion 1 in the worst case still leads to an exponential de-
pendence on n, and combinatorial state-action spaces have
been known to be intractable (Blondel and Tsitsiklis, 1999;
Papadimitriou and Tsitsiklis, 1987). As a consequence, re-
cent work has suggested additional conditions bounding the
strength of interactions between agents to develop efficient
policies (Qu and Li, 2019; Qu et al., 2020). We now describe
a similar assumption to characterize dynamics.

Definition 1 (Clique covering number). A k-clique cover
C = {C1, ..., Ck} of any graph G is a partition of G into k
non-overlapping subgraphs such that each subgraphCi, i ∈
[k] is strongly connected. The clique covering number θ(G)
is the size of the smallest clique covering C? of G.

Assumption 2 (Clique-Dominant Dynamics). For the net-
work G defined in Assumption 1 let C = ∪l∈[k]Cl be
a known k-clique cover. For any V ⊆ G and joint
state-action pair (x,a), let xV = {∪i∈V xi} and aV =
{∪i∈V ai} denote the joint state and action of all agents
in V , and x̄V , āV denote the joint state and action of
all agents not in V . We assume that for each C ∈
C and h ∈ [H] there exists an unknown kernel P̃Ch :(∏

i∈C Si
)
×
(∏

i∈C Ai
)
×
(∏

i∈C Si
)
→ [0, 1], unknown

functions {r̃ν,h}Cν=1 and a known nondecreasing function
ε(·) : [1, n] → [0, 1] such that for any joint state-action
(x,a) = ({xC , x̄C}, {aC , āC}), we have for any ν ∈ C,

|rν,h(x,a)− r̃ν,h(xC ,aC)| ≤ ε(k) and ,∥∥∥PCh (·|x,a)− P̃Ch (·|xC ,aC)
∥∥∥
TV
≤ ε(k).

Remark 1 (Feasibility of Clique-Dominance). Assump-
tion 2 assumes that if any group of agents C is strongly-
connected (i.e., all influence each other), their joint informa-
tion suffices to “approximately” explain the individual re-
ward and joint marginal transition dynamics up to a factor ε
for all agents in C. Naturally, for a smaller clique-covering,
a lower approximation error ε can be expected. Similar
assumptions for local regularity have been made in prior
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work: Qu and Li (2019) introduce the (c, ρ)−exponential
decay property, see Remarks 5, 6 in Appendix B.

Setting. The game proceeds as follows. In each episode
t ∈ [T ] each agent ν fixes a policy πν(t) = {πhν (t)}Hh=1

in a (joint) initial state x1(t) = {x1
ν(t)}nν=1 picked ar-

bitrarily by the environment. For each step h ∈ [H] of
the episode, each agent observes the local state x̃hν (t), se-
lects an individual action ahν (t) ∼ πhν (·|x̃hν (t)) (collec-
tively the joint action ah(t) = {ahν (t)}nν=1), and obtains
a reward rhν (x̃hν (t), ãhν (t)) (collectively the joint reward
rh(xh(t),ah(t)) = {rhν (x̃hν (t), ãhν (t))}nν=1). All agents
transition subsequently to a new joint state xh+1(t) =
{xh+1

ν }nν=1 sampled according to Ph(·|xh(t),ah(t)). The
episode terminates at step H + 1 where all agents receive
no reward. The agents can then (optionally) communi-
cate by sharing messages to neighbors in G after each
episode. Let π = {πν}nν=1 denote a joint policy for all
n agents. We can define the vector-valued value func-
tion over all joint states x ∈ S for a policy π and step
h as Vπ

h (x) , Eπ
[∑H

i=h ri(xi,ai)
∣∣∣ xh = x

]
. Analo-

gously, we define the vector-valued Q-function for a pol-
icy π and any x ∈ S,a ∈ A, h ∈ [H],Qπ

h (x,a) ,

rh(x,a) + Eπ
[∑H

i=h+1 ri(xi,ai)
∣∣∣ xh = x,ah = a

]
.

3. Beyond Team-Average Rewards
Cooperative MARL focuses primarily on global objec-
tives, most commonly that of team-average reward. While
this objective is indeed valid in many environments, we
aim to recover the richer class of Pareto-optimal objec-
tives (Buchanan, 1962). Formally,

Definition 2 (Pareto optimality, Paria et al. (2020)).
A policy π Pareto-dominates policy π′ iff Vπ

1 (x) �
Vπ′

1 (x)∀ x ∈ S. A policy is Pareto-optimal if it is not
Pareto-dominated by another policy. We denote the set of
all policies by Π, and the Pareto-optimal policies by Π?.

It is evident that joint policies that maximize any agent’s
individual reward as well as the average reward are all el-
ements of Π?. The motivation to consider recovering the
Pareto frontier is indeed derived from applications, e.g.,
in EV charging (Marinescu et al., 2014), smart grids (Chiu
et al., 2019), and workflow optimization (Wang et al., 2019).

Random Scalarizations. To recover Π?, our approach is
to utilize the method of random scalarizations (Knowles,
2006). The key idea in the method of scalarization is to
observe that if the Pareto frontier Π? is convex, then there is
a bijective mapping of each policy in Π? to the optimal pol-
icy of a scalarized MDP. Consider a scalarization function
sυ(x) = υ>x : Rn → R parameterized by υ belonging to
the set Υ ⊆ ∆n (unit simplex in n dimensions). We then
have the scalarized value function V πυ,h(x) : S → R and

Q−function Qπυ,h : S ×A → R for some joint policy π as
V πυ,h(x) , sυ(Vπ

h (x)) = υ>Vπ
h (x) , and Qπυ,h(x,a) ,

sυ(Qπ
h (x,a)) = υ>Qπ

h (x,a). Since both A =
∏
iAi

and H are finite, there exists an optimal multi-agent pol-
icy for any fixed scalarization υ, which gives the value
V ?υ,h = supπ∈Π V πυ,h(x) for all x ∈ S and h ∈ [H]. This
policy coincides with the optimal policy for an MDP over
the space S ×A, defined as follows.

Proposition 1. For the scalarized value function given
above, the Bellman optimality conditions are given
as, for all h ∈ [H],x ∈ S,a ∈ A,υ ∈
Υ, Q?υ,h(x,a) = sυrh(x,a) + PhV ?υ,h(x,a), V ?υ,h(x) =
maxa∈AQ

?
υ,h(x,a), and V ?υ,H+1(x) = 0.

The optimal policy for any fixed υ is given by the greedy
policy with respect to the Bellman-optimal scalarized
Q−values. We denote this (unique) optimal policy by π?υ.
The next result claims that by “projecting” a cooperative
Markov game to an MDP via scalarization, one can recover
a policy on the Pareto frontier. Indeed, when the set Π? is
convex, then the set of policies Π?

Υ = {π?υ|υ ∈ ∆n} spans
Π?, and one can recover Π? by simply learning Π?

Υ.

Theorem 1. For any Markov game with finite A and H ,
Π?

Υ ⊆ Π?. If Π? is convex, Π?
Υ = Π?.

Remark 2 (Limits of Scalarization). This approach suffers
from the drawback that convexity assumptions on the scalar-
ization function limit algorithms to only recover policies
within the convex regions of Π? (Vamplew et al., 2008),
which is exact when Π? is convex. Subsequently, our algo-
rithm is limited in this sense as it relies on scalarizations,
however, we leave the extension to non-convex regions as
future work, and assume Π? to be convex for simplicity.

Bayes Regret. As mentioned earlier, in many applications,
we may require learning policies that prioritize an agent
over others. Hence, we consider a general notion of Bayes
regret. Our objective is to approximate Π? by learning a set
of T policies Π̂T that minimize the Bayes regret, given by,

RB(T ) , E
υ∼pΥ

[
max
x∈S

[
V ?υ,1(x)− max

π∈Π̂T

V πυ,1(x)

]]
.

(1)
Here pΥ is a distribution over Υ that characterizes the na-
ture of policies we wish to recover. For example, if we set
pΥ as the uniform distribution over ∆n then we can ex-
pect the policies recovered to prioritize all agents equally2.
The advantage of minimizing Bayes regret can be under-
stood as follows. For any υ ∈ Υ, if π?υ ∈ Π̂T , then the
regret incurred is 0. Hence, by collecting policies that mini-
mize Bayes regret, we are effectively searching for policies

2One may consider minimizing the regret for a fixed scalariza-
tion υ′ = EpΥυ, however, that will also recover only one policy
in Π?, whereas we desire to capture regions of Π?.
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that span dense regions of Π? (assuming convexity, see
Remark 2). Consider now the cumulative regret:

RC(T ) ,
∑
t∈[T ]

E
υt∼pΥ

[
max
x∈S

[
V ?υt,1(x)− V πtυt,1(x)

]]
.

(2)
Where υ1, ...,υT ∼ pΥ are sampled i.i.d. from pΥ, and
πt refers to the joint policy at episode t. Under suitable
conditions on s and Υ, we can bound the two quantities.

Proposition 2. For s that is Lipschitz and bounded Υ, we
have that RB(T ) ≤ 1

TRC(T ) + o(1).

4. An Efficient Algorithm
We now present our algorithm MultOVI (Multiagent Opti-
mistic Value Iteration) that provides a polynomial sample
complexity for environments with low-rank structure.

Assumption 3 (Clique-dominant Linear Markov Game).
Let C be a clique covering of G, and for any clique C ∈ C,
let SC =

∏
ν∈C Sν and AC =

∏
ν∈C Aν denote the joint

state and action space of agents within C. A Markov
Game MG(S,M,A, H,P,R) is a clique-dominant linear
Markov game if (a) it is clique-dominant (i.e., obeys As-
sumption 2), and (b) for every C ∈ C, h ∈ [H], for a set
of |C| + 1 features {φν}ν∈C ,φv : SC × AC → Rd and
ψC : SC × AC → Rd, there exist d unknown measures
µCh (·) = {µ1

C,h(·), ..., µdC,h(·)} over SC and an unknown
vector θCh ∈ Rd such that ∀(x,a) ∈ SC ×AC and ν ∈ C,

P̃Ch (·|x,a) =
〈
ψC(x,a),µCh (·)

〉
, and

r̃ν,h(x,a) =
〈
φν(x,a),θCh

〉
.

We denote the overall clique feature vector as ΦC(·) ∈
Rd×|C|, where, for any x ∈ SC ,a ∈ AC , ΦC(x,a) =
[[φ1(x,a),ψC(x,a)]>, ..., [φ|C|(x,a),ψC(x,a)]>]>,
and the overall approximate clique reward r̃Ch (x,a) =
[r̃1,h(x,a), ..., r̃|C|,h(x,a)]>. Under this representation,
we have that for any x ∈ SC ,a ∈ AC , h ∈ [H],

r̃Ch (x,a) = ΦC(x,a)>
[
θCh
0d

]
, and,

1|C| · P̃Ch (·|x,a) = ΦC(x,a)>
[

0d
µCh (·)

]
.

Assume WLOG ∀C ∈ C, ‖ΦC(x,a)‖ ≤
√
|C| ∀ (x,a) ∈

SC ×AC , ‖θCh ‖ ≤
√
d, ‖µCh (SC)‖ ≤

√
d.

Essentially, this assumption requires that once we are pro-
vided a clique covering, and the Markov game obeys the
clique-dominance property (Assumption 2), the approxi-
mate rewards r̃ν,h are linear functions of a known feature
vector φC evaluated on the joint state-action of the agents
within its clique. Additionally, it assumes that the approxi-
mate marginal transitions P̃Ch are linear functions of a known

feature ψC . This, in fact, is a straightforward extension
of the single-agent linear MDP parameterization (see As-
sumption A in Jin et al. (2020)) to clique-dominant Markov
games, see Remark 7 in Appendix B to compare.

4.1. Algorithm Design

The first step in our approach is to compute a k-clique cov-
ering C of the influence graph G. Recall that by Remark 6
that this can be done in polynomial time with a 1.25 approx-
imation of C?. Since the game is clique-dominant (Assump-
tion 2), we can learn k decentralized policies π1, ...,πk, one
corresponding to each clique of agents in C without incur-
ring too much approximation error. Now, to motivate the
design, we first observe that Assumption 3 implies that for
each clique C ∈ C, there exist a set of weights such that the
scalarizedQ−values for any parameter υC are almost linear
projections of the overall clique features ΦC(·), where the
total error is no larger than 2Hε(k).
Lemma 1 (Almost linear weights in Markov Games).
Under Assumption 3 for graph G with k cliques
ordered from 1, ..., k, we have, for any fixed de-
centralized policy π = {π1, ...,πk} and υ =

{υ1, ...,υk} ∈ Υ, there exist weights {wπτυ,h}
H,k
h=1,τ=1

such that
∣∣∣Qπυ,h(x,a)−

∑k
τ=1 υ

>
τ Φτ (xτ ,aτ )>wπτυ,h

∣∣∣ ≤
2Hε(k) ∀(x,a, h), where ‖wπkυ,h‖2 ≤ 2H

√
d.

Armed with this observation, we design a policy using
vector-valued linear least-squares regression, as the optimal
policy is only at most 2Hε away from the best least-squares
fit. In a nutshell, our approach can be summed up in two
steps: (a) first, we approximate the Pareto frontier Π? with
the set of policies Π?

Υ recoverable by scalarization (see Re-
mark 2), (b) next, we empirically approximate Π?

Υ with a
collection of T policies (one for each episode), such that the
Bayes Regret is minimized (Proposition 2). In each episode
t ∈ [T ], we sample a scalarization parameter υt ∼ pΥ,
and run k vector-valued decentralized linear least-squares
regressions to approximate the optimal policy π?υt with k
policies π1(t), ....,πk(t) such that the resulting Q−values
overestimate Q?υt,h with high probability. Then, each agent
in clique τ selects the corresponding greedy action with
respect to πτ (t). This approach is carried out via value
iteration with optimism, as described below.

We describe the policy for any clique C ∈ C of size nC .
For any scalarization υ(t) ∈ Rn, the nC values correspond-
ing to agents in C is denoted by υC(t). Now, consider the
MDP M̃DPC formed by scalarizing the Markov game cor-
responding to the approximate rewards r̃Ch and transition
dynamics P̃Ch with the parameter υC,t (i.e., the reward func-
tion in M̃DPC is given by υC(t)>rCh , transition by P̃h and
state-action spaces as SC and AC respectively). For each
clique C, we will use value iteration to recover the optimal
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V h+1
C (t)(x)← argmax

a∈A

[
υC(t)

>
(
Qh+1
C (t)>ΦC(x,a)

)]
∀ x ∈ SC ,

Q̂h
C(t)← argmin

w∈Rd

 ∑
τ∈[sCt ]

∥∥∥yhC(τ)−ΦC(x
h
C(τ),a

h
C(τ))

>w
∥∥∥2
2
+ λ‖w‖22

 ,
QhC(t)(x,a)← υC(t)

>
(
Q̂h
C(t)

>ΦC(x,a)
)
+ βhC(t) ·

∥∥∥ΦC(x,a)
>Λh

C(t)
−1ΦC(x,a)

∥∥∥
2
.

Figure 1. Vector-valued least squares regression update rule for MultOVI.

policy for this M̃DPC (let us call it π̃?C(t)). The algorithm
is a distributed variant of least-squares value iteration with
UCB exploration. Following Proposition 1, the key idea is
to make sure that each agent in C acts according to the joint
policy that is aiming to mimic π̃?C(t). Therefore, we must
ensure that the local estimate for the joint policy obtained by
any agent must be identical, such that the joint action is in
accordance with π̃?C(t). To achieve this we will obtain the
approximated (scalar) Q−values for π̃?C(t) by recursively
applying the Bellman equation and solving the resulting
equations via a vector-valued regression. Since the policy
variables are designed to be identical each agent in C at all
times, we describe the procedure for any agent within C.
For any episode t, let us assume that the last round of syn-
chronization between agents in C occured at time sCt . Each
agent within the clique C obtains an identical sequence
of value functions {QhC(t)}h∈[H] by iteratively perform-
ing linear least-squares ridge regression from the history
available from the previous sCt episodes by first learning a
vector Q−function Q̂h

C(t) over RnC , which is scalarized by
υC(t) to obtain the Q−values as QhC(t) = υC(t)>Q̂h

C(t).
Each agent m first sets Q̂H+1

C (t) to be a zero vector in
RnC , and for any h ∈ [H], solves the following sequence
of regressions to obtain Q−values described in Figure 1.
Where the last equation holds for any (x,a) ∈ (SC ×AC)
and the targets yhC(τ) = rCh (xhC(τ),ahC(τ)) + 1nC ·
V h+1
C (t)(xh+1

C (τ)), 1nC denotes the all-ones vector in
RnC , βhC(t) is selected such that with high probability the
estimated Q-values overestimate the require Q−values, and
Λh
C(t) is described subsequently. Once all of these quan-

tities are computed, each agent ν ∈ C selects the action
ahν (t) =

[
arg maxa∈AC Q

h
C(t)(xhC(t),a)

]
ν

for each h ∈
[H]. Hence, the joint clique action ahC(t) = {ahν (t)}nCν=1 =
arg maxa∈AC Q

h
C(xhC(t),a). Observe that while the com-

putation of the policy is decentralized, the policies executed
for all agents ν ∈ C coincide at all times by the model-
ing assumption and the periodic synchronizations between
agents. We now present the closed form of Q̂h

C(t). Con-
sider the contraction zhC(τ) = (xhC(τ),ahC(τ)) and the map
Φ̂h
C(t) : Rd → RtnC such that for any θ ∈ Rd,

Φh
C(t)θ ,

[
(ΦC(zhC(1))>θ)>, ..., (Φ(zhC(t))>θ)>

]>
.

Now, consider Λh
C(t) = Φh

C(sCt )>Φh
C(sCt ) +λId ∈ Rd×d,

and Uh
C(t) =

∑sCt
τ=1 ΦC(zhC(τ))yhC(τ). Then, we have by

a multi-task concentration (see Appendix B of Chowdhury
and Gopalan (2020)),

Q̂h
C(t)(x,a) = ΦC(x,a)>Λh

C(t)−1Uh
C(t).

The algorithm is presented in Algorithm 1. The algorithm
is essentially learning k multi-agent policies by solving a
vector-valued regression, one for each clique in the covering
C, such that the group of agents in each clique can learn the
approximate clique-based MG (ref. Assumption 2).

4.2. Regret Analysis

Theorem 2. Algorithm 1 on a game with n agents satisfy-
ing Assumptions 1, 2, 3 with error ε?, approximate clique
covering Ĉ, and κ · dH · θ(G) rounds of communication for
some κ > 1, obtains, with probability at least 1− α, regret:

Õ
(
θ(G) · d 3

2H2(2T · nmax)
2
κ

(√
T log

(
1
α

)
+ 2Tnmax · ε?

))
.

Where θ(G) denotes the clique covering number of G, and
nmax is the size of the largest clique in Ĉ.
Remark 3 (Regret Bound). The above Theorem suggests
that our algorithm is no-regret (up to a factor ε?), as long
as there are a sufficient (logarithmic) rounds of communica-
tion. Further, if the clique-dominance error ε? = o(T−γ)
for γ > 0 then the algorithm is no-regret regardless. Ad-
ditionally, we see that MultOVI can be simulated on a
single agent with n objectives, where S = 1 and G is com-
plete, which provides, to the best of our knowledge, the
first no-regret algorithm for multi-objective reinforcement
learning (Mossalam et al., 2016). We present further clarifi-
cations, discussions and lower bounds in Remarks 8, 9, 10
and 11 in Section B of the Appendix.

Conclusion. We presented the first (to the best of our knowl-
edge) no-regret algorithm for partially-observable cooper-
ative Markov games, with competitive experimental per-
formance (experiments deferred to Appendix for brevity).
We generalize several concepts in the cooperative MARL
literature, and we believe our results will be important for
further work in cooperative MARL.
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A. Related Work
It is difficult to summarize the rich literature on cooperative multi-agent reinforcement learning, being examined by various
perspectives from the AI (Lauer and Riedmiller, 2000; Boutilier, 1996), control (Yoshikawa, 1978; Wang and Sandholm,
2003) and statistical learning communities (Xie et al., 2020). While there has been extensive recent work on provably
efficient algorithms for competitive multiplayer RL (Xie et al., 2020; Zhao et al., 2021; Shah et al., 2020), our work is
placed in the cooperative MARL setting, with the objective being to efficiently find globally optimal policies, where recent
work has focused on locality assumptions in order to reduce the policy search space (Qu and Li, 2019; Qu et al., 2020).
However, the more general heterogeneous reward setting considered in our work, where each agent may have unique rewards,
corresponds to the team average games studied previously (Kar et al., 2013; Zhang et al., 2018b;a). While some of these
approaches do provide tractable algorithms that are decentralized and convergent, none provide finite-time regret guarantees,
and moreover, focus only on maximizing the team average reward. In our paper, however, we study a more general form
of regret in order to recover a set of policies on the Pareto frontier. For a detailed overview of algorithms in cooperative
MARL, we refer the readers to the illuminating survey by Zhang et al. (2019). Our work builds on the increasingly relevant
line of work in (single-agent) reinforcement learning with function approximation (Wang et al., 2020; Yang et al., 2020;
Yang and Wang, 2020; Jin et al., 2020), however, our environment suffers from several additional challenges not present in
single-agent settings, such as communication costs, scalability issues and decentralized multi-agent planning, which are the
key contributions of this paper.

B. Omitted Remarks
Remark 4 (Feasibility of Local Influence). Networked influence assumptions similar to Assumption 1 have been explored
extensively in the literature (Gu et al., 2020; Qu and Li, 2019; Qu et al., 2020; Guestrin et al., 2001), and is commonly present
in many real-world environments such as supply-chain networks (Thadakamaila et al., 2004) and social networks (Barabasi,
2005). However, in contrast to prior work, which assume the individual reward functions to be functions only of the local
state and action, we consider a broader model where even local rewards are functions of the neighborhood.

Remark 5 (Comparison with Exponential Decay). Compared to the (c, ρ)−decay of (Qu and Li, 2019), our assumptions
are both weaker and stronger in some aspects. First, we do not require any knowledge of pairwise interactions, and
make assumptions at the subgraph level, and second, we do not require an exponential decay: simply an upper bound
on the error suffices. Consequently, our guarantee only utilizes local neighborhoods (i.e., agents at distance 1), whereas
(c, ρ)−exponential decay utilizes all interactions. In this regard, we remark that our clique-dominance assumption can
incorporate further neighbors by partitioning the κ−power of G and introducing state-action communication between agents
(as any agent can only observe its neighbors, hence information about distant neighbors must be communicated), which we
omit for simplicity.

Remark 6 (Complexity of clique covering). Assumption 2 requires a clique covering of G, which is NP-hard (Karp,
1972), however, for special cases, can be found in polynomial time (e.g., triangle-free graphs (Molloy, 2019) and perfect
graphs (Grötschel et al., 1988)). Cerioli et al. (2008) provide a polynomial-time algorithm that gives a 1.25 approximation
of the minimal clique covering, therefore, we can replace C? with an approximate covering Ĉ such that |Ĉ| ≤ 1.25|C?| for
any G in our approach.

Remark 7 (Multi-agent modeling assumptions). In contrast to the typical linear MDP assumption, here we model the
rewards and dynamics for each clique of agents separately, each with d linear dimensions each. In the single-agent setting,
identical assumptions on the reward and transition kernels will lead to a model with complexity d, whereas in our formulation
we have a complexity of 2d, implying that our fomulation incurs an overhead of 2

√
2 in the regret if applied to the single-

agent setting, compared to the model presented in Jin et al. (2020). Furthermore, observe that in the fully-cooperative
setting (where agents share the reward function), i.e., r1,h = ... = rn,h∀h ∈ [H], we have that assuming, for all agents that
φ1 = φ2 = ... = φn satisfies the modeling requirement.

Remark 8 (Regret Bound). Theorem 2 claims in conjunction with Proposition 2 that MultOVI obtains Bayes regret of
Õ(θ(G) ·

√
T ) even with limited communication. Note that for complete G, θ(G) = 1 and the dependence on T matches

that of MDP algorithms exactly (e.g., Jin et al. (2020)), demonstrating that our analysis is tight. Additionally, we see that
this algorithm can easily be applied to an MDP by simply selecting pΥ to be a point mass at the appropriate υ, with no
increase in regret. Thirdly, we see that MultOVI can be simulated on a single agent with n objectives, where S = 1 and G
is complete, which provides, to the best of our knowledge, the first no-regret algorithm for multi-objective reinforcement
learning (Mossalam et al., 2016).
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Remark 9 (Lower Bounds). For tabular multi-agent reinforcement learning, in the Appendix, we demonstrate that a
collection of θ(G) episodic MDPs (one corresponding to each clique C ∈ C, with state-action spaces SC and AC) can be
constructed such that the cumulative Bayes regret incurred by any algorithm is Ω(H

√
dT ) for each C, and therefore the total

regret in the Markov game is Ω(θ(G)H
√
dT ) where nmin is the size of the smallest clique of G, demonstrating that the θ(G)

term is unavoidable in general. Further, the utilization of “Bernstein-type” confidence bonuses can shave off an additional
factor of

√
H in our regret (see discussion in Jin et al. (2020)). Regarding the optimal dependence on communication, we

conjecture that our bound is almost-optimal, as similar lower bounds have been demonstrated for distributed exploration in
multi-armed bandits (Hillel et al., 2013).

Remark 10 (Modeling influence and unknown dynamics). For arbitrary influence graphs G, the misspecification ε incurred
by using a k-clique covering C of G (Assumption 2) can be unknown in general, and may be unique for each C. In this
setting, we conjecture that a corraling-type algorithm (Pacchiano et al., 2020; Agarwal et al., 2017) that adaptively selects
the best clique covering C can provide regret close to our algorithm without knowing the misspecification ε(k).

Remark 11 (Communication complexity). We can control the communication budget by adjusting the threshold parameter
S. Note that when S = 1, communication will occur each round, as the threshold will be satisfied trivially by the rank-1
update to the Gram matrix. If the horizon T is known in advance, one can set S = (1 +nmaxT/d)1/D for some independent
constant D > 1, to ensure that the total rounds of communication is a fixed constant θ(G)(dD + 1)H , which provides us
a group regret of Õ(θ(G) · n 1

2D · T 1
2 + 1

2D ). A balance can be obtained by setting S = C ′ for some absolute constant C ′,
leading to a total O(θ(G) · log(nmaxT )) rounds with Õ(θ(G)

√
T ) regret.

C. Algorithm Design: Extended
The first step in our approach is to compute a k-clique covering C of the influence graph G. Recall that by Remark 6 that
this can be done in polynomial time with a 1.25 approximation of C?. Since the game is clique-dominant (Assumption 2),
we can learn k decentralized policies π1, ...,πk, one corresponding to each clique of agents in C without incurring too much
approximation error. Now, to motivate the design, we first observe that Assumption 3 implies that for each clique C ∈ C,
there exist a set of weights such that the scalarized Q−values for any parameter υC are almost linear projections of the
overall clique features ΦC(·), where the total error is no larger than 2Hε(k).

Lemma 2 (Almost linear weights in Markov Games). Under Assumption 3 for graph G with k cliques ordered from
1, ..., k, we have, for any fixed decentralized policy π = {π1, ...,πk} and υ = {υ1, ...,υk} ∈ Υ, there exist weights

{wπτυ,h}
H,k
h=1,τ=1 such that

∣∣∣Qπυ,h(x,a)−
∑k
τ=1 υ

>
τ Φτ (xτ ,aτ )>wπτυ,h

∣∣∣ ≤ 2Hε(k) ∀(x,a, h), where ‖wπkυ,h‖2 ≤ 2H
√
d.

Armed with this observation, we design a policy using vector-valued linear least-squares regression, as the optimal policy
is only at most 2Hε away from the best least-squares fit. In a nutshell, our approach can be summed up in two steps: (a)
first, we approximate the Pareto frontier Π? with the set of policies Π?

Υ recoverable by scalarization (see Remark 2), (b)
next, we empirically approximate Π?

Υ with a collection of T policies (one for each episode), such that the Bayes Regret is
minimized (Proposition 2). In each episode t ∈ [T ], we sample a scalarization parameter υt ∼ pΥ, and run k vector-valued
decentralized linear least-squares regressions to approximate the optimal policy π?υt with k policies π1(t), ....,πk(t) such
that the resulting Q−values overestimate Q?υt,h with high probability. Then, each agent in clique τ selects the corresponding
greedy action with respect to πτ (t). This approach is carried out via value iteration with optimism, as described below.

We describe the policy for any clique C ∈ C of size nC . For any scalarization υ(t) ∈ Rn, the nC values corresponding to
agents in C is denoted by υC(t). Now, consider the MDP M̃DPC formed by scalarizing the Markov game corresponding to
the approximate rewards r̃Ch and transition dynamics P̃Ch with the parameter υC,t (i.e., the reward function in M̃DPC is
given by υC(t)>rCh , transition by P̃h and state-action spaces as SC and AC respectively). For each clique C, we will use
value iteration to recover the optimal policy for this M̃DPC (let us call it π̃?C(t)). The algorithm is a distributed variant of
least-squares value iteration with UCB exploration. Following Proposition 1, the key idea is to make sure that each agent in
C acts according to the joint policy that is aiming to mimic π̃?C(t). Therefore, we must ensure that the local estimate for the
joint policy obtained by any agent must be identical, such that the joint action is in accordance with π̃?C(t). To achieve this
we will obtain the approximated (scalar) Q−values for π̃?C(t) by recursively applying the Bellman equation and solving the
resulting equations via a vector-valued regression. Since the policy variables are designed to be identical each agent in C at
all times, we describe the procedure for any agent within C.

For any episode t, let us assume that the last round of synchronization between agents in C occured at time sCt . Each
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Algorithm 1 MultOVI: Decentralized Learning in Low-Rank Cooperative Markov Games

1: Input: T,Φ, H, S, sequence βh = {(βth)t}.
2: Initialize: ΛC

h (t) = λId, δΛ
h
C(t) = 0,Uhν ,Wh

ν = ∅ for each ν ∈ G, clique cover Ĉ of G.
3: for episode t = 1, 2, ..., T do
4: Sample υt ∼ pΥ using public randomness.
5: for clique C ∈ Ĉ do
6: for agent ν ∈ C do
7: Set V H+1

C (t)(·)← 0.
8: for step h = H, ..., 1 do
9: Compute QhC(t)(·, ·) using vector-valued least-squares regression on Uhν .

10: Set V h+1
C (t)(·)← maxa∈AC Q

h
C(t)(·,a).

11: end for
12: for step h = 1, ..., H do
13: Take action ahν (t)← [argmaxa∈AC Q

h
C(t)(x

h
C(t),a)]ν .

14: Observe rhν (t), x̃h+1
ν .

15: Update δΛh
C(t)← δΛh

C(t− 1) + ΦC(z
h
C(t))ΦC(z

h
C(t))

>.
16: UpdateWh

ν ←Wh
ν ∪ (ν, xhν (t), r

h
ν (t)).

17: if log det(ΛhC(t)+δΛhC(t)+λI)
det(ΛhC(t)+λI)

> S then
18: SYNCHRONIZE← TRUE.
19: end if
20: end for
21: end for
22: if SYNCHRONIZE then
23: Assign arbitrary agent in C as the SERVER AGENT.
24: for step h = H, ..., 1 do
∀ AGENTS SendWh

ν →SERVER AGENT.
SERVER AGENT AggregateWh ← ∪ν∈CWh

ν .
SERVER AGENT CommunicateWh to each agent.
∀ AGENTS Set δΛh

C(t+ 1)← 0,Wh
ν ← ∅.

∀ AGENTS Set Λh
C(t+ 1)← Λh

C(t) +
∑

(x,a)∈Wh ΦC(x,a)ΦC(x,a)
>.

∀ AGENTS Set Uhν ← Uhν ∪Wh

31: end for
32: end if
33: end for
34: end for

agent within the clique C obtains an identical sequence of value functions {QhC(t)}h∈[H] by iteratively performing linear
least-squares ridge regression from the history available from the previous sCt episodes by first learning a vector Q−function
Q̂h
C(t) over RnC , which is scalarized by υC(t) to obtain the Q−values as QhC(t) = υC(t)>Q̂h

C(t). Each agent m first sets
Q̂H+1
C (t) to be a zero vector in RnC , and for any h ∈ [H], solves the following sequence of regressions to obtain Q−values.

For each h = H, ..., 1, for each agent computes,

V h+1
C (t)(x)← arg max

a∈A

[
υC(t)>

(
Qh+1
C (t)>ΦC(x,a)

)]
∀ x ∈ SC ,

Q̂h
C(t)← arg min

w∈Rd

 ∑
τ∈[sCt ]

∥∥yhC(τ)−ΦC(xhC(τ),ahC(τ))>w
∥∥2

2
+ λ‖w‖22

 ,
QhC(t)(x,a)← υC(t)>

(
Q̂h
C(t)>ΦC(x,a)

)
+ βhC(t) ·

∥∥ΦC(x,a)>Λh
C(t)−1ΦC(x,a)

∥∥
2
.

Where the last equation holds for any (x,a) ∈ (SC × AC) and the targets yhC(τ) = rCh (xhC(τ),ahC(τ)) + 1nC ·
V h+1
C (t)(xh+1

C (τ)), 1nC denotes the all-ones vector in RnC , βhC(t) is selected such that with high probability the estimated
Q-values overestimate the require Q−values, and Λh

C(t) is described subsequently. Once all of these quantities are
computed, each agent ν ∈ C selects the action ahν (t) =

[
arg maxa∈AC Q

h
C(t)(xhC(t),a)

]
ν

for each h ∈ [H]. Hence,
the joint clique action ahC(t) = {ahν (t)}nCν=1 = arg maxa∈AC Q

h
C(xhC(t),a). Observe that while the computation of the

policy is decentralized, the policies executed for all agents ν ∈ C coincide at all times by the modeling assumption
and the periodic synchronizations between agents. We now present the closed form of Q̂h

C(t). Consider the contraction
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zhC(τ) = (xhC(τ),ahC(τ)) and the map Φ̂h
C(t) : Rd → RtnC such that for any θ ∈ Rd,

Φh
C(t)θ ,

[
(ΦC(zhC(1))>θ)>, ..., (Φ(zhC(t))>θ)>

]>
.

Now, consider Λh
C(t) = Φh

C(sCt )>Φh
C(sCt ) + λId ∈ Rd×d, and Uh

C(t) =
∑sCt
τ=1 ΦC(zhC(τ))yhC(τ). Then, we have by a

multi-task concentration (see Appendix B of Chowdhury and Gopalan (2020)),

Q̂h
C(t)(x,a) = ΦC(x,a)>Λh

C(t)−1Uh
C(t).

The algorithm is presented in Algorithm 1. The algorithm is essentially learning k multi-agent policies by solving a
vector-valued regression, one for each clique in the covering C, such that the group of agents in each clique can learn the
approximate clique-based MG (ref. Assumption 2). Since these approximate games themselves are bounded close to the
true Markov game (by clique-dominance), this ensures that the agents incur low regret. We next present an analysis of
communication cost.

Communication. Note that within a clique, the common state xC is visible to all agents (Assumption 1), and hence
the agents only require communication of rewards within a clique. To limit rounds in which communication occurs, we
consider a synchronization criterion that is triggered whenever any agent in the clique explores a sufficiently novel part
of the environment. Specifically, whenever det(Λh

C(t)) ≥ S · det(Λh
C(sCt )), for any h ∈ [H] where S is a fixed constant

determined in advance, the agents synchronize their rewards within their correponding clique C. The synchronization can
be done in O(n) messages by designating one agent per clique as the SERVER to aggregate messages.

Lemma 3 (Communication complexity). Let the clique covering number be θ(G) and let nmax ≤ n denote the size
of the largest clique of G. If we use threshold S > 1, then the total number of episodes with communication γ ≤
dH · θ(G) · logS

(
1 + Tnmax

d )
)

+ θ(G) ·H . When S ≤ 1, γ = T .

D. Full Proofs
D.1. Proof of Proposition 1

We restate the Proposition for clarity.

Proposition 1. For the scalarized value function, the Bellman optimality conditions are given as, for all h ∈ [H],x ∈
S,a ∈ A for any fixed υ ∈ Υ,

Q?υ,h(x,a) = sυrh(x,a) + PhV ?υ,h(x,a), V ?υ,h(x) = max
a∈A

Q?υ,h(x,a), and V ?υ,H+1(x) = 0.

Proof. We prove the above result by reducing the scalarized MMDP to an equivalent MDP. Observe that for any fixed
υ ∈ Υ, the (vector-valued) rewards can be scalarized to a scalar reward. For any step h ∈ [H], for any fixed υ ∈ Υ,
consider the MDP with state space S = S1 × ...× Sn, action space A = A1 × ...×An and reward function r′h such that
for all (x,a) ∈ S ×A, r′h(x,a) = υ>rh(x,a). Therefore r′h(x,a) ∈ [0, 1] (since rh lies on the n−dimensional simplex).
Therefore, if the group of agents cooperate to optimize the scalarized reward (for any fixed scalarization parameter), the
optimal (joint) policy coincides with the optimal policy for the aforementioned MDP defined over the joint state and action
spaces. The optimal policy for the scalarized MDP is given by the greedy policy with respect to the following parameters:

Q?υ,h(x,a) = r′h(x,a) + PhV ?υ,h(x,a), V ?υ,h(x) = max
a∈A

Q?υ,h(x,a), and V ?υ,H+1(x) = 0. (3)

Replacing the reward function with the vector-valued reward in terms of υ provides us the result.

D.2. Proof of Theorem 1

We first restate the Theorem for clarity.

Theorem 1. For any Markov game with finite A and H , Π?
Υ ⊆ Π?. If Π? is convex, Π?

Υ = Π?.

Proof. First, we prove the forward direction, i.e., that Π?
Υ ⊆ Π?. The proof proceeds by contradiction. Assume that π?υ

does not lie in the Pareto frontier, then there exists a policy π′ ∈ Π such that Vπ′

1 (x) � V
π?υ
1 (x) for all x ∈ S and π 6= π?υ .
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Consider the final step H . Then, for any state x ∈ S, we have that if Vπ′

H (x) � V
π?υ
H (x), then,

rH(x,π′(x)) � rH(x,π?υ(x)) =⇒ sυrH(x,π′(x)) ≥ sυrH(x,π?υ(x)). (4)

However, this is only true with equality if π′(x) = π?υ(x) for all x ∈ S, as for any x ∈ S, π?υ,H(x) =
arg max[sυrH(x,a)] ≥ sυrH(x,a′) for any other a′ ∈ A. Therefore, we have that π′H(x) = π?υ,H(x) for each

x ∈ S, and that Vπ′

H (x) = V
π?υ
H (x). This implies that PHVπ′

H (x,a) = PHV
π?υ
H (x,a) for all x ∈ S and a ∈ A. Now, if

Vπ′

H−1(x) � V
π?υ
H−1(x), then we have that,

rH−1(x,π′H−1(x)) + Ex′∼PH(·|x,π′H−1(x))

[
Vπ′

H (x′)
]

� rH−1(x,π?υ(x)) + PHV
π?υ
H (x,π?υ(x))

=⇒ rH−1(x,π′H−1(x)) + Ex′∼PH(·|x,π′H−1(x))

[
V
π?υ
H (x′)

]
� rH−1(x,π?υ(x)) + PHV

π?υ
H (x,π?υ(x))

=⇒ sυ

(
rH−1(x,π′H−1(x)) + Ex′∼PH(·|x,π′H−1(x))

[
V
π?υ
H (x′)

])
≥ sυ

(
rH−1(x,π?υ(x)) + PHV

π?υ
H (x,π?υ(x))

)
=⇒ sυrH−1(x,π′H−1(x)) + Ex′∼PH(·|x,π′H−1(x))

[
V
π?υ
H (x′)

]
≥ sυrH−1(x,π?υ(x)) + PHV

π?υ
H (x,π?υ(x)).

This is true only if π′H−1(x) = π?υ,H(x) for each x ∈ S, as π?υ,H is the greedy policy with respect to sυrH−1(x,a) +

PHV
π?υ,H
H (x,a). Continuing this argument inductively for h = H − 2, H − 3, ..., 1 we obtain that Vπ′

1 (x) � V
π?υ
1 (x) for

each x ∈ S only if π′ = π?υ . This is a contradiction as we assumed that π′ 6= π?υ , and hence π?υ lies in Π?.

We now prove the other direction for convex Π?, i.e., that if Π? is convex, then Π? ⊆ Π?
Υ for Υ = ∆n. This proof

proceeds by contradiction as well. Let us assume that there exists a policy π in Π? that is not present in Π?
Υ. Therefore,

there does not exist any υ ∈ ∆n such that π maximizes the value function of the scalarized MDP. Alternatively stated, for
each υ ∈ Υ, there exists another policy π?υ ∈ Π?

Υ such that π?υ 6= π and it maximizes the scalarized value function V?
υ,1.

Now, observe that since π ∈ Π?, it must be that for all π′ ∈ Π, Vπ
1 � Vπ′

1 . Additionally, since Π? is convex and the
scalarization function υ>(·) is linear, each scalarization function sυ(·) for υ ∈ ∆n is convex over Π?. Therefore, each
policy that maximizes the scalarized value function corresponding to any υ is a global optimum in Π?.

Now, consider the scalarization υ? where [υ?]i =
[Vπ

1 ]i
‖Vπ

1 ‖1
∈ ∆n. Now, by our assumption, there must exist an alternative

policy π′ 6= π in Π?
Υ, such that (by the convexity of scalarization), υ>? (Vπ′

1 − Vπ
1 ) ≤ 0. This implies that [Vπ

1 ]2i ≤
[Vπ′

1 ]i[V
π
1 ]i =⇒ [Vπ′

1 ]i ≥ [Vπ
1 ]i =⇒ Vπ′

1 � Vπ
1 . This is a contradiction as π is Pareto-optimal, and hence

π ∈ Π?
Υ.

D.3. Proof of Proposition 2

We first restate Proposition 2 for clarity.

Proposition 2. For any scalarization s that is Lipschitz and bounded Υ, we have that RB(T ) ≤ 1
TRC(T ) + o(1).

Proof. We will follow the approach in (Paria et al., 2020) (Appendix B.3). Recall that Υ is a bounded subset of Rn. Now,
we have that since sυ(·) = υ>(·), we have that sυ is Lipschitz with constant n with respect to the `1−norm, i.e., for any
y ∈ Rn,

|sυ(y)− sυ′(y)| ≤ n‖υ − υ′‖1. (5)

Now, consider the Wasserstein distance conditioned on the historyH between the sampling distribution pΥ on Υ and the
empirical distribution p̂Υ corresponding to {υt}Tt=1,

W1(pΥ, p̂Υ) = inf
q
{Eq‖X − Y ‖1, q(X) = pΥ, q(Y ) = p̂Υ} , (6)
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where q is a joint distribution on the RVs X,Y with marginal distributions equal to pΥ and p̂Υ. We therefore have for some
randomly drawn samples υ1,υ2, ...,υT and for any arbitrary sequence of (joint) policies Π̂T = {π1, ...,πT }, for any state
x ∈ S,

1

T

T∑
t=1

max
x∈S

[
V πtυt,1(x)− Eυ∈Υ

[
max
π∈Π̂T

V πυ,1(x)

]]
(7)

≤ 1

T

T∑
t=1

max
x∈S

[
V πtυt,1(x)− Eυ∈Υ

[
max
π∈Π̂T

V πυ,1(x)

]]
(8)

≤ Eq(X,Y )

[
max
x∈S

[
max
π∈Π̂T

V πX,1(x)− max
π∈Π̂T

V πY,1(x)

]]
(9)

≤ n · Eq(X,Y ) [‖X − Y ‖1] . (10)

Taking an expectation with respect toH = {υ1, ..,υT }, we have,

RB(T )− 1

T
RC(T ) (11)

= Eυ∈Υ

[
max
x∈S

[
V ?υ,1(x)− max

π∈Π̂T

V πυ,1(x)

]]
− EH

[
1

T

T∑
t=1

max
x∈S

[
V ?υt,1(x)− V πtυt,1(x)

]]
(12)

= EH

[
1

T

T∑
t=1

max
x∈S

[
V ?υt,1(x)− max

π∈Π̂T

V πυt,1(x)

]]
− EH

[
1

T

T∑
t=1

max
x∈S

[
V ?υt,1(x)− V πtυt,1(x)

]]
(13)

≤ EH

[
1

T

T∑
t=1

max
x∈S

[
V πtυt,1(x)− Eυ∈Υ

[
max
π∈Π̂T

V πυ,1(x)

]]]
(14)

≤ n · Eq(X,Y ) [‖X − Y ‖1] . (15)

The penultimate inequality follows from max being a contraction mapping in bounded domains, and the final inequality
follows from the previous analysis. To complete the proof, we first take an infimum over q and observe that the subsequent
RHS converges at a rate of Õ(T−

1
n ) under mild regulatory conditions, as shown by Canas and Rosasco (2012).

D.4. Proof of Lemma 2

Follows from Lemma 11.

D.5. Proof of Theorem 2

The proof for this result is to essentially solve the approximate scalarized MDP for each clique We first present a vector-valued
concentration result.

Lemma 4. Select any clique C in a clique covering Ĉ such that |C| = M . For any m ∈ [M ], h ∈ [H] and t ∈ [T ], let kt
denote the episode after which the last local synchronization has taken place, and ShC(t) and Λh

C(t) be defined as follows.

ShC(t) =

kt∑
τ=1

ΦC(xhC(τ),ahC(τ))
[
vtυ,h+1(xh+1

C (τ))− (P̃Ch vtυ,h+1)(xhC(τ),ahC(τ))
]
,

Λh
C(t) = λId + (Φh

C(kt))
>(Φh

C(kt)).

Where vtυ,h+1(x) = 1M · V tυ,h+1(x) ∀ x ∈ SC , 1M denotes the all-ones vector in RM , and Cβ is the constant such that
βhC(t) = Cβ · dH

√
log(TMH). Then, there exists a constant B such that with probability at least 1− δ,

sup
υC∈ΥC

∥∥ShC(t)
∥∥

(Λth)−1 ≤ B · dH

√
2 log

(
(Cβ + 2)dMTH

δ′

)
.
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Proof. The proof is done in two steps. The first step is to bound the deviations in S for any fixed function V by a martingale
concentration. The second step is to bound the resulting concentration over all functions V by a covering argument. Finally,
we select appropriate constants to provide the form of the result required.

Step 1. Recall that ShC(t) =
∑kt
τ=1 ΦC(zhC(τ))[V tυ,h+1(xh+1

C (τ)) − (P̃Ch V tυ,h+1)(zhC(τ))], where vtυ,h+1 is the vector
with each entry being V tυ,h+1. We have that V tυ,h+1(xh+1

C (τ)) − (P̃Ch V tυ,h+1)(zhC(τ)) = vtυ,h+1 − P̃Ch vtυ,h+1. Consider
the following distance metric distΥC

,

distΥC
(v,v′) = sup

x∈SC ,υ∈ΥC

‖v(x)− v(x′)‖1 . (16)

Let VΥC
be the family of all vector-valued UCB value functions that can be produced by the algorithm on clique C, and now

let Nε be an ε−covering of VΥC
under distΥC

, i.e., for every v ∈ VΥ, there exists v′ ∈ Nε such that distΥC
(v,v′) ≤ ε.

Now, here again, we adopt a similar strategy as the independent case. To bound the RHS, we decompose ShC(t) in terms of
the covering described earlier. We know that sinceNε is an ε−covering of VΥC

, there exists a v′ ∈ Nε and ∆ = vtυ,h+1−v′
such that,

ShC(t) =

kt∑
τ=1

ΦC(zhC(τ))
[
v′(xh+1

C (τ))− P̃Ch v′(zhC(τ))
]

+

kt∑
τ=1

ΦC(zhC(τ))
[
∆(xh+1

C (τ))− P̃Ch∆(zhC(τ))
]
.

Now, observe that by the definition of the covering, we have that ‖∆‖1 ≤ ε. Therefore, we have that ‖∆(x)‖(ΛhC(t))−1 ≤

ε/
√
λ, and

∥∥∥P̃Ch∆(z)
∥∥∥

(ΛhC(t))−1
≤ ε/
√
λ for all z ∈ Z,x ∈ S, h ∈ [H]. Therefore, since ‖ΦC(z)‖2 ≤

√
M ,

∥∥ShC(t)
∥∥2

(ΛhC(t))−1 ≤ 2

∥∥∥∥∥
kt∑
τ=1

ΦC(zhC(τ))
[
v′(xh+1

C (τ))− P̃Ch v′(zhC(τ))
]∥∥∥∥∥

(ΛhC(t))−1

+

∥∥∥∥∥
kt∑
τ=1

Φτ
C ε̄τ

∥∥∥∥∥
(ΛhC(t))−1

+
8Mt2ε2

λ
.

Here ε̄τ denotes the maximum misspecification incurred from observing P̃hC instead of the true Ph. By a standard argument
from misspecified bandits (see, e.g., (Ghosh et al., 2017)), using the fact that ΦC has maximum norm

√
M and the

misspecification is bounded by 2ε(k), we can bound the second term by ε(k) ·
√
dtM log

(
det(ΛhC(t))

λId

)
. To bound the first

term on the RHS, we consider the substitution εtτ,h = v′(xh+1
C (τ))− P̃Ch v′(zτh). To bound the first term on the RHS, we

consider the filtration {Fτ}∞τ=0 where F0 is empty, and Fτ = σ
({⋃(

xih+1,ΦC(zih)
)}
i≤τ

)
, and σ denotes the σ−algebra

generated by a finite set. Then, we have that,∥∥∥∥∥
kt∑
τ=1

ΦC(zhC(τ))
[
v′(xh+1

C (τ))− P̃Ch v′(zhC(τ))
]∥∥∥∥∥

(ΛhC(t))−1

=

∥∥∥∥∥
kt∑
τ=1

ΦC(zhC(τ))
[
v′(xh+1

C (τ))− E
[
v′(xh+1

C (τ))|Fτ−1

]]∥∥∥∥∥
(ΛhC(t))−1

=

∥∥∥∥∥
kt∑
τ=1

ΦC(zhC(τ))εtτ,h

∥∥∥∥∥
(ΛhC(t))−1

.

Note that for each εtτ,h, each entry is bounded by 2H , and therefore we have that the vector εtτ,h is H−sub-Gaussian. Then,
applying Lemma 14, we have that,∥∥∥∥∥

kt∑
τ=1

ΦC(zhC(τ))εtτ,h

∥∥∥∥∥
(ΛhC(t))−1

≤ H2 log

(
det (Λt

h)

det (λId) δ2

)
≤ H2 log

(
det
(
Λ̄t
h

)
det (λId) δ2

)
. (17)

Replacing this result for each v ∈ Nε, we have by a union bound over each t ∈ [T ], h ∈ [H], we have with probability at
least 1− δ, simultaneously for each t ∈ [T ], h ∈ [H],

sup
υt∈Υ,v∈VΥ

∥∥ShC(t)
∥∥

(ΛhC(t))−1 ≤ 2H

√√√√log

(
det
(
Λ̄t
h

)
det (λId)

)
+ log

(
HT |Nε|

δ

)
+

2Mt2ε2

H2λ
(18)
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≤ 2H

√
d log

(
Mt+ λ

λ

)
+ log

(
|Nε|
δ

)
+ log(HT ) +

2Mt2ε2

H2λ
. (19)

The last step follows once again by first noticing that ‖ΦC(·)‖ ≤
√
M and then applying an AM-GM inequality, and then

using the determinant-trace inequality.

Step 2. Here Nε is an ε−covering of the function class VΥC
for any h ∈ [H],m ∈ [M ] or t ∈ [T ] under the distance

function distΥC
(v,v′) = supx∈S,υ∈Υ ‖v(x)− v(x′)‖1. To bound this quantity by the appropriate covering number, we

first observe that for any V ∈ VΥC
, we have that the policy weights are bounded as 2HM

√
dT/λ (Lemma 12). Therefore,

by Lemma 10 we have for any constant B such that βth ≤ B,

log (Nε) ≤ d · log

(
1 +

8HM3

ε

√
dT

λ

)
+ d2 log

(
1 +

8Md1/2B2

λε2

)
. (20)

Recall that we select the hyperparameters λ = 1 and β = O(dH
√

log(TMH), and to balance the terms in β̄hC(t) we select
ε = ε? = dH/

√
MT 2. Finally, we obtain that for some absolute constant Cβ , by replacing the above values,

log (Nε) ≤ d · log

(
1 +

8M7/2T 3/2

d1/2

)
+ d2 log

(
1 + 8Cβd

1/2MT 2 log(TMH)
)
. (21)

Therefore, for some absolute constant C ′ independent of M,T,H, d and Cβ , we have,

log |Nε| ≤ C ′d2 log (Cβ · dMT log(TMH)) . (22)

Replacing this result in the result from Step 1, we have that with probability at least 1 − δ′/2 for all t ∈ [T ], h ∈ [H]
simultaneously,

∥∥ShC(t)
∥∥2

(ΛhC(t))−1 ≤ 2H

(
(d+ 2 + ε(k)dMT ) log

MT + λ

λ
+ 2 log

(
1

δ′

)

+ C ′d2 log (Cβ · dMT log(TMH)) + 2 + 4 log(TH)

)
.

This implies that there exists an absolute constant B independent of M,T,H, d and Cβ , such that, with probability at least
1− δ′/2 for all t ∈ [T ], h ∈ [H],υC ∈ ΥC simultaneously,

∥∥ShC(t)
∥∥

(Λth)−1 ≤ B · (dH + ε(k)H
√
dMT )

√
2 log

(
(Cβ + 2)dMTH

δ′

)
. (23)

Next, we present the key result for cooperative value iteration, which demonstrates that for any agent the estimatedQ−values
have bounded error for any policy π.
Lemma 5. Fix a clique C ∈ Ĉ such that |C| = M . For each C, there exists an absolute constant cβ such that for
βhC(t) = cβ · (dH + ε(k) ·

√
dtM)

√
log(2dMHt/δ′) for any policy π, there exists a constant C ′β such that for each

x ∈ S, a ∈ A we have for all m ∈ C, t ∈ [T ], h ∈ [H] simultaneously, with probability at least 1− δ′/2,∣∣〈ΦC(xC ,aC),wt
m,h −wπ

h〉
∣∣ ≤ Ph(V tm,h+1 − V πm,h+1)(x,a) + 4Hε(k)

+ C ′β · dH · ‖ΦC(zC)‖(ΛhC(t))−1 ·

√
2 log

(
dMTH

δ′

)
.

Proof. By the Bellman equation and Assumptions 1, 2, 3, we have that for any policy π, and υC ∈ ΥC , there exist weights
wπ
υC ,h

such that, for all z = {zC , z̄C} ∈ Z = S ×A,

υ>CΦC(zC)>wπ
υC ,h = υ>C r̃

C
h (zC) + P̃Ch V πυC ,h+1(z) = υ>C

(
r̃Ch (z) + 1M · P̃Ch V πυC ,h+1(z)

)
.
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We have,

wt
υC ,h −w

π
υC ,h (24)

= (Λh
C(t))−1

kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))[rh(xhC(τ),ahC(τ)) + 1M · V tυC ,h+1(xτ )]

]
−wπ

υC ,h (25)

= (Λh
C(t))−1

{
−λwπ

υC ,h +

kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))[1M · (V tυC ,h+1(x′τ )− P̃Ch V πυC ,h+1(xhC(τ),ahC(τ)))]

]}
. (26)

wt
υC ,h −w

π
υC ,h = −λ(Λh

C(t))−1wπ
υC ,h︸ ︷︷ ︸

v1

+ (Λh
C(t))−1

{
kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))[1M · (V tυC ,h+1(x′τ )− P̃Ch V tυC ,h+1(xhC(τ),ahC(τ)))]

]}
︸ ︷︷ ︸

v2

+ (Λh
C(t))−1

{
kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))[1M · (P̃Ch V tυC ,h+1 − P̃Ch V πυC ,h+1)(xhC(τ),ahC(τ))]

]}
︸ ︷︷ ︸

v3

+

+ (Λh
C(t))−1

{
kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))[1M · (PhV tυC ,h+1 − P̃Ch V tυC ,h+1)(xhC(τ),ahC(τ))]

]}
︸ ︷︷ ︸

v4

+ (Λh
C(t))−1

{
kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))[r[C](xh(t),ah(t))− r̃C(xhC(t),ahC(t))]

]}
︸ ︷︷ ︸

v5

. (27)

Now, we know that for any z ∈ Z for any policy π,

‖〈ΦC(z),v1〉‖2
≤ λ‖〈ΦC(z), (Λh

C(t))−1wπ
υC ,h〉‖2 ≤ λ · ‖w

π
υC ,h‖‖ΦC(z)‖(ΛhC(t))−1 ≤ 2HMλ

√
d · ‖ΦC(z)‖(ΛhC(t))−1

Here the last inequality follows from Lemma 11. For the second term, we have by Lemma 4 that there exists an absolute
constant Cβ , independent of M,T,H, d such that, with probability at least 1 − δ′/2 for all t ∈ [T ], h ∈ [H],υC ∈ ΥC

simultaneously,

‖〈ΦC(z),v2〉‖2 ≤ ‖ΦC(z)‖(ΛhC(t))−1 · Cβ · dH ·

√
2 log

(
dMTH

δ′

)
. (28)

For the third term, note that,

〈ΦC(x,a),v3〉 (29)

=

〈
ΦC(z), (Λt

h)−1

{
kt∑
τ=1

ΦC(xhC(τ),ahC(τ))[1M · (PhV tυC ,h+1 − PhV πυC ,h+1)(xhC(τ),ahC(τ))]

}〉
(30)

=

〈
ΦC(z), (Λt

h)−1

{
kt∑
τ=1

ΦC(xhC(τ),ahC(τ))ΦC(xhC(τ),ahC(τ))>
∫

(V tυC ,h+1 − V πυC ,h+1)(x′)dµh(x′)

}〉
(31)

=

〈
ΦC(z), (Λt

h)−1

{
kt∑
τ=1

ΦC(xhC(τ),ahC(τ))ΦC(xhC(τ),ahC(τ))>
∫

(V tυC ,h+1 − V πυC ,h+1)(x′)dµh(x′)

}〉
(32)
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=

〈
ΦC(z),

∫
(V tυC ,h+1 − V πυC ,h+1)(x′)dµh(x′)

〉
− λ

〈
ΦC(z), (Λt

h)−1

∫
(V tυC ,h+1 − V πυC ,h+1)(x′)dµh(x′)

〉
(33)

=

∫
(V tυC ,h+1 − V πυC ,h+1)(x′) 〈ΦC(z),µh(x′)〉 − λ

〈
ΦC(z), (Λt

h)−1

∫
(V tυC ,h+1 − V πυC ,h+1)(x′)dµh(x′)

〉
(34)

= 1M ·
(
P̃Ch (V tυC ,h+1 − V πυC ,h+1)(x,a)

)
− λ

〈
ΦC(z), (Λt

h)−1

∫
(V tυC ,h+1 − V πυC ,h+1)(x′)dµh(x′)

〉
(35)

≤ 1M ·
(
P̃Ch (V tυC ,h+1 − V πυC ,h+1)(x,a) + 2H

√
dλ‖ΦC(x,a)‖(ΛhC(t))−1

)
. (36)

For the last two terms, we can bound them by a similar argument of misspecification as Lemma 4. We can bound both terms
by 1M ·

(
ε(k) ·H

√
dMT‖ΦC(x,a)‖(ΛhC(t))−1

)
. Putting it all together, we have that since 〈ΦC(x,a),wt

υC ,h
−wπ

υC ,h
〉 =

〈ΦC(x,a),v1 + v2 + v3 + v4 + v5〉, there exists an absolute constant Cβ independent of M,T,H, d, such that, with
probability at least 1− δ′/2 for all t ∈ [T ], h ∈ [H],υC ∈ ΥC simultaneously,∣∣〈υ>CΦC(x,a),wt

υC ,h −w
π
υC ,h〉

∣∣ ≤ υ>C1M ·
(
Ph(V tυC ,h+1 − V πυC ,h+1)(x,a)

)
+ 4Hε(k)

+ ‖ΦC(x,a)‖(ΛhC(t))−1‖υC‖2

(
2H
√
dλ+ Cβ · dH ·

√
2 log

(
dMTH

δ′

)
+ 2HMλ

√
d+ 2Hε(k)

√
dMT

)
(37)

Since λ ≤ 1 and ‖υC‖2 ≤ 1, there exists a constant C ′β that we have the following for any (x, a) ∈ S ×A with probability
1− δ′/2 simultaneously for all h ∈ [H],υC ∈ ΥC , t ∈ [T ],∣∣〈υ>CΦC(x,a),wt

υC ,h −w
π
υC ,h〉

∣∣ ≤ Ph(V tυC ,h+1 − V πυC ,h+1)(x,a) + 4Hε(k)

+ C ′β ·
(
dH + ε(k)H

√
dMT

)
· ‖Φ(z)‖(ΛhC(t))−1 ·

√
2 log

(
dMTH

δ′

)
.

Lemma 6 (UCB in the Multiagent Setting). For each C ∈ Ĉ, with probability at least 1 − δ′/2, we have that for all
(xC ,aC , h, t,υC) ∈ SC ×AC × [H]× [T ]×ΥC ,

Qtυ,h(xC ,aC) ≥ Q?υ,h(xC ,aC)− 4H(H + 1− h)ε(k).

Proof. We prove this result by induction. First, for the last step H , note that the statement holds as QtυC ,H(xC ,aC) ≥
Q?υC ,H(xC ,aC)− 4Hε(k) for all υC . Recall that the value function at step H + 1 is zero. Therefore, by Lemma 5, we
have that, for any υC ∈ ΥC ,∣∣〈υ>CΦC(xC ,aC),wt

υC ,H〉 −Q
?
υC ,H(xC ,aC)

∣∣
≤ C ′β ·

(
dH + ε(k)H

√
dMT

)
· ‖ΦC(zC)‖(ΛhC(t))−1 ·

√
2 log

(
dMTH

δ′

)
+ 4Hε(k).

We have Q?υC ,H(xC ,aC) ≤ 〈υ>CΦC(xC ,aC),wt
υC ,H

〉 + C ′β ·
(
dH + ε(k)H

√
dMT

)
· ‖Φ(z)‖(ΛhC(t))−1 ·√

2 log
(
dMTH
δ′

)
= QtυC ,H . Now, for the inductive case, we have by Lemma 5 for any h ∈ [H],υC ∈ ΥC ,∣∣〈υ>CΦC(xC ,aC),wt

υC ,h −w
?
υC ,h〉 −

(
PhV ?υC ,h+1(xC ,aC)− PhV tυC ,h+1(xC ,aC)

)∣∣
≤ C ′β ·

(
dH + ε(k)H

√
dMT

)
· ‖Φ(z)‖(ΛhC(t))−1 ·

√
2 log

(
dMTH

δ′

)
.

By the inductive assumption we have QtυC ,h+1(xC ,aC) ≥ Q?υC ,h+1(xC ,aC) implying PhV ?υC ,h+1(xC ,aC) −
PhV tυC ,h+1(xC ,aC) ≥ 0. Substituting the appropriate Q value formulations we have,
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Q?υC ,h ≤ 〈υ
>
CΦC(xC ,aC),wt

υC ,h〉+ 4Hε(k)

+ C ′β ·
(
dH + ε(k)H

√
dMT

)
· ‖Φ(z)‖(ΛhC(t))−1 ·

√
2 log

(
dMTH

δ′

)
= QtυC ,h(xC ,aC).

Lemma 7 (Recursive Relation in Multiagent MDP Settings). Fix a clique C ∈ Ĉ of size M . For any υC ∈ ΥC , let
δtυC ,h = V tυC ,h(xhC(t))− V πtυC ,h(xhC(t)), and ξtυC ,h+1 = E

[
δtυC ,h|x

h
C(t),ahC(t)

]
− δtυC ,h. Then, with probability at least

1− α, for all (t, h) ∈ [T ]× [H] simultaneously,

δtυC ,h ≤ δ
t
υC ,h+1 + ξtυC ,h+1 + 4Hε(k)

+ 2
∥∥ΦC(xhC(t),ahC(t))

∥∥
(ΛhC(t))−1 · C ′β ·

(
dH + ε(k)H

√
dMT

)
·

√
2 log

(
dMTH

α

)
.

Proof. By Lemma 5, we have that for any (xC ,aC , h,υC , t) ∈ SC × AC × [H] ×ΥC × [T ] with probability at least
1− α/2,

QtυC ,h(xC ,aC)−QπtυC ,h(xC ,aC) ≤ Ph(V tυC ,h+1 − V
πt
υC ,h

)(xC ,aC) + 4Hε(k)

+ 2 ‖ΦC(xC ,aC)‖(ΛhC(t))−1 · Cβ ·
(
dH + ε(k)H

√
dMT

)
·

√
2 log

(
dMTH

α

)
.

Replacing the definition of δtυC ,h and V πtυC ,h finishes the proof.

Lemma 8. For each clique C ∈ Ĉ and each ξtυC ,h as defined earlier and any δ ∈ (0, 1), we have that with probability at
least 1− δ/2,

T∑
t=1

H∑
h=1

∑
C∈Ĉ

ξtυC ,h ≤

√
2H3T |Ĉ| log

(
2

α

)
. (38)

Proof. Observe that following the reasoning in Theorem 3.1 of Jin et al. (2020), we can see that {ξtυC ,h}h,t,C is a martingale
difference sequence (computation within each clique at any instant is independent of the current state of other cliques).
Furthermore, since |ξtυC ,h| ≤ H regardless of υC , which allows us to apply Azuma-Hoeffding inequality. We have, for any
t > 0,

P

 T∑
t=1

H∑
h=1

∑
C∈Ĉ

ξtυC ,h > t

 ≤ exp

(
− t2

2T |Ĉ|H2

)
.

Rearranging provides us the final result.

We are now ready to prove Theorem 2. We first restate the Theorem for completeness.

Theorem 2. Algorithm 1 when run on a game with n agents satisfying Assumptions 1, 2, 3 with error ε?, approximate clique
covering Ĉ, and κ · dH · θ(G) rounds of communication for some κ > 1, βhC(t) = O(H

√
d log(ntH) + ε?

√
dT ) ∀ C ∈ Ĉ

obtains, with probability at least 1− α, regret:

RC(T ) = Õ

(
θ(G) · d 3

2H2 ·max
{

1, (2T · nmax)
2
κ

}(√
T log

(
1

α

)
+ 2T · ε?

))
.

Where θ(G) denotes the clique covering number of G, and nmax is the size of the largest clique in Ĉ.
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Proof. We have by the definition of cumulative regret:

RC(T ) =

T∑
t=1

Eυt∼Υ

[
max
xt1∈S

[
V ?υt,1(xt1)− V πtυt,1(xt1)

]]
= Eυt∼Υ

[
T∑
t=1

max
xt1∈S

[
V ?υt,1(xt1)− V πtυt,1(xt1)

]]
. (39)

Our analysis focuses only on the term inside the expectation, which we will bound via terms that are independent of
υ1, ...,υT , bounding RC . We bound the cumulative regret incurred by each clique, summing over which gives us the
cumulative regret.

T∑
t=1

max
xt1∈S

[
V ?υt,1(xt1)− V πtυt,1(xt1)

]
≤
∑
C∈Ĉ

(
T∑
t=1

max
xC∈SC

[
V ?υt,C ,1(xC)− V πt,Cυt,C ,1

(xC)
])

.

We can bound the clique-wise regret for any C ∈ Ĉ of size M as follows.

T∑
t=1

max
xC∈SC

[
V ?υt,C ,1(xC)− V πt,Cυt,C ,1

(xC)
]
≤

T∑
t=1

max
xC∈SC

δtυt,C ,1 + 4HTε(k)

≤
T,H∑
t,h

ξtυt,C ,h + 2C ′β ·
(
dH + ε(k)H

√
dMT

)
·

√
2 log

(
dMTH

α

)T,H∑
t,h

∥∥ΦC(xhC(t),ahC(t))
∥∥

(ΛhC(t))−1

+ 4Hε(k).

Where the last inequality holds with probability at least 1−α/2, via Lemma 7 and Lemma 6. To bound the second summation,
we can use the technique in Theorem 4 of Abbasi-Yadkori et al. (2011). Assume that the last time synchronization of
rewards occured was at instant kT . We therefore have, by Lemma 12 of Abbasi-Yadkori et al. (2011), for any h ∈ [H]

T∑
t=1

∥∥ΦC(xhC(t),ahC(t))
∥∥

(ΛhC(t))−1 ≤
det(Λ̄h

C(t))

det(Λh
C(t))

T∑
t=1

∥∥ΦC(xhC(t),ahC(t))
∥∥

(Λ̄hC(t))−1

≤
√
S

T∑
t=1

∥∥ΦC(xhC(t),ahC(t))
∥∥

(Λ̄hC(t))−1

Here Λ̄h
C(t) =

∑T
t=1 ΦC(xhC(t),ahC(t))ΦC(xhC(t),ahC(t))> and the last inequality follows from the algorithms’ synchro-

nization condition. Replacing this result, we have that,

T∑
t=1

H∑
h=1

∥∥ΦC(xhC(t),ahC(t))
∥∥

(ΛhC(t))−1 ≤ 2
H∑
h=1

(
√
S

T∑
t=1

∥∥ΦC(xhC(t),ahC(t))
∥∥

(Λ̄hC(t))−1

)

≤ 2H

√
ST · d log

MT + λ

λ
.

Where the last inequality is an application of Lemma 13 and using the fact that ‖ΦC(·)‖2 ≤
√
M . Replacing this result, we

have that with probability at least 1− α/2, by a union bound over all cliques in Ĉ,

∑
C∈Ĉ

(
T∑
t=1

max
xC∈SC

[
V ?υt,C ,1(xC)− V πt,Cυt,C ,1

(xC)
])

≤
T,H,Ĉ∑
t,h,C

ξtυt,C ,h + 2C ′β ·H2
(
d+ ε(k)

√
dMT

)
·

√√√√2ST log

(
dMTH|Ĉ|

α

)
· d log

MT + λ

λ
+ 4HT |Ĉ|ε(k).

We can bound the second term via Lemma 8. Taking expectation of the RHS over υ1, ...,υT and rewriting S in terms of κ
via Lemma 3 gives us the final result (the Õ notation hides polylogarithmic factors).
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D.6. Proof of Lemma 3

Proof. Let the total rounds of communication triggered by the threshold condition in any step h ∈ [H] in any clique C of
size M be given by nh(C). Then, we have, by the communication criterion,

Snh(C) <
det
(
Λh
C(t)

)
det (λId)

≤ (1 +MT/d)d. (40)

Where the last inequality follows from Lemma 13 and the fact that ‖Φ‖ ≤
√
M ≤ √nmax. This gives us that nh(C) ≤

d logS (1 + nmaxT/d)) + 1. Furthermore, by noticing that γ ≤
∑
C∈Ĉ

∑H
h=1 nh(C), and that |Ĉ| ≤ 1.25 · θ(G), we have

the final result.

E. Auxiliary Results
E.1. Covering Number Bounds

Lemma 9 (Covering Number of the Euclidean Ball). For any ε > 0, the ε−covering number of the Euclidean ball in Rd
with radius R > 0 is less than (1 + 2R/ε)d.

Lemma 10 (Covering number for Markov game UCB-style functions). Let V denote a class of functions mapping from S
to R with the following parameteric form

vυ(·) = 1M ·min

{
max
a∈A

[
〈υ,v(·,a)〉+ β

∥∥ΦC(·,a)>Λ−1ΦC(·,a)
∥∥] , H} ,v(·,a) = w>ΦC(·,a)

where the parameters (w, β,Λ) are such thatw ∈ Rd, ‖w‖2 ≤ L, β ∈ (0, B], ‖ΦC(x,a)‖ ≤
√
M ∀(x,a) ∈ S ×A, and

the minimum eigenvalue of Λ satisfies λmin(Λ) ≥ λ. Let Nε be the ε−covering number of V with respect to the distance
dist(v,v′) = supx∈S,υ∈Υ |vυ(x)− v′υ(x)|. Then,

log (Nε) ≤ d · log

(
1 +

4LM2

ε

)
+ d2 log

(
1 +

8Md1/2B2

λε2

)
.

Proof. We have that for two matrices A1 = β2Λ−1
1 ,A2 = β2Λ−1

2 and weight matrices w1,w2 ∈ Rd,

sup
υ∈Υ,x∈S

|vυ(x)− v′υ(x)|1 (41)

= M · sup
x∈S,υ∈Υ

∣∣υ>v(x)− υ>v′(x)
∣∣ (42)

≤M · sup
x∈S
|v(x)− v′(x)|1 (43)

≤M · sup
x∈S,a∈A

∣∣[w>1 ΦC(·,a) +
∥∥ΦC(·,a)>A1ΦC(·,a)

∥∥
2

]
−
[
w>2 ΦC(·,a) +

∥∥ΦC(·,a)>A2ΦC(·,a)
∥∥

2

]∣∣
1

(44)

≤M · sup
x∈S,a∈A

∣∣∣(w1 −w2)
>

ΦC(·,a) +
∥∥ΦC(·,a)>A1ΦC(·,a)

∥∥
2
−
∥∥ΦC(·,a)>A2ΦC(·,a)

∥∥
2

∣∣∣
1

(45)

≤M · sup
x∈S,a∈A

∣∣∣(w1 −w2)
>

ΦC(·,a)
∣∣∣
1

+M · sup
x∈S,a∈A

∣∣∥∥ΦC(·,a)>A1ΦC(·,a)
∥∥

2
−
∥∥ΦC(·,a)>A2ΦC(·,a)

∥∥
2

∣∣
(46)

≤M · sup
x∈S,a∈A

∣∣∣(w1 −w2)
>

ΦC(·,a)
∣∣∣
1

+M · sup
x∈S,a∈A

∥∥ΦC(·,a)> (A1 −A2) ΦC(·,a)
∥∥

2
(47)

≤M3/2 · sup
Φ:‖Φ‖≤

√
M

[∥∥∥(w1 −w2)
>

Φ
∥∥∥

2

]
+M · sup

Φ:‖Φ‖≤
√
M

∥∥Φ> (A1 −A2) Φ
∥∥

2
(48)

≤M2 · ‖w1 −w2‖2 +M2 ‖A1 −A2‖2 (49)

≤M2 · ‖w1 −w2‖2 +M2 ‖A1 −A2‖F (50)
(51)
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Now, let Cw be an ε/(2M2) cover of
{
w ∈ Rd

∣∣ ‖w‖2 ≤ L} with respect to the Frobenius-norm, and CA be an ε2/4 cover
of
{
A ∈ Rd×d|‖A‖F ≤ (M2d)1/2B2λ−1

}
with respect to the Frobenius norm. By Lemma 9 we have,

|Cw| ≤ (1 + 4LM2/ε)d, |CA| ≤ (1 + 8(M2d)1/2B2/(λε2))d
2

. (52)

Therefore, we can select, for any vυ(·), corresponding weight w ∈ Cw, and matrix A ∈ CA. Therefore, Nε ≤ |CA| · |Cw|.
This gives us,

log (Nε) ≤ d · log

(
1 +

4LM2

ε

)
+ d2 log

(
1 +

8Md1/2B2

λε2

)
. (53)

Lemma 11 (Linearity of weights in Markov game). In a game with n agents satisfying Assumptions 1, 2, 3, for any
policy π, clique C ∈ Ĉ of size M , and υC ∈ ΥC , there exists weights {wπ

υC ,h
}h∈[H] such that |QπυC ,h(xC ,aC) −

υ>CΦC(xC ,aC)>wπ
υC ,h
| ≤ 2Hε(k) for all (xC ,aC , h) ∈ SC ×AC × [H], where ‖wπ

υC ,h
‖2 ≤ 2H

√
d.

Proof. By the Bellman equation and Proposition 1, we have that for any MDP corresponding to the scalarization parameter
υC ∈ ΥC and any policy π, state x ∈ SC , joint action a ∈ AC ,

QπυC ,h(xC ,aC) (54)

≤ υ>C r̃Ch (xC ,aC) + P̃Ch V πυC ,h+1(xC ,aC) + 2Hε(k) (55)

≤ υ>C
(
r̃Ch (xC ,aC) + 1M · P̃Ch V πυC ,h+1(xC ,aC)

)
+ 2Hε(k) (56)

≤ υ>C
(

ΦC(xC ,aC)>
[
θh
0d

]
+

∫
V πυC ,h+1(x′C)ΦC(xC ,aC)>

[
0d

dµh(x′C)

]
dx′C

)
+ 2Hε(k) (57)

≤ υ>CΦC(xC ,aC)>wπ
υC ,h + 2Hε(k). (58)

The first inequality follows from Assumption 2. Herewπ
υC ,h

=

[
θh∫

V πυC ,h+1(x′C)dµ(x′C)dx′C

]
. Therefore, since ‖θh‖ ≤

√
d and ‖

∫
V πυC ,h+1(x′C)dµ(x′C)‖ ≤ H

√
d, the result follows.

Lemma 12 (Bound on Weights). For any C ∈ Ĉ, |C| = M, t ∈ [T ], h ∈ [H],υ ∈ Υ, the weights wt
υC ,h

satisfy

‖wt
υC ,h‖2 ≤ 2HM

√
dt/λ.

Proof. For any vector v ∈ Rd|‖v‖ = 1,

∣∣v>wt
υ,h

∣∣ =

∣∣∣∣∣v> (Λt
h

)−1

(
kt∑
τ=1

[
ΦC(xhC(τ),ahC(τ))

[
rh(xhC(τ),ahC(τ)) + max

a∈A
Qυ,h+1(x′τ ,a)

]])∣∣∣∣∣ (59)

≤

√√√√kt ·
kt∑
τ=1

(
v> (Λt

h)
−1

[
ΦC(xhC(τ),ahC(τ))

[
rh(xhC(τ),ahC(τ)) + max

a∈A
Qυ,h+1(x′τ ,a)

]])2

(60)

≤ HM

√√√√kt ·
kt∑
τ=1

∥∥∥v> (Λt
h)
−1

ΦC(xhC(τ),ahC(τ))
∥∥∥2

2
(61)

≤ 2HM

√√√√kt ·
kt∑
τ=1

‖v‖2
(ΛhC(t))

−1‖ΦC(xhC(τ),ahC(τ))‖2
(ΛhC(t))

−1 (62)

≤ 2HM‖v‖
√
dkt/λ ≤ 2HM

√
dt/λ. (63)

The penultimate inequality follows from Lemma 13 and the final inequality follows from the fact that kt ≤ t. The remainder
of the proof follows from the fact that for any vector w, ‖w‖ = maxv:‖v‖=1 |v>w|.
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Lemma 13 (Elliptical Potential, Lemma 3 of Abbasi-Yadkori et al. (2011)). Let x1,x2, ...,xn ∈ Rd be vectors such that
‖x‖2 ≤ L. Then, for any positive definite matrix U0 ∈ Rd×d, define Ut := Ut−1 + xtx

>
t for all t. Then, for any ν > 1,

n∑
t=1

‖xt‖2U−1
t−1

≤ 2d logν

(
tr(U0) + nL2

ddet1/d(U0)

)
.

E.2. Multi-task concentration bound (Chowdhury and Gopalan, 2020)

We assume the multi-agent kernel Γ to be continuous relative to the operator norm on L(Rn), the space of bounded
linear operators from Rn to itself (for some n > 0). Then the RKHSHΓ(Xn) associated with the kernel Γ is a subspace
of the space of continuous functions from Xn to Rn, and hence, Γ is a Mercer kernel. Let µ be a measure on the
(compact) set Xn. Since Γ is a Mercer kernel on X and supX∈Xn‖Γ(X,X)‖ <∞, the RKHSHΓ(Xn) is a subspace of
L2(Xn, µ;Rn), the Banach space of measurable functions g : Xn → Rn such that

∫
Xn‖g(X)‖2dµ(X) <∞, with norm

‖g‖L2 =
(∫
Xn‖g(X)‖2dµ(X).

)1/2
. Since Γ(X,X) ∈ L(Rn) is a compact operator, by the Mercer theorem

We can therefore define a feature map Φ : XM → L(Rn, `2) of the multi-agent kernel Γ by

Φ(X)>y =
(√
ν1ψ1(x1)>y,

√
ν2ψ2(x2)>y, ...,

√
νMψM (xM )>y

)
, ∀X ∈ XM ,y ∈ Rm. (64)

We then obtain F (X) = Φ(X)>θ? and Γ(X,X′) = Φ(X)>Φ(X′) ∀X,X′ ∈ XM .

Define St =
∑t
τ=1 Φ(Xτ )>ετ , where ε1, ..., εt are the noise vectors in RM . Now consider Ft−1, the σ-algebra generated

by the random variables {Xτ , ετ}t−1
τ=1 and Xt. We can see that St is Ft-measurable, and additionally, E[St|Ft−1] = St−1.

Therefore, {St}t>1 is a martingale with outputs in `2 space. Following (Chowdhury and Gopalan, 2020), consider now the
map ΦXt : `2 → RMt:

ΦXtθ =
[(

Φ(X1)>θ
)>
,
(
Φ(X1)>θ

)>
, ...,

(
Φ(Xt)

>θ
)>]>

, ∀ θ ∈ `2. (65)

Additionally, denote Vt := Φ>XtΦXt be a map from `2 to itself, with I being the identity operator in `2. We have the
following result from (Chowdhury and Gopalan, 2020) that provides us with a self-normalized martingale bound.

Lemma 14 (Lemma 3 of (Chowdhury and Gopalan, 2020)). Let the noise vectors {εt}t>1 be σ-sub-Gaussian. Then, for
any η > 0 and δ ∈ (0, 1], with probability at least 1− δ, the following holds uniformly over all t > 1:

‖St‖(Vt+ηI)
−1 6 σ

√
2 log(1/δ) + log det(I + η−1Vt).

Alternatively stated, we have again that with probability at least 1− δ, the following holds uniformly over all t > 1:

‖Et‖2((Kt+ηI)
−1+I)

−1 6 2σ2 log

[√
det(I(1 + η) + Kt)

δ

]
.

F. Lower Bound
The central observation in this setting is that under the clique-dominance assumption (Assumption 2), it is impossible to
obtain regret that avoids the θ(G) factor. Rather than provide a formal proof, we can provide a straightforward outline
to obtain the guarantee. For any influence graph G, we can construct a minimal clique covering C? and we can construct
a unique Markov game for each clique in C?. For any clique C we construct a Markov game MGC such that the reward
functions for each agent in C are identical functions of the clique state-action (let us call it rch for any agent c and step h),
i.e., rch = rCh ∀c ∈ C) and the marginal transition probability is only a function of the clique state-action as well. Now,
observe that under this criterion, the scalarized reward is independent of the parameter υ and is always rCh and hence one
can find the regret in Π?

Υ for the MG by simply choosing an arbitrary value of υ and solving the scalarized MDP. Since we
are considering the tabular setting, for any clique C, we can set dC = |SC | × |AC |. Note that for any MDP we have that the
regret obeys Ω(H2

√
|S||A|T ), which gives us the regret within a clique as Ω(H2

√
dCT ). Summing over the clique cover

we obtain the lower bound for RC .
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G. Experiments
We run experiments on a basic cooperative multi-agent RL grid-world environment, GridExplore described as follows.
In the first game, GridExplore, the agents are randomly placed in a grid of blank cells. Agents explore the grid by
observing cells which are denoted as ‘explored’. Each agent obtains a reward for the number of cells they have explored.
Each agent has the following actions {L, R, U, D, LU, LD, RU, RD} and there are a total of n = 8 agents. The
visibility of other agents is examined under 3 settings: (a) each agent can see all others (full), (b) each agent can only observe
a random half of agents (partial), and (c) each agent can only observe their actions (self). The board is of size 10x10 and
pΥ is the uniform distribution over ∆n. The game runs in episodes of length 200 and T = 5× 106.

For each agent c in clique C, the feature φc is given as the combined action of all visible agents (of dimensionality 8n′) and
ψC is the joint state of all agents in C (of dimensionality 100n′) where n′ = 1 in the self setting, n′ = bn/2c+ 1 in the
partial setting, n′ = n in the full setting. For our algorithm, we select ε = 0.5× 10−6.

We present the average reward (over all agents) over the last 1000 episodes for 100 repeated trials in the table below. As
baselines we consider a group of n individual Q-learning on the agents personal state space Q-ind, n individual DQN agents
using a custom CNN with 3 hidden layers: 2 convolutional layers with filter size 4 and 32 filters each, and 1 fully-connected
layer of dimensionality 256; and the LSVI-UCB algorithm proposed by Jin et al. (2020) on the same input space as ours.

Baseline Full Partial Self
Q-ind 20.885± 2.833 16.294± 4.239 13.202± 4.887
DQN 35.932± 3.094 27.587± 5.059 18.478± 2.093
LSVI-ind 17.439± 2.192 9.847± 4.292 7.340± 3.778
MultOVI 31.294± 3.776 22.119± 5.882 15.395± 3.098

Table 1. Results on GridExplore environment.

We observe that our algorithm comfortably outperforms the individual baselines Q-ind and LSVI in all three settings,
however, DQN outperforms our algorithm, presumably owing to better feature representations learnt from the deep neural
networks. Future work may consider approaches to combine deep neural network based approaches with the multi-agent
UCB algorithm as ours.


