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Abstract
This work studies the statistical limits of uniform
convergence for offline policy evaluation (OPE)
problems with model-based methods (for episodic
MDP) and provides a unified framework towards
optimal learning for several well-motivated of-
fline tasks. We establish an ⌦(H2S/dm✏2) lower
bound (over model-based family) for the global
uniform OPE and our main result establishes an
upper bound of Õ(H2/dm✏2) for the local uni-
form convergence. The highlight in achieving
the optimal rate Õ(H2/dm✏2) is our design of
singleton absorbing MDP, which is a new sharp
analysis tool that works with the model-based ap-
proach. We generalize such a model-based frame-
work to the new settings: offline task-agnostic and
the offline reward-free with optimal complexity
Õ(H2 log(K)/dm✏2) (K is the number of tasks)
and Õ(H2S/dm✏2) respectively. These results
provide a unified solution for simultaneously solv-
ing different offline RL problems.

1. Introduction
Offline reinforcement learning is widely applicable in ap-
plications where online exploration is demanding but his-
torical data are plentiful. Examples includes medicine (Liu
et al., 2017) (safety concerns limit the applicability of un-
proven treatments but electronic records are abundant) and
autonomous driving (Codevilla et al., 2018) (building infras-
tructure for testing new policy is expensive while collecting
data from current setting is almost free).

Yin et al. (2021a) initiates the studies for offline RL from the
new perspective of uniform convergence in OPE (uniform
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OPE for short) which unifies OPE and offline learning tasks.
Generally speaking, given a policy class ⇧ and offline data
with n episodes, uniform OPE seeks to coming up with OPE
estimators bV ⇡

1 and bQ⇡

1 satisfy sup
⇡2⇧ || bQ⇡

1 �Q⇡

1 ||1 < ✏.
The task is to achieve this with the optimal episode com-
plexity: the “minimal” number of episodes n needed as a
function of ✏, failure probability �, the parameters of the
MDP as well as the behavior policy µ in the minimax sense.

Uniform OPE to RL is analogous of uniform convergence
of empirical risk in statistical learning (Vapnik, 2013). In
supervised learning, it has been proven that almost all learn-
able problems are learned by an (asymptotic) empirical risk
minimizer (ERM) (Shalev-Shwartz et al., 2010). In offline
RL, the natural counterpart is the empirical optimal policy
b⇡? := argmax

⇡
bV ⇡

1 and with uniform OPE it further en-
sures b⇡? is a near-optimal policy for the offline learning via:

0  Q⇡
?

1 �Qb⇡?

1 = Q⇡
?

1 � bQ⇡
?

1 + bQ⇡
?

1 � bQb⇡?

1 + bQb⇡?

1 �Qb⇡?

1

 2 sup
⇡

|Q⇡

1 � bQ⇡

1 |.
(1)

On the policy evaluation side, there is often a need to evalu-
ate the performance of a data-dependent policy. Uniform
OPE suffices for this purpose since it will allow us to evalu-
ate policies selected by safe-policy improvements, proximal
policy optimization, UCB-style exploration-bonus as well
as any heuristic exploration criteria. In this paper, we study
the uniform OPE problem under the finite horizon stationary
MDPs and focus on the model-based approaches. Specif-
ically, we consider two representative class: global policy
class ⇧g (contains all (deterministic) policies) and local pol-
icy class ⇧l (contains policies near the empirical optimal
one, see Section 2.1).

1.1. Our contribution

Optimal local uniform OPE. We derive the Õ(H2/dm✏2)
optimal episode complexity for local uniform OPE (Theo-
rem 4.1) via the model-based method and this implies op-
timal offline learning with the same rate (Corollary 4.2);
this result strictly improves upon (Yin et al., 2021a)
(Õ(H3/dm✏2)) non-trivially through our new singleton-
absorbing MDP technique.

Information-theoretical characterization of the global
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uniform OPE. We characterize the statistical limit for the
global uniform convergence by proving a minimax lower
bound ⌦(H2S/dm✏2) (over all model-based approaches)
(Theorem 3.1). This result answers the question left by Yin
et al. (2021a) that the global uniform OPE is generically
harder than the local uniform OPE / offline learning.

Generalize to the new offline settings. Critically, our
model-based frameworks naturally generalize to the more
challenging settings like task-agnostic and reward-free set-
tings. In particular, we establish the Õ(H2 log(K)/dm✏2)
(Theorem 5.3) and Õ(H2S/dm✏2) (Theorem 5.4) complexi-
ties for offline task-agnostic learning and offline reward-free
learning. Both results are new and optimal.

Significance: Unifying different offline settings Beyond
the study of statistical limit in uniform OPE, this work solves
the sample optimality problems for the local uniform OPE,
offline task-agnostic and offline reward-free problems. If
we take a deeper look, the algorithmic frameworks utilized
are all based on the model-based empirical MDP construc-
tion and planning. Therefore, as long as we can analyze
such framework sharply (e.g. via novel absorbing-MDP
technique), then it is hopeful that our techniques can be
generalized to tackle more sophisticated settings. On the
other hand, things could be more tricky for online RL since
the exploration phases need to be specifically designed for
each settings and there may not be one general algorithmic
pattern that dominates. Our findings reveal the model-based
framework is fundamental for offline RL as it subsumes
settings like local uniform OPE, offline task-agnostic and
offline reward-free learning into identical learning pattern.

2. Problem setup
Episodic stationary reinforcement learning. A finite-
horizon Markov Decision Process (MDP) is denoted by
a tuple M = (S,A, P, r,H, d1), where S and A are fi-
nite state action spaces with S := |S|, A := |A|. A
stationary (time-invariant) transition kernel has the form
P : S ⇥ A ⇥ S 7! [0, 1] with P (s0|s, a) representing the
probability transition from state s, action a to next state s0.
Besides, r : S⇥A 7! R is the expected reward function and
given (s, a) which satisfies 0  r  1 and assumed known.
d1 is the initial state distribution and H is the horizon. At
time t, a policy ⇡ = (⇡1, ...,⇡H) assigns each state s 2 S
a probability distribution ⇡t(s) over actions. For a pol-
icy ⇡, a random trajectory s1, a1, r1, . . . , sH , aH , rH , sH+1

is generated as follows: s1 ⇠ d1, at ⇠ ⇡(·|st), rt =
r(st, at), st+1 ⇠ P (·|st, at), 8t 2 [H]. In particular, we
denote the average marginal state-action occupancy d⇡(s, a)

as: d⇡(s, a) := 1
H

P
H

t=1 P[st = s|s1 ⇠ d1,⇡] · ⇡t(a|s).

Offline setting. The offline RL assumes that episodes
D =

n⇣
s
(i)
t

, a
(i)
t

, r
(i)
t

, s
(i)
t+1

⌘o
t2[H]

i2[n]
are rolling from some be-

havior policy µ a priori. In particular, we do not assume the
knowledge of µ.

Model-based RL. To make the presentation precise, we
define the following:

Definition 2.1. Model-based RL: Solving RL problems (ei-
ther learning or evaluation) through learning / modeling
transition dynamic P .

The model-based approaches in general (e.g. Jaksch
et al. (2010); Ayoub et al. (2020); Kidambi et al. (2020))
follow the procedure of modeling the full MDP M =
(S,A, P, r,H, d1) instead of only the transition P . We (by
convention) assume the mean reward function is known and
the initial state distribution d1 will not affect the choice of
⇡?. Thus, Definition 2.1 suffices for our purposes.

2.1. Uniform convergence in offline RL
Recall the goal for uniform OPE is to construct estimator
bQ⇡

1 such that sup
⇡2⇧

���Q⇡

1 � bQ⇡

1

��� < ✏. We consider two
policy classes that are worth considering.

Definition 2.2 (The global (deterministic) policy class.).
The global policy class ⇧g consists of all the non-stationary
(deterministic) policies.

It is well-known (Sutton & Barto, 2018) there exists at least
one (deterministic) optimal policy, therefore ⇧g is suffi-
ciently rich for evaluating algorithms that aim at learning
the optimal policy.

Definition 2.3 (The local policy class). Given empir-
ical MDP cM and bV ⇡

h
is the value under cM . Let

b⇡? := argmax
⇡
bV ⇡

1 be the empirical optimal policy,
then the local policy class ⇧l is defined as: ⇧l :=n
⇡ : s.t.

���bV ⇡

h
� bV b⇡?

h

���
1

 ✏opt , 8h 2 [H]
o

where ✏opt �
0 is a parameter.

In above cM uses bP in lieu of P where bP (s0|s, a) =
n
s0,s,a
ns,a

if
ns,a > 0 and 1/S otherwise.1 This class characterizes poli-
cies in the neighborhood of empirical optimal policy. Given
bP , it is efficient to obtain b⇡? using Value / Policy Iteration,
therefore it is more practical to consider the neighborhood
of b⇡? (instead of ⇡?) since practitioners can use data D to
really check ⇧l whenever needed.

Assumption 2.4 (Exploration requirement). Logging pol-
icy µ obeys that mins dµ(s) > 0, for any state s that
is “accessible”. Moreover, we define the quantity dm :=
mins,a{dµ(s, a) : dµ(s, a) > 0} (recall dµ(s, a) in Sec-
tion 2) to be the minimal average marginal state-action
probability.

1Here ns,a is the number of pair (s, a) being visited among n
episodes. ns0,s,a is defined similarly.
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State s is “accessible” means there exists a policy ⇡ so that
d⇡(s) > 0. If for any policy ⇡ we always have d⇡(s) = 0,
then state s can never be visited in the given MDP. Note this
is weaker than (Yin et al., 2021a) since dµ(s) is the average
version of dµ

t
(s). Assumption 2.4 is the minimal assumption

needed for the consistency of uniform OPE task and is
qualitatively similar to the concentrability assumption.

3. Statistical Hardness for Model-based
Global Uniform OPE

From (1) and Definition 2.2, it is clear the global uniform
OPE implies offline RL, therefore it is natural to wonder
whether they just are “the same task” (their sample com-
plexities have the same minimax rates). (Yin et al., 2021a)
proves the Õ(H3S/dm✏2) upper bound and ⌦(H3/dm✏2)
lower bound for global uniform OPE, but it is unclear
whether the additional S is essential. We answer the ques-
tion affirmatively by providing a tight lower bound with a
concise proof to show no model-based algorithm can surpass
⌦(H2S/dm✏2) information-theoretical limit.
Theorem 3.1 (Minimax lower bound for global uni-
form OPE). Let dm be a parameter such that 0 <
dm  1

SA
. Let the problem class be Mdm

:=
{(µ,M) | mins,a dµ (s, a) � dm}. Then there exists uni-
versal constants c, C, p > 0 such that: for any n �
cS/dm · log(SAp),

inf
bQ1,mb

sup
Mdm

Pµ,M

 
sup
⇡2⇧g

��� bQ⇡

1,mb �Q⇡

1

���
1

� C

r
H2S
ndm

!
� p,

where bQ1,mb is the output of any model-based algorithm
and ⇧g is defined in Definition 2.2.

By setting ✏ :=
q

H2S

ndm

, Theorem 3.1 establishes the global
uniform convergence lower bound of ⌦(H2S/dm✏2) over
the model-based methods, which builds the hard statisti-
cal threshold between the global uniform OPE and the lo-
cal uniform OPE tasks since the local case has achievable
Õ(H2/dm✏2) rate Theorem 4.1. The full proof is in C.

4. Optimal local uniform OPE via
model-based plug-in method

Global uniform OPE is intrinsically harder than the offline
learning problem due to the additional state-space depen-
dence and such a gap will amplify when S is (exponentially)
large. This motivates us to switch to the local uniform con-
vergence regime that enables optimal learning. We design
the new singleton-absorbing MDP to handle the challenge
which avoids the exponential-H cover used in (Cui & Yang,
2020) and answers their conjecture that absorbing MDP is
actually well suitable for finite horizon stationary MDP.2

2See their Section 7, first bullet point for a discussion.

Model-based Offline Plug-in Estimator Let ns,a :=P
n

i=1

P
H

h=1 1[s
(i)
h
, a(i)

h
= s, a] be the total counts

that visit (s, a) pair, then the model-based offline plug-
in estimator constructs estimator bP as: bP (s0|s, a) =
P

n

i=1

P
H

h=1 1[(s(i)
h+1,a

(i)
h

,s
(i)
h

)=(s0,s,a)]

ns,a

, if ns,a > 0 and
bP (s0|s, a) = 1

S
if ns,a = 0. As a consequence, the estima-

tors bQ⇡

h
, bV ⇡

h
are computed as: bQ⇡

h
= r + bP⇡h+1 bQ⇡

h+1 =

r + bP bV ⇡

h+1, with the initial distribution bd1(s) = ns/n.

Recall b⇡? := argmax
⇡
bV ⇡

1 is the empirical optimal policy
and ⇧l is in Definition 2.3.
Theorem 4.1 (optimal local uniform OPE). Let ✏opt p

H/S and denote ◆ = log(HSA/�). For any � 2 [0, 1],
there exists universal constants c, C such that when n >
cH · ◆/dm, w.p. 1� �,

sup
⇡2⇧l

��� bQ⇡

1 �Q⇡

1

���
1

 C

"r
H2◆
ndm

+
H2.5S0.5◆

ndm

#
.

Theorem 4.1 establishes the Õ(H2/dm✏2) complex-
ity bound and directly implies the upper bound for
sup

⇡2⇧l
||bV ⇡

1 � V ⇡

1 ||1 with the same rate. This result
improves the local uniform convergence rate Õ(H3/dm✏2)
in Yin et al. (2021a) (Theorem 3.7) by a factor of H and is
near-minimax optimal (up to the logarithmic factor). Such
result is first achieved by our novel singleton absorbing
MDP technique. Most importantly, Theorem 4.1 guarantees
near-minimax optimal offline learning:
Corollary 4.2 (optimal offline learning). If ✏opt 

p
H/S

and that sup
t
||bV b⇡

t
� bV b⇡?

t
||1  ✏opt , when n > O(H ·

◆/dm), then with probability 1� �, element-wisely,

V ?

1 � V b⇡
1  C

r
H2◆
ndm

+
H2.5S0.5◆

ndm

�
1+ ✏opt 1.

Corollary 4.2 first establishes the minimax rate for of-
fline learning for any policy b⇡ with the measurable gap
✏opt 

p
H/S. This extends the standard concept of offline

learning by allowing any empirical planning algorithm (e.g.
VI/PI) to find an inexact b⇡ as an (Õ

p
H2/ndm + ✏opt )-

optimal policy (instead of finding exact b⇡?). The use of
inexact b⇡ could encourage early stopping (e.g. for VI/PI)
therefore saves computational iterations. For the rest of
the section, we brief explain the singleton-absorbing MDP
technique and the full proofs of Theorem 4.1, Corollary 4.2
can be found in Appendix B, D.

4.1. Singleton absorbing MDP for finite horizon MDP
Essentially, the key challenge in obtaining the optimal de-
pendence in stationary setting is the need to decouple the
dependence between P � bP and bV ?

h
as we aggregate all

data for constructing both bP and bV ?

h
. This issue is not en-

countered in the non-stationary setting in general due to the
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flexibility to estimate different transition Pt at each time
(Yin et al., 2021a) and bPt and bV ?

t+1 preserve conditional
independence. However, when confined to stationary case,
their complex Õ(H3/dm✏2) becomes suboptimal. More-
over, the direct use of s-absorbing MDP in (Agarwal et al.,
2020) does not yield tight bounds for the finite horizon
stationary setting, as it requires s-absorbing MDPs with
H-dimensional fine-grid cover to make sure bV ?

h
is close to

one of the elements in the cover (which has size ⇡ HH

and it is not optimal (Cui & Yang, 2020)). We overcome
this hurdle by choosing only one delicate absorbing MDP to
approximate bV ?

h
which will not incur additional dependence

on horizon H caused by the union bound. We begin with
the general definition of absorbing MDP.

Standard s-absorbing MDP in the finite horizon setting.
The general s-absorbing MDP is defined as follows: for a
fixed state s and a sequence {ut}Ht=1, MDP Ms,{ut}H

t=1
is

identical to M for all states except s, and state s is absorbing
(PM

s,{ut}Ht=1

(s|s, a) = 1) for all a, and rt(s, a) = ut for
all a, t 2 A, [H]. For convenience, we use V ⇡

{s,ut} to denote
V ⇡

s,M
s,{ut}Ht=1

and similarly for Qt, r and transition P . Also,

V ?

{s,ut} (Q?

{s,ut}) is the optimal value under Ms,{ut}H

t=1
.

Before defining singleton absorbing MDP, we first present
the following Lemma 4.3 which supports the our design.

Lemma 4.3. V ?

t
(s)�V ?

t+1(s) � 0, 8s 2 S, t 2 [H]. More-
over, fix a state s. If we choose u?

t
:= V ?

t
(s) � V ?

t+1(s),
then we have the vector form equations: V ?

h,{s,u?

t
} =

V ?

h,M
8h 2 [H]. Similarly, if we choose û?

t
:= bV ?

t
(s) �

bV ?

t+1(s), then bV ?

h,{s,û?

t
} = bV ?

h,M
, 8h 2 [H].

Definition 4.4 (Singleton-absorbing MDP). For each
state s, the singleton-absorbing MDP is chosen to be
Ms,{u?

t
}H

t=1
, where u?

t
:= V ?

t
(s)� V ?

t+1(s) for all t 2 [H].

The difference between the standard covering-based absorb-
ing MDP and the singleton absorbing MDP is the former
uses a set of MDPs (V1,u1 , . . . , VH,uH

) where (u1, . . . , uH)
traverse all the H-dimensional grid in [0, H]H therefore the
set has cardinality O(eH) but the singleton absorbing MDP
only uses (V1,u?

1
, . . . , VH,u

?

H
) therefore has the cardinality

1, which can achieve the optimality (Figure 1).

5. New settings: offline Task-agnostic and
offline Reward-free learning

From Corollary 4.2, our model-based offline learn-
ing algorithm has two steps: 1. constructing of-
fline empirical MDP cM using the offline dataset D =

{(s(i)
t
, a(i)

t
, r(s(i)

t
, a(i)

t
), s(i)

t+1)}
t2[H]
i2[n] ; 2. performing any ac-

curate black-box planning algorithm and returning b⇡?(or b⇡)
as the final output. However, the only effective data (data
that contains stochasticity) is D0 = {(s(i)

t
, a(i)

t
)}t2[H]

i2[n] . This

indicates we are essentially using the state-action space ex-
ploration data D0 to solve the task-specific problem with
reward r. With this perspective in mind, it is natural to ask:
given only the offline exploration data D0, can we efficiently
learn a set of potentially conflicting K tasks (K rewards) si-
multaneously? Even more, can we efficiently learn all tasks
simultaneously? This brings up the following definitions.

Definition 5.1 (Offline Task-agnostic Learning). Given
a offline exploration datatset D0 = {(s(i)

t
, a(i)

t
)}t2[H]

i2[n]

by µ with n episodes. Given K tasks with re-
ward {rk}Kk=1 and the corresponding K MDPs Mk =
(S,A, P, rk, H, d1). Can we use D0 to output ⇡̂1, . . . , ⇡̂K

such that P
h
8rk, k 2 [K],

���V ?

1,Mk
� V ⇡̂k

1,Mk

���
1

 ✏
i
� 1� �?

Definition 5.2 (Offline Reward-free Learning). Given a
offline exploration datatset D0 = {(s(i)

t
, a(i)

t
)}t2[H]

i2[n] by µ
with n episodes. For any reward r and the corresponding
MDP M = (S,A, P, r,H, d1). Can we use D0 to output ⇡̂
such that P

⇥
8r,
��V ?

1,M � V ⇡̂

1,M

��
1  ✏

⇤
� 1� �?

Our singleton absorbing MDP technique adapts to those
settings and we have the following two theorems. The
proofs of Theorem 5.3, 5.4 can be found in Appendix E, F.

Theorem 5.3 (optimal offline task-agnostic learning).
Given D0 = {(s(i)

t
, a(i)

t
)}t2[H]

i2[n] by µ. Given
K tasks with reward {rk}Kk=1 and the correspond-
ing K MDPs Mk = (S,A, P, rk, H, d1). Denote
◆ = log(HSA/�). Let b⇡?

k
:= argmax

⇡
bV ⇡

1,Mk

8k 2 [K], when n > O(H · [◆ + log(K)]/dm),
then with probability 1 � �,

���V ?

1,Mk
� V

b⇡?

k

1,Mk

���
1



O

q
H2(◆+log(K))

ndm

+ H
2.5

S
0.5(◆+log(K))
ndm

�
8k 2 [K].

Theorem 5.4 (optimal offline reward-free learning). Given
D0 = {(s(i)

t
, a(i)

t
)}t2[H]

i2[n] by µ. For any reward r denote
the corresponding MDP M = (S,A, P, r,H, d1). De-
note ◆ = log(HSA/�). Let b⇡?

M
:= argmax

⇡
bV ⇡

1,M 8r,
when n > O(HS · ◆/dm), then with probability 1 � �,���V ?

1,M � V
b⇡?

M

1,M

���
1

 O
hq

H2S·◆
ndm

+ H
2
S·◆

ndm

i
, 8r,M.

6. Discussion
By a direct translation of both theorems, we have
sample complexity of order eO(H2 log(K)/dm✏2) and
eO(H2S/dm✏2). All the parameters have the optimal rates,
see the lower bounds in Zhang et al. (2020b) and Jin et al.
(2020a). The principle of our Singleton absorbing MDP
technique (with model-based construction) in decoupling
the dependence between bPs,a and bV ? is not confined to tab-
ular MDPs and we have further the linear MDP with anchor
points example in appendix.
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Model-based multi-agent rl in zero-sum markov games
with near-optimal sample complexity. arXiv preprint
arXiv:2007.07461, 2020a.

Zhang, X., Singla, A., et al. Task-agnostic exploration in
reinforcement learning. Advances in Neural Information
Processing Systems, 2020b.

Zhang, Z., Du, S. S., and Ji, X. Nearly minimax opti-
mal reward-free reinforcement learning. arXiv preprint
arXiv:2010.05901, 2020c.


