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Abstract
1 In this paper, we study privacy in the con-
text of finite-horizon Markov Decision Processes.
Two notions of privacy have been investigated
in this setting: joint differential privacy (JDP)
and local differential privacy (LDP). We show
that it is possible to achieve a smooth transition
in terms of privacy and regret (i.e., utility) be-
tween JDP and LDP. By leveraging shuffling tech-
niques, we present an algorithm that, depending
on the provided parameter, is able to attain any
privacy/utility value in between the pure JDP and
LDP guarantee.

1. Introduction
The practical successes of Reinforcement Learning (RL)
algorithms have led to them becoming ubiquitous in many
settings such as digital marketing, healthcare and finance,
where it is desirable to provide a personalized service (e.g.
Mao et al., 2020; Wang & Yu, 2021). However, users are
becoming increasingly wary of the amount of personal in-
formation that these services require. This is particularly
pertinent in many of the aforementioned domains where
the data obtained by the RL algorithm are highly sensi-
tive. For example, in healthcare, the state encodes personal
information such as gender, age, vital signs, etc. In ad-
vertising, it is normal for states to include browser history,
geolocalized information, etc. In response, the literature has
started investigated differential privacy (DP) (e.g., Dwork
et al., 2010; Dwork & Roth, 2014) guarantees both in ban-
dits (e.g., Tossou & Dimitrakakis, 2015; Shariff & Sheffet,
2018; Zheng et al., 2020) and in RL (e.g., Vietri et al., 2020;
Garcelon et al., 2021).

The RL literature has studied joint DP (Vietri et al., 2020)
and local DP (Garcelon et al., 2021) in the context of tabular
finite-horizon Markov Decision Processes (MDPs). Infor-
mally, JDP requires the algorithm to not expose sensitive
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information through its decisions, i.e., an observer should
not be able to infer sensitive information by observing the
output of the algorithm. On the other hand, LDP prevents
the algorithm to observe sensitive information by requir-
ing data to be privatized before being sent to the algorithm.
These definitions have different impact on the regret (i.e.,
utility) of an algorithm. While ε-JDP guarantees can be ob-
tained by paying only an additional logarithmic term in the
regret (Ω(

√
K + log(K)/ε) in (Vietri et al., 2020)), LDP

comes with stronger requirements and higher impact on the
regret. In fact, Garcelon et al. (2021) have shown that ε-LDP
has a multiplicative impact (Ω(

√
K/ε)). While LDP poses

stronger requirements, it is currently unclear whether it is
possible to achieve some form of privacy/utility trade-off
between these two models.

In this paper, we address this question by leveraging the
shuffling model of privacy (e.g Cheu et al., 2019; Feldman
et al., 2020; Chen et al., 2021; Balle et al., 2019; Erlingsson
et al., 2020). In particular, we show that it is possible to
achieve a smooth transition between JPD and LDP guar-
antees in RL via shuffling, always preserving a minimal
LDP level. Although, it is not to get strict JDP but only
approximated JDP. At the end of the spectrum, we nearly
recover the results in (Vietri et al., 2020) and (Garcelon
et al., 2021).2 This provides a comprehensive understanding
of the connections between the privacy models used in RL.

2. Preliminaries
We consider a finite-horizon Markov Decision Process
(MDP) (Puterman, 1994, Chp. 4) M = (S,A, p, r,H) with
state space S , action space A, and horizon H ∈ N+. Every
state-action pair is characterized by a reward distribution
with mean r(s, a) supported in [0, 1] and a transition distri-
bution p(·|s, a) over next state.3 We denote by S = |S| and
A = |A| the number of states and actions. A deterministic

2First, in this extended abstract we put the focus on the depen-
dence in the length of interactionK and privacy level ε. We ignore
S, A and H factors in the discussion since we believe the analysis
can be improved. Second, we do not recover the log(K)/ε depen-
dence in (Vietri et al., 2020) for JDP but a K1/3/ε term that we
believe can be improved by a more careful analysis.

3We can modify the algorithm to handle step dependent transi-
tions and rewards. The regret is then multiplied by a factor H

√
H .
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policy is defined as a collection π = (π1, . . . , πH) ∈ Π of
policies πh : S → A. For any h ∈ [H] := {1, . . . ,H}
and state s ∈ S, the value functions of a policy π are de-
fined as Qπh(s, a) = r(s, a) + Eπ

[∑H
i=h+1 r(si, ai)

]
and

V πh (s) = Qπ(s, πh(s)). There exists an optimal determin-
istic policy π? ∈ Π (Puterman, 1994, Sec. 4.4) such that
V ?h (s) = V π

?

h (s) = maxπ V
π
h (s). The Bellman equations

at stage h ∈ [H] are defined as Q?h(s, a) = rh(s, a) +
maxa′ Es′∼ph(s,a′)

[
V ?h+1(s′)

]
. The optimal policy is sim-

ply the greedy policy: π?h(s) = argmaxaQ
?
h(s, a).

We consider the standard learning protocol for finite horizon.
The learning agent (e.g., a personalization service) interacts
with an unknown MDP in a sequence of episodes k ∈ [K] of
fixed length H . We consider each episode as the interaction
with a different user uk ∈ U , uj 6= ui,∀i, j. Following (Vi-
etri et al., 2020), a user u is characterized by a starting state
distribution ρ0,u (i.e., for user u, s1 ∼ ρ0,u) and a tree of
depth H , describing all the possible sequence of states and
rewards corresponding to all possible sequences of actions.
For each episode k ∈ [K], let s1,k ∼ ρ0,uk be the initial
state for user uk. The learner selects a policy πk that is sent
to the user uk for execution. The outcome of the execution,
i.e., a trajectory, Xk = (skh, akh, rkh)h∈[H] is sent to the
learner to update the policy. We evaluate the performance
of a learning algorithm A which plays policies π1, . . . , πK
by its cumulative regret after K episodes

∆(K) =

K∑
k=1

(V ?1 (s1,k)− V πk1 (s1,k)). (1)

2.1. Differential Privacy in RL

Exploration with privacy guarantees has only been recently
studied in RL (Vietri et al., 2020; Garcelon et al., 2021).
Vietri et al. (2020) propose a regret minimization algorithm
able to guarantee joint differential privacy (JDP). Intuitively,
JDP requires that when a user changes, the actions com-
puted by the algorithm for the other K − 1 users stay the
same, hence the other users can not infer the sequence of
states, actions and rewards observed by the changed user.
The algorithm has access to all the information about the
users (i.e., trajectories) containing sensitive data. This ap-
proach to privacy requires the user to trust the RL algorithm
to privately handle the data and not to expose or share sensi-
tive information to an external user observing its behavior.
Formally, JDP is defined as:

Definition 1. For ε > 0 and δ0 > 0, a randomized RL
agent A is (ε, δ0)-joint differentially private if for every k ∈
{1, . . . ,K}, two sequences of users, U = {u1, . . . , uK}
and U ′ = {u′1, . . . , u′K}, that differs only for the k-th user
and for all events E ⊂ AH×[K−1] then:

P(A−k(U) ∈ E) ≤ eεP(A−k(U) ∈ E) + δ0 (2)

where A−k(U) denotes all the outputs of algorithm A, i.e.,
all actions (ai,h)i 6=k,h≤H excluding the output of episode k
for the sequence of users U .

Garcelon et al. (2021) studied the stronger local differential
privacy (LDP) notion and proposed a model-based explo-
ration algorithm called LDP-OBI. Opposite to JDP, LDP
prevents the RL algorithm from observing the true sensitive
data. Indeed, LDP requires that an algorithm has access
to user information (i.e., trajectories) only through samples
that have been privatized before being passed to the learning
agent. The appeal of this local model is that privatization
can be done locally on the user-side using a private random-
izerM. Since nobody other than the user has ever access to
any piece of non private data, this local setting is far more
private. Formally, we writeM(Xuk) to denote the priva-
tized data generated by the randomizer from a trajectory
Xuk . The goal of mechanismM is to privatize sensitive in-
formation while encoding sufficient knowledge for learning.
With these notions in mind, LDP in RL can be defined as
follows:

Definition 2. For any ε ≥ 0 and δ ≥ 0, a privacy preserv-
ing mechanismM is said to be (ε, δ)-locally differential
private if and only if for all users u, u′ ∈ U , trajectories
(Xu, Xu′) ∈ Xu ×Xu′ and all O ⊂ {M(Xu) | u ∈ U}:

P (M(Xu) ∈ O) ≤ eε P (M(Xu′) ∈ O) + δ (3)

where Xu is the space of trajectories associated to user u.

We end this section with the definition of differential privacy.
Definition 3. For any ε ≥ 0 and δ ≥ 0, a privacy pre-
serving mechanismM is said to be (ε, δ)-differential pri-
vate if and only if there exists n ∈ N, for all inputs of
M, (x1, . . . , xn) and (x′1, . . . , x

′
n) there exists i? ≤ n with

xi? 6= x′i? for all j 6= i?, xj = x′j and for all events O:

P (M(x1, . . . , xn) ∈ O) ≤ eε P
(
M(x′1, . . . , x

′
n) ∈ O

)
+ δ

where Xu is the space of trajectories associated to user u.

3. Shuffling in RL
The shuffling model of privacy (e.g., Cheu et al., 2019; Feld-
man et al., 2020; Chen et al., 2021; Balle et al., 2019; Er-
lingsson et al., 2020) has attracted a lot of interest in machine
learning, because it allows to build (ε, δ)-DP algorithm with
an additional LDP guarantees. The most attractive feature
of this privacy model is that it offers a smooth transition in
terms of privacy/utility trade-off between the stringent LDP
requirements and the differential privacy requirements (see
Feldman et al., 2020, for an example of this transition in the
problem of estimating a discrete distribution).

The interaction protocol in the shuffle model is as follows.
Similarly to LDP, the user u computes a private version
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Algorithm 1 Shuffling Protocol
Input: number of episodes K, horizon H , failure prob-
ability δ ∈ (0, 1), bias α > 1, private randomizerMsh
with LDP parameters (ε0, δ0), RL algorithm A
for k = 1 to K do

Shuffler R sends (Msh(Xuσk(l)
))l<k (σk a random

permutation)
A computes policy πk based on (Msh(Xuσk(l)

))l<k
User uk executes policy πk in the environment, collects
trajectory Xk = {(sk,h, ak,h, rk,h)h≤H} and sends
the privatized trajectoryMsh(Xk) toR

end for

of their trajectory Xu by means of a private randomizer
Msh. This private information Msh(Xu) is passed to a
shuffler R. At each episode k ∈ [K], the shuffler R has
thus access to all private information (Msh(Xul))l<k up
to episode k. It computes a random permutation σk of
[k − 1] and sends the permuted set of privatized statistics,
(Msh(Xuσk(l)

))l<k to a regret minimizing algorithm. The
protocol is detailed in Alg. 1. The shuffling setting is not
fundamentally different than the LDP one, but it allows to
achieve a large gain in privacy in the high data regime from
multiple users. Shuffling allows to achieve better privacy
guarantees through subsampling and, overall, it improves
the standard LDP protocol with virtually no cost.

3.1. Privacy-preserving mechanismMsh

Similarly to (Garcelon et al., 2021), we take a model-based
approach to the privacy problem. The output of the ran-
domizer is thus any succinct information that can be used
by the algorithm to build an estimate of the MDP. We thus
construct private estimates of the number of visits to (s, a)
and (s, a, s′), and of the cumulative reward. We do not use
the same approach as in (Garcelon et al., 2021) but we adapt
the algorithm for bit-sum protocol by Cheu et al. (2019) to
MDPs. The first step of the processMsh is to apply a one-
hot encoding for each state-action of the trajectory. That is
to say, let x ∈ {0, 1}H×S×A and y ∈ {0, 1}(H−1)×S×A×S
such that for each (s, a, s′) and h

xh,s,a = 1{sh=s,
ah=a

}, and yh,s,a,s′ = 1{sh=s,
ah=a,
sh+1=s

′

} (4)

To encode rewards, we first compute the reward for each
state-action pair,

(
rh1{sh=s,ah=a}

)
(h,s,a)∈J1,HK×S×A then

given a parameter m ∈ N? for each state-action pair (s, a)
we compute bh,s,a ∈ {0, 1}m such that for j ∈ J1,mK:

(bh,s,a)j =

 1 if j < µh,s,a
Ber (ph,s,a) if j = µh,s,a

0 if j > µh,s,a

(5)

Algorithm 2 Local randomizer R0/1
p

Input: randomization probability: p ∈ [0, 1], x ∈ {0, 1}
Sample b ∼ Ber(p)
If b = 0 then return x else return Ber(1/2)

Algorithm 3 Privacy-preserving mechanismMsh

Input: trajectory τ = {(sh, ah, rh)h≤H}, privacy pa-
rameter ε > 0, parameter m ∈ N?
Compute x, y and (bh,s,a)(s,a)∈S×A as in Eqs. (4), (5)
Return (R

0/1
p (xh,s,a))(h,s,a), (R

0/1
p (yh,s,a,s′))(h,s,a,s′)

and ((R
0/1
p ((bh,s,a)j)j≤m)(h,s,a) with p = 2/(eε + 1)

with µh,s,a =
⌈
mrh 1{sh=s,ah=a}

⌉
and ph,s,a =

mrh 1{sh=s,ah=a} − µh,s,a + 1.

Using those encodings, Alg. 2 with parameter p guarantees
ln(2/p − 1) local differential privacy. The final privacy-
preserving mechanismMsh is described by Alg. 3.

Lemma 4. For any ε0 > 0 and trajectory X we have that
Msh with parameters ε = ε0

(4+2m)H satisfies ε0-LDP.

Here, we use Theorem 4.1 in (Cheu et al., 2019), we con-
sider a shuffle model where all users use the same level of
privacy when using the mechanismMsh. However, for the
first users the amplification of the privacy level by shuffling
is not noticeable. Next, we state the privacy of the resulting
estimator with shuffling:

Proposition 5. For any δ0 > 0, any users (ul)l≤k with
trajectories (Xul)l≤k using the mechanism Msh with
privacy parameter 0 < εl ≤ log(k/(7 log(4/δ0)) − 1)
and m ≥ 1, for σ a permutation of {1, . . . , k} chosen

uniformly at random then
(∑

i≤k,h≤H R
0/1
p (xi,h,s,a)

)
s,a

,(∑
i≤k,h≤H R

0/1
p (yi,h,s,a,s′)

)
s,a,s′

and(∑
i≤k,h≤H,j≤mR

0/1
p ((bi,h,s,a)j

)
s,a

is (εc,k, δ)-DP

with

εc,k=
256 log( 8m

δ0
)
√
m log( 2

δ0
)√√√√√√√(k−1)H

p−
√√√√ 2p log( 4m

δ0
)

(k−1)H



1−p+

√
2p log( 4m

δ0
)

(k−1)H



+
64 log( 4

δ0
)√√√√√√√(k−1)H

p−
√√√√ 2p log( 2

δ0
)

(k−1)H



1−p+

√
2p log( 2

δ0
)

(k−1)H



and for each l ≤ k,Msh(Xul) is εl-LDP.

3.2. Utility Analysis

Upon receiving the shuffled privatized, the algo-
rithm SHUFFLED-OBI computes the different counts
(Ñp

k (s, a, s′))(s,a,s′), (Ñr
k (s, a))(s,a) and (R̃k(s, a))(s,a).
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For any (s, a, s′) ∈ S × A × S, we define counters as:

Ñr
k (s, a) =

1

1− p

k−1∑
l=1

H∑
h=1

R0/1
p (xl,h,s,a)−

p

2

Ñp
k (s, a, s

′) =
1

1− p

k−1∑
l=1

H∑
h=1

R0/1
p (yl,h,s,a,s′)−

p

2

R̃rk(s, a) =
1

m(1− p)

m∑
j=1

k−1∑
l=1

H∑
h=1

R0/1
p ((bl,h,s,a)j)−

p

2

(6)

Thanks to Hoeffding concentration inequality, for every
state-action-next state (s, a, s′) ∈ S ×A× S ′ and for any
δ > 0, with probability at least 1− δ:∣∣∣∣∣

k−1∑
l=1

H∑
h=1

xl,h,s,a − Ñr
k (s, a)

∣∣∣∣∣ ≤ 2 ln(1/δ)

3(1− p)

+

√
(k − 1)Hp(1− p

2
) ln
(
1
δ

)
1− p∣∣∣∣∣

k−1∑
l=1

H−1∑
h=1

yl,h,s,a,s′ − Ñp
k (s, a, s

′)

∣∣∣∣∣ ≤ 2 ln(1/δ)

3(1− p)

+

√
(k − 1)Hp

(
1− p

2

)
ln(1/δ)

1− p

(7)

Using Claim C.4 in (Cheu et al., 2019), we have that with
probability at least 1− δ that:

∣∣∣∣∣
k−1∑
l=1

H∑
h=1

rl,h1{sl,h=s,
al,h=a

} − R̃rk(s, a)
∣∣∣∣∣ ≤

√
2Hk log( 2

δ
)

m

+

√
kHmp

(
1− p

2

)
) ln(1/δ)

m(1− p) +
2 ln(1/δ)

3(1− p)

(8)

4. Trade-off between Privacy and Regret
The results introduced in the previous section can be used
to build a regret minimizing algorithm which interpolates
between LDP and JDP.

Our algorithm, called Shuffled-OBI (see Alg. 4), requires
a burn-in phase of length τ to ensure some level of privacy
amplification for the first users. Indeed, at the beginning, the
privacy amplification properties of the shuffling mechanism
are not strong enough to guarantee any privacy. For the first
τ users the algorithm chooses a policy at random for those
users, ensuring strong privacy. Then, for episode k > τ , the
algorithm computes an optimistic estimate by leveraging
the private counters to build a model of the MDP. Compared
to (Garcelon et al., 2021), our algorithm recomputes the
estimate of the model at each episode based on shuffled
data, instead of updating it incrementally. This requires that
the algorithm discards the computed estimates at the end

Algorithm 4 SHUFFLED-OBI
Input: number of episodes K, horizon H , failure prob-
ability δ ∈ (0, 1), bias α > 1, private randomizerMsh
with LDP parameters (ε0, δ0), burn-in parameter: τ
for k = 1 to τ do

Select policy πk uniformly at random
end for
for k = 1 to K do

Compute p̃k and r̃k as in Eq. (16) using
{M(Xuσk(l)

)}l∈[K−1], βrk and βpk as in Prop. 7
using {ck,i(ε0, δ0, 3δ

2k2π2 )}i, and bh,k
Compute πk as in Eq. (17) and send it to user uk
User uk executes policy πk, collects trajectory Xk and
sends back privatized valueM(Xk)

end for

of each episode. Due to the similarities with LDP-OBI, the
regret bound for SHUFFLED-OBI can be seen as a corollary
of Thm. 2 in (Garcelon et al., 2021), by using the functions
{ck,i}i≤4 defined in Eq. (7) and (8).4 This immediately give
us Thm. 6.

Theorem 6. For any users K ∈ N?, δ > 0 using the
mechanismMsh with parameter ε > 0 and m = 1 using
Alg. 4, with probability at least 1− δ:

∆(K) ≤ O
(√

K + τH +

√
2Keε/2

eε − 1

)
(9)

In addition, Alg. 4 is ε-LDP and (εc,τ , δ0)-JDP for any
δ0 > 0 and εc,τ defined in Prop. 5.

In Thm. 6, τ is the minimal number of users needed to
ensure a level of privacy with εc,τ (see Prop. 5). Thm. 6
also shows that, for a fixed ε > 0, the regret of Alg. 4
is bounded by O

( √
K

eε−1

)
which is the optimal LDP rate

shown by Garcelon et al. (2021). However, under the
constraint that Alg. 4 only needs to be (ε0, δ0)-JDP for
a certain ε0 > 0 and δ0 > 0, it is enough to choose
ε = O (ln(1 + ε0

√
τ)) in Thm. 6, and the regret of Alg. 4

is bounded by O
(√

K + K1/3

ε0

)
for τ = O

(
K1/3

)
. Vietri

et al. (2020) showed that ε-JDP can be achieved by paying
only an additional O(log(K)/ε) cost in the regret. As a
consequence, our result is slightly suboptimal as it has a
O(K1/3/ε). This is just an artifact of our analysis where
we require at least a privacy level ε0 in the initial phase. One
way to resolve this issue would be to use an adaptive privacy-
preserving mechanism for shuffling as the one presented
in (Feldman et al., 2020).

4For ease of presentation, in this extended abstract we remove
dependencies on S, A andH . Refer to the full version of the paper
for a complete presentation.
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Algorithm τ LDP JDP Regret

SHUFFLED-OBI (our)

O(K1/3) (O(ln(1 + ε0K
1/6)), 0) (ε0, δ0) Õ(

√
K + K1/3

ε0
)

τ (ε0, 0) (εc,τ , δ0) Õ

(√
K + τH +

√
2Keε0/2

eε0−1

)
0 (ε0, 0) (ε0, δ0) Õ(

√
K

eε0−1 )

PUCB (Vietri et al., 2020) N/A (ε0, 0) Õ(
√
K + 1

ε0
)

LDP-OBI (with Laplace Mechanism)
(Garcelon et al., 2021) (ε0, 0) (ε0, 0) Õ(

√
K
ε0

)

Table 1. Regret and Privacy guarantee for different algorithms. SHUFFLED-OBI interpolates between JDP and LDP. For τ = 0, we retrieve
(ε0, 0)-LDP guarantee and the regret of (Garcelon et al., 2021). While for τ = O(ln(1 + ε0K

1/6)), SHUFFLED-OBI is (ε0, δ0)-JDP.

5. Conclusion
In this paper, we showed it is possible to design an algo-
rithm that, based on the input parameters, offers a trade-
off between JDP and LDP. While we recover the optimal
O(
√
K/(eε − 1)) rate in K and ε for LDP, we are slightly

suboptimal for JDP due to a shortcoming of the analysis
(i.e., we obtain O(

√
K + K1/3

ε ) while the optimal rate is
O(
√
K + log(K)

ε )). We think it is possible to improve this
result by leveraging adaptive privacy for shuffling as done
in (Feldman et al., 2020).
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A. Proof of Lem. 4
Thanks to group privacy it suffices to show that the mechanismMsh is ε-DP for two trajectories x = (sh, ah, rh)h≤H and
x′ = {(s′h, a′h, r′h)h≤H} such that there exists a unique i ∈ J1, HK such that, for all j 6= i, sj = s′j , aj = a′j and rj = r′j
but (si, ai, ri) 6= (s′i, a

′
i, r
′
i). Now we show the differential result for each component ofMsh:

1. Because x and x′ only differ in one element, we have that for a q ∈ {0, 1}HSA:

P
(

(R
0/1
p (xh,s,a))(h,s,a) = (qh,s,a)(h,s,a)

)
P
(

(R
0/1
p (x′h,s,a))(h,s,a) = (qh,s,a)(h,s,a)

) =
∏
s,a

P
(
R

0/1
p (xi,s,a) = qi,s,a

)
P
(
R

0/1
p (x′i,s,a) = qi,s,a

) (10)

=
∏
s,a

p/2 + (1− p)1{qi,s,a=xi,s,a}
p/2 + (1− p)1{qi,s,a=x′i,s,a}

(11)

=
∏

(s,a)∈{(si,ai),(s′i,a′i)})

p/2 + (1− p)1{qi,s,a=xi,s,a}
p/2 + (1− p)1{qi,s,a=x′i,s,a}

(12)

≤ exp(2ε) (13)

using the definition of p and the fact that x ∈ {0, 1}HSA.

2. With the same reasoning as above we have that:

P
(

(R
0/1
p (yh,s,a,s′))(h,s,a,s′) = (qh,s,a,s′)(h,s,a,s′)

)
P
(

(R
0/1
p (y′h,s,a,s′))(h,s,a,s′) = (qh,s,a,s′)(h,s,a,s′)

) ≤ exp(2ε) (14)

3. Finally for the reward we have that:

P
(

((R
0/1
p ((bh,s,a)j)j≤m)(h,s,a) = (qj,h,s,a)(j,h,s,a)

)
P
(

((R
0/1
p ((b′h,s,a)j)j≤m)(h,s,a) = (qj,h,s,a)(j,h,s,a)

) =
∏
j,s,a

P
(
R

0/1
p ((bi,s,a)j = qj,i,s,a

)
P
(
R

0/1
p (b′i,s,a)j = qj,i,s,a

) ≤ exp(2mε) (15)

B. Confidence Intervals
In this section, we recall how Garcelon et al. (2021) build the confidence intervals around the rewards and the transition
probabilities. First, given a parameter α > 0, we compute an estimator for each state-action pair as follow:

r̃k(s, a) =
R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

, p̃k(s′ | s, a) =
Ñp
k (s, a, s′)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(16)

with Ñp
k (s, a) =

∑
s′ Ñ

p(s, a, s′). The next proposition then shows how to build confidence intervals thanks to deviation
estimation around (Ñp(s, a, s′))(s,a,s′)∈S×A×S , (Ñr(s, a))(s,a)∈S×A and (R̃(s, a))(s,a)∈S×A.

The private randomizerM satisfies (ε0, δ0)-LDP, Def. 2, with ε0, δ0 ≥ 0. Moreover,

Proposition 7. For any ε0 > 0, δ0 ≥ 0, δ > 0, α > 1 and episode k, using mechanismM such that for any k ≥ 0, there
exist four finite strictly positive function, ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ), ck,4(ε0, δ0, δ) ∈ R?+ such that with
probabilty at least 1− δ for all (s, a, s′) ∈ S ×A× S:∣∣∣R̃k(s, a)−Rk(s, a)

∣∣∣ ≤ ck,1(ε0, δ0, δ),
∣∣∣Ñr

k (s, a)−Nr
k (s, a)

∣∣∣ ≤ ck,2(ε0, δ0, δ)∣∣∣∣∣∑
s′

Np
k (s, a, s′)− Ñp

k (s, a, s′)

∣∣∣∣∣ ≤ ck,3(ε0, δ0, δ),
∣∣∣Np

k (s, a, s′)− Ñp
k (s, a, s′)

∣∣∣ ≤ ck,4(ε0, δ0, δ)
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with Rk(s, a) =
∑
l<k

∑H
h=1 rl,h1{sl,h=s,al,h=a}, N

r
k (s, a) =

∑
l<k

∑H
h=1 1{sl,h=s,al,h=a} and Np

k (s, a, s′) =∑H−1
h=1 1{sl,h=s,al,h=a,sl,h+1=s′}. Then with probability at least 1− 2δ, for any (s, a) ∈ S ×A

|r(s, a)− r̃k(s, a)| ≤ βrk(s, a) =

√√√√ 2 ln
(

4π2SAHk3

3δ

)
Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ) + ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

‖p(·|s, a)− p̃k(·|s, a)‖1 ≤ βpk(s, a) =

√√√√ 14S ln
(

4π2SAHk3

3δ

)
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+

(α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

As commonly done in the literature (e.g., Azar et al., 2017; Qian et al., 2019), we use these concentration results to define a
bonus function bh,k(s, a) := (H − h + 1) · βpk(s, a) + βrk(s, a) which is used to define an optimistic value function and
policy by running the following backward induction procedure:

Qh,k(s, a)s = r̃k(s, a) + bh,k(s, a) + p̃k(·|s, a)TVh+1,k, πh,k(s) = argmax
a

Qh,k(s, a) (17)

where Vh,k(s) = min{H − h+ 1,maxaQh,k(s, a)} and VH+1,k(s) = 0.


