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Abstract
We consider the problem of offline reinforcement
learning (RL) — a well-motivated setting of RL
that aims at policy optimization using only his-
torical data. In this paper, we propose Off-Policy
Double Variance Reduction (OPDVR), a new vari-
ance reduction based algorithm for offline RL.
Our main result shows that OPDVR provably
identifies an ✏-optimal policy with eO(H2/dm✏2)
episodes of offline data in the finite-horizon sta-
tionary transition setting and this improves over
the best known upper bound by a factor of H .
Moreover, we establish an information-theoretic
lower bound of ⌦(H2/dm✏2) which certifies
that OPDVR is optimal up to logarithmic fac-
tors. Lastly, we show that OPDVR also achieves
rate-optimal sample complexity under alternative
settings such as the finite-horizon MDPs with
non-stationary transitions and the infinite horizon
MDPs with discounted rewards.

1. Introduction
Offline reinforcement learning (offline RL) aims at learning
the near-optimal policy by using a static offline dataset that
is collected by a certain behavior policy µ (Lange et al.,
2012). Despite its practical significance, a precise theoreti-
cal understanding of offline RL has been lacking. Previous
sample complexity bounds for RL has primarily focused
on the online setting (Azar et al., 2017; Jin et al., 2018;
Zanette & Brunskill, 2019; Simchowitz & Jamieson, 2019;
Efroni et al., 2019; Cai et al., 2019) or the generative model
(simulator) setting (Azar et al., 2013; Sidford et al., 2018a;b;
Yang & Wang, 2019; Agarwal et al., 2020; Wainwright,
2019; Lattimore & Szepesvari, 2019), both of which assum-
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ing interactive access to the environment and not applicable
to offline RL. On the other hand, the sample complexity of
offline RL remains unsettled even for environments with
finitely many state and actions.

Our Contributions In this paper, we propose an algo-
rithm OPDVR (Off-Policy Doubled Variance Reduction)
for offline reinforcement learning based on an extension of
the variance reduction technique initiated in (Sidford et al.,
2018a; Yang & Wang, 2019). OPDVR performs stochastic
(minibatch style) value iterations using the available offline
data, and can be seen as a version of stochastic optimal
planning that interpolates value iteration and Q-learning.

• We show that OPDVR finds an ✏-optimal policy with
high probability using eO(H2/dm✏2) episodes of of-
fline data (Section 4.1). This improves upon the best
known sample complexity by an H factor and to the
best of our knowledge is the first that achieves an
O(H2) horizon dependence.

• We establish a sample (episode) complexity lower
bound ⌦(H2/dm✏2) for offline RL in the finite-
horizon stationary setting (Theorem 4.2), showing that
the sample complexity of OPDVR is optimal up to
logarithmic factors.

• In the finite-horizon non-stationary setting, and infinite
horizon �-discounted setting, we show that OPDVR

achieves eO(H3/dm✏2) sample (episode) complexity
(Section 3) and eO((1��)�3/dm✏2) sample complexity
(Section 4.2) respectively. They are both optimal up to
logarithmic factors.

• On the technical end, our algorithm presents a sharp
analysis of offline RL with stationary transitions, and,
importantly, the use of the doubling technique to re-
solve the initialization dependence defect which fails to
make the original variance reduction algorithm of (Sid-
ford et al., 2018a) to be optimal, see Appendix F.4.
Running (Sidford et al., 2018a) may not yield the de-
sired accuracy as they stated and our result is robust in
preserving the optimality.

2. Preliminaries
We consider reinforcement learning problems modeled by
finite Markov Decision Processes (MDPs) (we focus on

https://arxiv.org/abs/2102.01748


Near-Optimal Offline Reinforcement Learning via Double Variance Reduction

Table 1. Comparison of sample complexities for tabular offline RL interpretation.

Method/Analysis Setting Assumptions Sample complexitya

FQI (Chen & Jiang, 2019) 1-horizon Full Concentrability Õ((1� �)�6C/✏2)

MSBO/MABO (Xie & Jiang, 2020b) 1-horizon Full Concentrability eO((1� �)�4Cµ/✏2)

OPEMA (Yin et al., 2021) H-horizon non-stationary Full Concentrability eO(H3/dm✏2)

OPDVR (Section 3) H-horizon non-stationary Weak Coverage eO(H3/dm✏2)

OPDVR (Section 4) H-horizon stationary Weak Coverage eO(H2/dm✏2)

OPDVR (Section 4.2) 1-horizon Weak Coverage eO((1� �)�3/dm✏2)

a Number of episodes in the finite horizon setting and number of steps in the infinite horizon.
b �µ, C, Cµ, 1/dm are the concentrability-type coefficients that measure the state-action coverage. See Assumption 2.1 and also
Section F.2 for discussions.

the finite-horizon episodic setting, and defer the infinite-
horizon discounted setting to Section 4.2.) An MDP is
denoted by a tuple M = (S,A, r, T, d1, H), where S and
A are the state and action spaces with finite cardinality
|S| = S and |A| = A. Pt : S ⇥ A ⇥ S ! [0, 1] is
the transition kernel with Pt(s0|s, a) be the probability of
entering state s0 after taking action a at state s. We consider
both the stationary and non-stationary transition setting: The
stationary transition setting assumes Pt ⌘ P is identical for
all t 2 [H], and the non-stationary transition setting allows
Pt to be different for different t. rt : S ⇥A ! [0, 1] is the
reward function which we assume to be deterministic1. d1
is the initial state distribution, and H is the time horizon. A
(non-stationary) policy ⇡ : S ! PH

A assigns to each state
st 2 S a distribution over actions at each time t. We use
d⇡t (s, a) or d⇡t (s) to denote the marginal state-action/state
distribution induced by policy ⇡ at time t, i.e. d⇡t (s) :=
P⇡(st = s) and d⇡t (s, a) := P⇡(st = s, at = a).

Offline learning problem. In this paper we investigate the
offline learning problem, where we do not have interactive
access to the MDP, and can only observe a static dataset D =n
(s(i)t , a(i)t , r(i)t , s(i)t+1)

ot2[H]

i2[n]
.We assume that D is obtained

by executing a pre-specified behavior policy µ (also known
as the logging policy) for n episodes and collecting the tra-
jectories ⌧ (i) = (s(i)1 , a(i)1 , r(i)1 , . . . , s(i)H , a(i)H , r(i)H , s(i)H+1),
where each episode is rendered in the form: s(i)1 ⇠
d1, a(i)t ⇠ µt(·|s(i)t ), r(i)t = r(s(i)t , a(i)t ), and s(i)t+1 ⇠
Pt(·|s(i)t , a(i)t ). Given the dataset D, our goal is to find an ✏-
optimal policy ⇡out, in the sense that ||V ⇡?

1 � V ⇡out
1 ||1 < ✏.

Assumption 2.1 (Weak coverage). The behavior policy µ
satisfies the following: There exists some optimal policy
⇡? such that dµt0(st0 , at0) > 0 if there exists t < t0 such
that d⇡

?

t:t0(st0 , at0 |st, at) > 0, where d⇡
?

t:t0(st0 , at0 |st, at) is
the conditional multi-step transition probability from step t

1This is commonly assumed in the RL literature. The random-
ness in the reward will only cause a lower order error (than the
randomness in the transition) for learning.

to t0. Furthermore, we define dm := mint,st,at
{dµt (st, at) :

dµt (st, at) > 0}.
Intuitively, Assumption 2.1 requires µ to “cover” certain
optimal policy ⇡?, in the sense that any st0 , at0 is reach-
able by µ if it is attainable from a previous state-action
pair by ⇡?. It is similar to (Liu et al., 2019, Assump-
tion 1). Note that this is weaker than the standard “con-
centrability” assumption (Munos, 2003; Le et al., 2019;
Chen & Jiang, 2019): Concentrability defines �µ :=
sup⇡2⇧ ||d⇡(st, at)/dµ(st, at)||1 < 1 (cf. (Le et al.,
2019, Assumption 1 & Example 4.1)), which requires the
sufficient exploration for tabular case2 since we optimize
over all policies (see Section F.2 for a discussion). In con-
trast, our assumption only requires µ to “trace” one single
optimal policy.

3. Variance reduction for offline RL
3.1. Review: variance reduction for RL
In the case of policy optimization, VR is an algorithm that
approximately iterating the Bellman optimality equation,
using an inner loop that performs an approximate value (or
Q-value) iteration using fresh interactive data to estimate
V ?, and an outer loop that performs multiple steps of such
iterations to refine the estimates. Concretely, to obtain an
reliable Qt(s, a) for some step t 2 [H], by the Bellman
equation Qt(s, a) = r(s, a) + P>

t (·|s, a)Vt+1, we need
to estimate P>

t (·|s, a)Vt+1 with sufficient accuracy. VR
handles this by decomposing:

P>
t
(·|s, a)Vt+1 = P>

t
(·|s, a)(Vt+1 � V in

t+1) + P>
t
(·|s, a)V in

t+1, (1)

where V in
t+1 is a reference value function obtained from

previous calculation (See line 4,13 in the inner loop of Algo-
rithm 1) and P>

t (·|s, a)(Vt+1 � V in
t+1), P>

t (·|s, a)V in
t+1 are

estimated separately at different stages. This technique can
help in reducing the “effective variance” along the learning
process (see Wainwright (2019) Section 2 for a discussion).

2Note Xie & Jiang (2020b) has a tighter concentration coef-
ficient with Cµ := max⇡2⇧

��wd⇡/µ

��2

2,µ
but it still requires full

exploration when ⇧ contains all policies.
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In addition, in order to translate the guarantees from learn-
ing values to learning policies, we build on the following
“monotonicity property”: For any policy ⇡ that satisfies
the monotonicity condition Vt  T⇡t

Vt+1 for all t 2 [H],
the performance of ⇡ is sandwiched as Vt  V ⇡

t  V ?
t ,

i.e. ⇡ is guaranteed to perform the same or better than Vt.
This property is first captured by (Sidford et al., 2018a) (for
completeness we provide a proof in Lemma B.1), and later
reused by Yang & Wang (2019); Sidford et al. (2020) under
different settings. We rely on this property in our offline
setting as well for providing policy optimization guarantees.

3.2. OPDVR: variance reduction for offline RL

We begin with non-stationary setting for the ease of explain-
ing algorithmic design. We let ◆ := log(HSA/�).

Prototypical offline VR. We first describe a prototypical
version of our offline VR algorithm in Algorithm 1, which
we will instantiate with different parameters twice (hence
the name“Double”) in each of the three settings of interest.

Algorithm 1 takes estimators zt and gt that produce lower
confidence bounds (LCB) of the two terms in (1) using of-
fline data. Specifically, we assume zt,gt are both available
in function forms in that they take an offline dataset (with
an arbitrary size), fixed value function Vt+1, V in

t+1 and an
external scalar input u then return zt, gt 2 RS⇥A. zt, gt
satisfies that

zt(st, at)  P>(·|st, at)V
in
t+1, gt(st, at)  P>(·|st, at)[Vt+1 � V in

t+1],

uniformly for all st, at with high probability.

Algorithm 1 then proceeds by taking the input offline dataset
as a stream of iid sampled trajectories and use an exponen-
tially increasing-sized batches of independent data to pass
in zt and gt while updating the estimated Q value function
by applying the Bellman backup operator except that the
update is based on a conservative and variance reduced esti-
mated values. Each inner loop iteration backs up from the
last time-step and update all Qt for t = H, ..., 1; and each
outer loop iteration passes a new batch of data into the inner
loop while ensuring reducing the suboptimality gap from
the optimal policy by a factor of 2 in each outer loop itera-
tion, provided that the estimators zt + gt are increasingly
more accurate estimates of (1) as the suboptimality gap gets
smaller.

Plug-in estimators and high-confidence LCBs. The es-
timators zt and gt we use for the three different settings
are provided in Figure A. They are essentially the nat-
ural plug-in estimators of P>

t (·|s, a)(Vt+1 � V in
t+1) and

P>
t (·|s, a)V in

t+1 as well as their standard deviation by re-
placing Pt with bPt except that we use two disjoint splits D1

and D2 for zt and gt so they remain statistically indepen-
dent. A key difference from the generative model setting is
that these estimators are dependent across t, thus it requires

new technical steps to establish the convergence of these
estimators as well as putting them together to show that
Algorithm 1 works.

The doubling procedure. It turns out that Algorithm 1
alone does not yield a tight sample complexity guarantee,
due to its suboptimal dependence on the initial optimality
gap u(0) � supt kV ?

t � V (0)
t k1 (recall u(0) is the initial

parameter in the outer loop of Algorithm 1). This is captured
in the following (for the non-stationary case):

Proposition 3.1 (Informal version of Lemma B.10). Sup-
pose ✏ 2 (0, 1] is the final target accuracy. Algorithm 1
outputs the ✏-optimal policy with episode complexity:

• Õ(H4/dm✏2), If u(0) >
p
H; • Õ(H3/dm✏2), If u(0) 

p
H.

Proposition 3.1 suggests that Algorithm 1 may have a sub-
optimal sample complexity when the initial optimality gap
u(0) >

p
H . Unfortunately, this is precisely the case for

standard initializations such as V (0)
t := 0, for which we

must take u(0) = H . We overcome this issue by designing
a two-stage doubling procedure: At stage 1, we use Algo-
rithm 1 to obtain V intermediate

t , ⇡intermediate that are ✏0 =
p
H✏

accurate; At stage 2, we then use Algorithm 1 again with
V intermediate
t , ⇡intermediate as the input and further reduce the

error from ✏0 to ✏. The main take-away of this doubling
procedure is that the episode complexity of both stage is
only Õ(H3/dm✏2), therefore the total sample complexity
optimality is preserved. The pseudo-code of the two-stage
procedure OPDVR is summarized in Algorithm 2.

3.3. OPDVR for non-stationary transition settings
Theorem 3.2 (OPDVR in episodic non-stationary setting).
For the H-horizon non-stationary setting, there exist uni-
versal constants c1, c2, c3 > 0 such that if we set m0

1 =
c1H

4/dm for Stage 1, m0
2 = c2H

3/dm for Stage 2, set
K1 = K2 = log2(

p
H/✏), take gt and zt according to

Figure A, then OPDVR (Algorithm 2) with probability 1��
outputs an ✏-optimal policy ⇡̂ provided that the number of
episodes in the offline data D exceeds (below can be readily
simplified as eO

�
H3/dm✏2

�
):

c3 max[
m

0
1

H
,m0

2]

✏2
�
◆+ log log2(

p
H
✏

)
�
log2(

p
H
✏

),

Optimality of sample complexity. Theorem 3.2 shows
that our OPDVR algorithm can find an ✏-optimal policy
with eO(H3/dm✏2) episodes of offline data. Compared with
the sample complexity lower bound ⌦(H3/dm✏2) for of-
fline learning (Theorem G.2. in Yin et al. (2021)), we see
that our OPDVR algorithm matches the lower bound up to
logarithmic factors. The same rate was achieved previously
by the local uniform convergence argument of Yin et al.
(2021) under a stronger assumption of full data coverage.
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4. OPDVR for stationary transition settings
In this section, we switch gears to the stationary transition
setting, in which the transition probabilities are identical at
all time steps: Pt(s0|s, a) :⌘ P (s0|s, a). We will consider
both the (a) finite-horizon case where each episode is consist
of H steps; and (b) the infinite-horizon case where the
reward at the t-th step is discounted by �t, where � 2 (0, 1)
is a discount factor. These settings encompass additional
challenges compared with the non-stationary case, as in
theory the transition probabilities can now be estimated
more accurately due to the shared information across time.

4.1. Finite-horizon stationary setting
Theorem 4.1 (Sample complexity of OPDVR in finite-hori-
zon stationary setting). In the H-horizon stationary transi-
tion setting, there exists universal constants c01, c02, c03 such
that if we set m0

1 = c01H
3/dm, m0

2 = c02H
2/dm for Stage

1 and 2, set K1 = K2 = log2(
p
H/✏), and take zt and gt

according to Figure A, then with probability 1��, Practical
OPDVR finds an ✏-optimal policy provided that the number
of episodes in the offline data D exceeds (which is of order
eO
⇣

H
2

dm✏2

⌘
):

c03 max[
m

0
1

H
,m0

2]

✏2

⇣
◆ + log log2(

p
H

✏
)
⌘
log2(

p
H

✏
),

Theorem 4.1 encompasses our main technical contribution,
as the compact data aggregation among different time steps
make analyzing the estimators (60) and (61) knotty due
to data-dependence (unlike the non-stationary transition
setting where estimators are designed using data at specific
time). In particular, we need to fully exploit the property that
transition P is identical across different times in a pinpoint
way to obtain the H2 dependence in the sample complexity
bound.

Improved dependence on H . Theorem 4.1 shows
that OPDVR achieves a sample complexity upper bound
eO(H2/dm✏2) in the stationary setting. To the best of our
knowledge, this is the first result that achieves an H2 depen-
dence for offline RL with stationary transitions.

Optimality of eO(H2/dm✏2). We accompany Theorem 4.1
by a establishing a sample complexity lower bound for this
setting, showing that our algorithm achieves the optimal
dependence of all parameters up to logarithmic factors.
Theorem 4.2 (Information-theoretic lower bound). For all
0 < dm  1

SA , let the family of problem be Mdm
:=�

(µ,M)
�� mint,st,at

dµt (st, at) � dm
 

. There ex-
ists universal constants c1, c2, c, p (with H,S,A � c1
and 0 < ✏ < c2) such that when n  cH2/dm✏2,
infv⇡

alg sup(µ,M)2Mdm

Pµ,M (v⇤ � v⇡alg � ✏) � p.

4.2. Infinite-horizon discounted setting

Finally, we consider the infinite-horizon discounted setting.
The setting is slightly different to the finite horizon case as

we adopt the same assumption of (Chen & Jiang, 2019; Xie
& Jiang, 2020b) that data D = {s(i), a(i), r(i), s0(i)}i2[n]

are i.i.d off-policy pieces with (s, a) ⇠ dµ and s0 ⇠
P (·|s, a). The infinite horizon-versions of OPDVR (Al-
gorithm 3 and 4) are stated in the Appendix due to the space
limit.
Theorem 4.3 (Sampe complexity of OPDVR in in-
finite-horizon discounted setting). Consider Algorithm 4.
There are constants c01, c

0
2, c

0
3, such that if we set

m0
1 = O((1 � �)�4/dm),m0

2 = O((1 � �)�3/dm)
(see more precise expressions in Lemma D.7), K1 =
log2((1� �)�1/✏),K2 = log2(

p
(1� �)�1/✏) , R =

log(4/✏(1� �)), and choose LCB estimators z and g as in
Figure A, then with probability 1 � �, the infinite horizon
version of OPDVR (Algorithm 4) outputs an ✏-optimal pol-
icy provided that in offline data D has number of samples
exceeding

c03 max[
m

0
1

(1��)�1 ,m0
2]

✏2
· ◆0 = eO

h
(1 � �)�3/dm✏2

i
.

where ◆0 := R·(log(32(1��)�1RSA/�)+log log2(
p

(1 � �)�1/✏))·
log2(

p
(1 � �)�1/✏).

We note that for the infinite horizon case, the sample-
complexity measures the number of steps, thus (1� �)�3 is
comparable to the H2 dependence. To the best of our knowl-
edge, Theorem 4.1 and Theorem 4.3 are the first results that
achieve H2, (1 � �)�3 dependence in the offline regime
respectively for stationary transition and infinite horizon
setting, see Table 1.

5. Discussions
Estimating dm. It is worth mentioning that the input of
OPDVR depends on unknown system quantity dm. Nev-
ertheless, dm is only one-dimensional scalar and thus it is
plausible (from a statistical perspective) to leverage stan-
dard parameter-tuning tools (e.g. cross validation (Varma &
Simon, 2006)) for obtaining a reliable estimate in practice.
On the theoretical side, we provide the following result to
show plug-in on-policy estimator bdµt (st, at) = nst,at

/n and
bdm := mint,st,at

{nst,at
/n : nst,at

> 0}, is sufficient for
accurately estimating dµt , dm simultaneously.
Lemma 5.1. For the finite-horizon setting (either stationary
or non-stationary), there exists universal constant c, s.t.
when n � c · 1/dm · log(HSA/�), then w.p. 1� �, we have
8t, st, at, 1

2d
µ
t (st, at)  bdµt (st, at)  3

2d
µ
t (st, at) and, in

particular, 1
2dm  bdm  3

2dm. See Appendix F.1 for proof.

Improvement over VR in the generative model setting.
First, the data collected in the offline case are highly de-
pendent (in contrast in the generative model setting each
simulator call is independent), and disentangling the de-
pendent structure makes the offline setting inherently more
challenging. Second, our doubling mechanism always guar-
antee the minimax rate with any initialization and the single
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VR procedure does not have this property (see Appendix F.4
for a more detailed discussion), which could be a critical
issue when (Sidford et al., 2018a) claims the optimality.
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Antos, A., Szepesvári, C., and Munos, R. Fitted q-iteration
in continuous action-space mdps. In Advances in neural
information processing systems, pp. 9–16, 2008a.
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