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Abstract
The concept of utilizing multi-step returns for up-
dating value functions has long been adopted in
the reinforcement learning domain. Conventional
methods such as TD (λ) further extend this con-
cept and use a single target value equivalent to
an exponential average of different step returns.
Nevertheless, different backup lengths provide di-
verse advantages in terms of bias and variance of
value estimates, convergence speeds, and learning
behaviors of the agent. Integrating step returns
into a single target sacrifices the advantages of-
fered by different step return targets. In order
to address this issue, we propose Mixture Boot-
strapped DQN (MB-DQN) and employ different
backup lengths for different bootstrapped heads.
MB-DQN enables diversity of the target values
that is unavailable in approaches relying only on
a single target value.

1. Introduction
In recent value-based deep reinforcement learning (DRL),
a value function is usually utilized to evaluate state values,
which stand for estimates of the expected long-term cumula-
tive rewards that might be collected by an agent. In order to
perform such an evaluation, a deep neural network (DNN)
is employed by a number of contemporary value-based DRL
methods (Mnih et al., 2015; Wang et al., 2016; Hasselt et al.,
2016; Osband et al., 2016; Hessel et al., 2018) as the value
function approximator, in which the network parameters
are iteratively updated based on the agent’s experience of
interactions with an environment. For many of these meth-
ods (Mnih et al., 2015; Wang et al., 2016; Hasselt et al.,
2016; Osband et al., 2016; Hessel et al., 2018), the update
procedure is carried out by one-step temporal-difference
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(TD) learning (Sutton & Barto, 1998) (or simply “one-step
TD”), which calculates the error between an estimated state
value and a target differing by one timestep. One-step TD
has been shown effective in backing up immediate reward
signals collected by an agent. However, the long temporal
horizon that the reward signals from farther states have to
propagate through might lead to an extended learning period
of the value function approximator.

Learning from multi-step returns (Sutton & Barto, 1998)
is a way of propagating the rewards newly observed by an
agent faster to earlier visited states, and has been adopted
in several previous works. Asynchronous advantage actor-
critic (A3C) (Mnih et al., 2016) employs multi-step returns
as targets to update the value functions of its asynchronous
threads. Rainbow deep Q-network (Rainbow DQN) (Hes-
sel et al., 2018) also utilizes multi-step returns during the
backup procedure. The authors in (Barth-Maron et al., 2018)
also modify the target value function of deep deterministic
dolicy gradient (DDPG) (Lillicrap et al., 2016) to estimate
TD errors using multi-step returns. Updating value func-
tions with different backup lengths provides advantages in
different aspects in terms of bias and variance of value esti-
mates, convergence speeds, and learning behaviors of the
agent. Backing up reward signals through multi-step returns
shifts the bias-variance tradeoff (Hessel et al., 2018). There-
fore, backing up with different step return lengths (or simply
‘backup length’ hereafter (Asis et al., 2018)) might lead to
different target values in the Bellman equation, resulting in
different learning behaviors of an agent as well as different
achievable performance of it. The authors in (Amiranashvili
et al., 2018) have demonstrated that the performance of an
agent varies with different backup lengths, and showed that
both very short and very long backup lengths could cause
performance drops. These insights suggest that identifying
the best backup length for an environment is not straight-
forward. In addition, although learning based on multi-step
returns enhances the immediate sensitivity to future rewards,
it is at the expense of greater variance which may cause the
value function approximator to require more data samples to
converge to the true expectation. Relying on a single target
value with any specific backup length may also constrain the
learning behavior and possible performance of the agent.

Based on the above observations, there have been several
research works proposed to unify different target values
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Figure 1. A summary of different return target schemes and the proposed MB-DQN framework.

with different backup lengths to leverage their respective
advantages. The traditional TD (λ) (Sutton & Barto, 1998)
uses a target value equivalent to an exponential average of
all n-step returns (where n is a natural number), offering
a faster empirical convergence by interpolating between
low-variance TD returns and low-bias Monte Carlo returns.
DQN (λ) (Daley & Amato, 2019) further proposes an ef-
ficient implementation of TD (λ) for DRL by modifying
the replay buffer such that λ-returns can be pre-computed.
Although these methods benefit from combining multiple
distinct backup lengths, they still rely on a single target value
during the update procedure. Integrating step returns into a
single target value, however, may sacrifice the diversity of
the advantages from different step return targets.

As a result, in this paper, we propose Mixture Bootstrapped
DQN (abbreviated as “MB-DQN”) to address the above
issues. MB-DQN is built on top of bootstrapped DQN (Os-
band et al., 2016), which contains multiple bootstrapped
heads with randomly initialized weights to learn a set of
value functions. MB-DQN leverages the advantages of dif-
ferent step return targets by assigning a distinct backup
length to each bootstrapped head. Each bootstrapped head
maintains its own target value derived from the assigned
backup length during the update procedure. Since the
backup lengths of the bootstrapped heads are distinct from
each other, MB-DQN provides diversity in the target val-
ues as well as diversified learning behaviors of an agent
that is unavailable in approaches relying only on a single
target value. In summary, the primary contributions of the
paper include the following: (1) introducing an approach for
maintaining the advantages from different backup lengths,
and (2) preserving diversity in the target values provided by
different step return targets, and thus enhancing the boosting
effect of the voting process from the boostrapped heads, and
(3) investigating the performance gain offered by MB-DQN
through an offline RL (Levine et al., 2020; Agarwal et al.,
2020) perspective so as to ablatively and fairly justifying
the advantages of MB-DQN.
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Figure 2. A visualization of the behaviors of the agents.

2. Methodology
2.1. Behavior Comparison of the DQN Agents with

Different Designs of the Return Targets

To compare and highlight the impacts of different designs
of the return targets on an agent’s behavior, we employ an
example maze environment containing a starting point and
a goal, as depicted in Fig. 2 (a). In this environment, DQN
is set as the default algorithm for the agents. We compare
three different designs of the return targets: 1-step, 5-step,
and λ-return (Daley & Amato, 2019), as illustrated in the
first three architectures in Fig. 1, respectively. We depict
the states visited by the corresponding agents within 50k
timesteps during the training phase in Figs. 2 (b), (c), and (d),
respectively. From the former two cases, it is observed that
the agent trained with 5-step return reaches the goal through
a clearer and more concentrated path than the agent trained
with 1-step return. This is because the longer backup length
allows the 5-step learner to adjust its value function estima-
tion faster, thus guides it to quickly finds a path to follow
and stablizes its policy. On the other hand, although the
policy of the 1-step learner might converge slower than that
of the 5-step learner, it is observed that 1-step return enables
the agent to visit and explore more states in the early stage.
This is because the reward signal from a farther state has to
propagate through a longer temporal horizon. Therefore, the
1-step learner explores more extensively before learning an
effective policy to reach the goal. Lastly, it can be observed
that the agent trained with λ-return also quickly converges,
and reaches the goal through a even more concentrated path.
However, Fig. 2 (d) also reveals that the λ learner explores
apparently fewer states than those visited by the other two
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Figure 3. Comparison of the evaluation curves of MB-DQN and the baselines in eight Atari games. 2

cases. The rationale behind this observation might be due to
the even longer horizon of the backup lengths (up to 20) used
by (Daley & Amato, 2019) for deriving the single λ-return
target value. This motivational experiment demonstrates
and validates that different designs of the return targets may
lead to different behavior policies of the agents.

2.2. Mixture of Step Returns in Bootstrapped DQN

Although the λ-return target is able to combine different
return targets into a single one, the example presented in
the previous section shows that it may also sacrifice the
exploratory benefits of the diverse behaviors of the agents
trained from different return targets. We hypothesize that
preserving such diverse behaviors may be advantageous and
crucial to the agent. As a result, in order to preserve the
properties and benefits from different backup lengths, we
choose bootstrapped DQN (Osband et al., 2016) as our back-
bone framework. We leverage the advantages of distinct
Q-value function heads in bootstrapped DQN, and propose
the usage of mixtured backup lengths for different boot-
strapped Q-value function heads in our MB-DQN frame-
work, which is illustrated on the right-hand side of Fig. 1.
MB-DQN similarly contains K bootstrapped heads for esti-
mating the Q-value functions, where each bootstrapped head
k ∈ K correspond to its own backup length nk. In each
episode, MB-DQN also uniformly and randomly selects a
head k ∈ {1, ...,K}, and stores the state transition data
collected by the agent using this head into a replay buffer.
The replay buffer is played back periodically to update the
parameters of all the bootstrapped Q-value function heads as
well as the shared convolutional neural network. Each head
is trained with its own target network Qk(s, a; θ

−
k ) and its

own target value yks,a with the multi-step return. The multi-
step returns with different backup lengths provide diversity
in step returns for the K bootstrapped estimates, preserving
the properties and benefits from different backup lengths.

3. Experimental Results
3.1. Quantitative and Qualitative Comparisons

We compare MB-DQN against two baselines: bootstrapped
DQN with (a) all 1-step return heads and (b) all 3-step re-
turn heads, denoted as All-1-Step (Baseline) and All-3-Step
(Baseline), respectively. We use ten bootstrapped heads
for both MB-DQN and the baselines. MB-DQN (denoted
as Mixed-1-3-Step (MB-DQN)) is implemented using five
bootstrapped heads with 1-step backup length and another
five bootstrapped heads with 3-step backup lengths. Fig. 3
presents the qualitative comparison. It is observed that
longer backup lengths do not always guarantee better per-
formances — each environment may have its own favor.
The All-3-Step baseline outperforms the All-1-Step baseline
in five out of eight games, while it performs comparably
with the All-1-Step baseline in two games and suffers from
a considerable performance drop in Breakout. In contrast,
the proposed MB-DQN is able to deliver performances com-
parable to the better-performing baseline, and sometimes
demonstrate even better performances than the baselines in
terms of the scores and the convergence speed of the curves.

3.2. λ-Target v.s. Mixtured Bootstrapped Targets

In order to validate our assumption in Section 1 that inte-
grating step returns into a single target value may sacrifice
the diversity of the advantages provided by different step
return targets, in this section, we compare these strategies
of combining step returns in several Atari environments.
For the unified return target strategy, we consider a recently
proposed method called DQN (λ) (Daley & Amato, 2019),
which implements TD (λ) by pre-computing λ-returns using
an additional cache for its replay buffer memory. On the
other hand, MB-DQN employs a strategy that leverages K
bootstrapped heads, where each head k ∈ K has its own
target value. For a fair comparison of the influence of the
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Figure 4. The evaluation curves for the comparison between the
single λ-target strategy adopted by DQN (λ) and the multiple
bootstrapped targets strategy adopted by MB-DQN.

bootstrapped heads, we further include a variant of DQN (λ),
called DQN (λ) Ensemble, which employs K bootstrapped
heads using λ-return as the target value. In our experiments,
We set K = 10 for MB-DQN and DQN (λ) Ensemble,
where the settings for DQN (λ) are configured as its default
values in (Daley & Amato, 2019). The single target value
used by DQN (λ) is derived from multiple backup lengths
ranging from one to a hundred. The evaluation curves of
these strategies are plotted in Fig. 4. It can be observed that
for the four environments presented in Fig. 4, the curves
corresponding to the mixtured bootstrapped targets strategy
(i.e., MB-DQN) grow faster and higher than those corre-
sponding to the single-unified target strategy (i.e., DQN (λ)
and DQN (λ) Ensemble). The above interesting evidence
not only validates our assumption in Section 1, but also
reveals that the advantages offered by the incorporation of
multiple target values may outweigh the advantages offered
by a single TD (λ) target that aggregates returns from the
long temporal horizon.

3.3. Analysis of the Data Sample Quality and the
Voting Stragety of MB-DQN

As the experimental results presented in the previous sec-
tions have quantitatively and qualitatively demonstrated the
performance benefits offered by MB-DQN, we next dive
further to investigate the rationale behind the advantages.
We hypothesize that the performance improvements pro-
vided by MB-DQN may come from two possible causes: (1)
the quality of the collected data samples in the experience
replay buffer, and (2) the policy contributed from the voting
of the bootstrapped heads with different backup lengths. In
order to identify the main cause of the performance gain,
we design another sets of experiment based on an offline RL
setup (Levine et al., 2020; Agarwal et al., 2020). The use of
the offline RL setups allows us to isolate an RL algorithm’s
ability to exploit experiences and generalize them from its
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Figure 5. An overview of the offline learning setup.
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Figure 6. The evaluation curves for comparing different configura-
tions of the data generation agents and the learning-only agents
so as to investigate the performance benefits offered by MB-DQN.

ability to explore (Agarwal et al., 2020). Although the of-
fline RL setup is oftern considered challenging due to the
distribution mismatch between the current policy and the
offline data collection policy (Levine et al., 2020; Agarwal
et al., 2020), it is still an excellent choice for examining the
rationale behind the performance offered by MB-DQN.

The overview of the offline RL setup is depicted in Fig. 5,
which consists two agents: one agent (denoted as the data
generation agent) is responsible for generating state-action
pairs for an experience replay buffer while updating its Q-
value network with the data contained in it. The other agent
(denoted as the learning-only agent) only updates its Q-
value network by the existing data samples contained in
the replay buffer, without contributing data to it (i.e., in
an offline RL manner). In our experiments, both of these
agents are implemented with ten bootstrapped heads. We
consider two configurations for the data generation agent:
Mixed-1-3-Step (MB-DQN) and All-3-Step (Baseline), and
two configurations for the learning-only agent: All-1-Step
(Baseline) and All-3-Step (Baseline). The experiments are
evaluated on Seaquest, and the results corresponding to dif-
ferent configurations of the data generation agents and the
learning-only agents are plotted in Fig. 6 (a), as indicated
by the legends. It can be observed that even with differ-
ent configurations of the data generation agents (i.e., either
Mixed-1-3-Step (MB-DQN) or All-3-Step (Baseline)), the
performances of the learning-only agents do not exhibit sig-
nificant differences in terms of the scores and the learning
speeds. The above observations thus suggest that the perfor-
mance benefits of MB-DQN may not mainly come from the
quality of the data samples collected in the relay buffer.
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In order to validate the second hypothesis, we next intro-
duce another experiment for comparing the performances
of the offline learning-only agents based on the data sam-
ples collected by All-3-Step (Baseline). The learning-only
agents now include All-3-Step (Baseline) and Mixed-1-3-
Step (MB-DQN) to inspect if the performance gain of MB-
DQN results from the voting of the bootstrapped heads
with different backup lengths. The results are presented in
Fig. 6 (b), which reveals that with the same data samples
contained in the experience replay buffer, the curve corre-
spond to Mixed-1-3-Step (MB-DQN) is able to rise higher
than that of the All-3-Step (Baseline) case. This observation
indicates that the bootstrapped heads with different backup
lengths do provide advantageous impact on the exploitation
and generalization abilities of the agent. Since both boot-
strapped DQN (i.e., using the same backup lengths for all
of the heads) and MB-DQN (i.e., different heads may have
different backup lengths) use multiple bootstrapped heads,
the above evaluation results thus suggest that bootstrapped
heads with different backup lengths may further enhance
the boosting effect during the voting process.

4. Conclusion
We proposed MB-DQN for combining and leveraging the
advantages of different step return targets using multiple
bootstrapped heads. MB-DQN assigns a distinct backup
length to each bootstrapped head, allowing it to enhance the
boosting effect among boostrapped heads during the voting
process, and preserve the diversity of the advantages from
different step return targets. We first provided motivational
examples, and then evaluated MB-DQN methodology on a
number of Atari 2600 environments. Moreover, we showed
that incorporating multiple target values may outweight the
advantaged offered by a single TD (λ) target. Finally, we
inspected the benefits of MB-DQN through an offline RL
setup, and showed that the voting of the bootstratpped heads
plays a vital role in the performance of MB-DQN.
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