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Abstract
1 We study the problem of learning in the stochas-
tic shortest path (SSP) setting, where an agent
seeks to minimize the expected cost accumulated
before reaching a goal state. We design a novel
model-based algorithm EB-SSP and prove that it
achieves the minimax regret rate Õ(B?

√
SAK),

where K is the number of episodes, S is the num-
ber of states, A is the number of actions, and B?
bounds the expected cumulative cost of the opti-
mal policy from any state, thus closing the gap
with the lower bound. Interestingly, EB-SSP ob-
tains this result while being parameter-free, i.e.,
it does not require any prior knowledge of B?,
nor of T?, which bounds the expected time-to-
goal of the optimal policy from any state. We
also show various cases (e.g., positive costs, or
general costs when an order-accurate estimate of
T? is available) where the regret only contains a
logarithmic dependence on T?, thus yielding the
first (nearly) horizon-free regret bound beyond
the finite-horizon MDP setting.

1. Introduction & Summary of Contributions
Stochastic shortest path (SSP) is a goal-oriented reinforce-
ment learning (RL) setting where the agent aims to reach
a predefined goal state while minimizing its total expected
cost (Bertsekas, 1995). The interaction between the agent
and the environment ends only when (and if) the goal state
is reached, so the length of an episode is not predetermined
(nor bounded) and it is influenced by the agent’s behavior.
SSP includes both finite-horizon and discounted Markov
Decision Processes (MDPs) as special cases. Many com-
mon RL problems can be cast under the SSP formulation,
such as game playing or navigation.
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1Extended abstract. Full version available at https://
arxiv.org/abs/2104.11186.

We study the online learning problem in the SSP setting
(online SSP in short), where both the transition dynamics
and the cost function are initially unknown and the agent
interacts with the environment through multiple episodes.
The learning objective is to achieve a performance as close
as possible to the optimal policy π?, that is, the agent should
achieve low regret (i.e., the cumulative difference between
the total cost accumulated across episodes by the agent
and by the optimal policy). We identify three desirable
properties for a learning algorithm in online SSP.

• Desired property 1: Minimax. The lower bound on the
regret is Ω(B?

√
SAK) (Rosenberg et al., 2020), where

K is the number of episodes, S is the number of states,A is
the number of actions, and B? bounds the total expected
cost of the optimal policy starting from any state.

An algorithm for online SSP is (nearly) minimax optimal
if its regret is bounded by Õ(B?

√
SAK), up to

logarithmic factors and lower-order terms.

• Desired property 2: Parameter-free. Another relevant
dimension is the amount of prior knowledge required by
the algorithm. While knowing S, A and the cost (or re-
ward) range [0, 1] is standard across regret-minimization
settings (e.g., finite-horizon, discounted, average-reward),
the complexity of learning in SSP may be linked to SSP-
specific quantities such as B? and T?, which denotes the
expected time-to-goal of the optimal policy from any state.

An algorithm for online SSP is parameter-free if it relies
neither on T? nor B? prior knowledge.

• Desired property 3: Horizon-free. A core challenge in
SSP is to trade off between minimizing costs and quickly
reaching the goal state. This is accentuated when the in-
stantaneous costs are small, i.e., when there is a mismatch
between B? and T?. Indeed, while B? ≤ T? always holds
since the cost range is [0, 1], the gap between the two may
be arbitrarily large. The lower bound stipulates that while
the regret depends on B?, the “time horizon” of the prob-
lem, i.e., T? should a priori not impact the regret, even as
a lower-order term.

An algorithm for online SSP is (nearly) horizon-free if its
regret depends only logarithmically on T?.

https://arxiv.org/abs/2104.11186
https://arxiv.org/abs/2104.11186
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(
B?
√
SAK +B?S

2A
)

Yes B?, T? Yes

­ Õ
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Figure 1: Regret comparisons of algorithms for online SSP. Õ omits logarithmic factors and ÕK only reports the dependence in K.
Regret is the performance metric of Eq. 1. Minimax: Whether the regret matches the Ω(B?

√
SAK) lower bound (Rosenberg et al.,

2020), up to logarithmic and lower-order terms. Parameters: The parameters that the algorithm requires as input: either both B? and T?,
or one of them, or none (i.e., parameter-free). Horizon-Free: Whether the regret bound depends only logarithmically on T?. ∗If K is
known in advance, the additive term T?/poly(K) has a denominator that is polynomial in K, so it becomes negligible for large values
of K (if K is unknown, the additive term is T?). See the full version1 for the complete statements of our bounds.

Our definition extends the property of so-called horizon-
free bounds recently uncovered in finite-horizon MDPs
with total reward bounded by 1 (Wang et al., 2020; Zhang
et al., 2020; 2021). These bounds depend only logarithmi-
cally on the horizon H , which is the number of time steps
by which any policy terminates. Such notion of horizon
would clearly be too strong in the more general class of
SSP, where some (even most) policies may never reach
the goal, thus having unbounded time horizon. A more
adequate notion of horizon in SSP is T?, which bounds
the expected time of the optimal policy to terminate the
episode starting from any state.

Finally, while the previous properties focus on the learning
aspects of the algorithm, another important consideration is
computational efficiency. It is desirable that a learning algo-
rithm has run-time complexity polynomial in K,S,A,B?,
and T?. All existing algorithms for online SSP, including
the one proposed in this paper, meet such requirement.

Table 1 reviews the existing work on online learning in SSP.

Contributions. We now summarize our main contributions:

• We propose EB-SSP (Exploration Bonus for
SSP), a novel algorithm for online SSP. It carefully skews
the empirical transitions and perturbs the empirical costs
with an exploration bonus to induce an optimistic SSP
problem whose associated value iteration scheme is guar-

anteed to converge. In this optimistic model, the goal
can be reached from each state-action pair with positive
probability, thus all policies are in fact proper (i.e., they
eventually reach the goal with probability 1 starting from
any state). We decay the bias over time in a way that it
only contributes to a lower-order regret term. See Sect. 3
for an overview of our algorithm and analysis. Note that
EB-SSP is not based on a model-optimistic approach
(Tarbouriech et al., 2020; Rosenberg et al., 2020), and it
does not rely on a reduction from SSP to finite-horizon
(Cohen et al., 2021) (i.e., we operate at the level of the
non-truncated SSP model);

• EB-SSP is the first algorithm to achieve the minimax
regret rate of Õ(B?

√
SAK) while simultaneously being

parameter-free: it does not require to know nor estimate
T?, and it is able to bypass the knowledge ofB? at the cost
of only logarithmic and lower-order terms in the regret;

• EB-SSP is the first algorithm to achieve horizon-free
regret for SSP in various cases: i) positive costs, ii) no
almost-sure zero-cost cycles, and iii) the general cost case
when an order-accurate estimate of T? is available (i.e., a
value T ? such that T?υ ≤ T ? ≤ λT ζ? for some unknown
constants υ, λ, ζ ≥ 1 is available). This property is espe-
cially relevant if T? is much larger than B?, which can
occur in SSP models with very small instantaneous costs.
Moreover, EB-SSP achieves its horizon-free guarantees
while maintaining the minimax rate. For instance, un-
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der general costs when relying on T? and B?, its regret
is Õ(B?

√
SAK + B?S

2A). To the best of our knowl-
edge, EB-SSP yields the first set of (nearly) horizon-free
bounds beyond the setting of finite-horizon MDPs.

2. Preliminaries
An SSP problem is an MDPM := 〈S,A, P, c, s0, g〉, where
S is the finite state space with cardinality S, A is the finite
action space with cardinality A, and s0 ∈ S is the ini-
tial state. We denote by g /∈ S the goal state, and we set
S ′ := S ∪{g} (thus S′ := S+1). Taking action a in state s
incurs a cost drawn i.i.d. from a distribution on [0, 1] with ex-
pectation c(s, a), and the next state s′ ∈ S ′ is selected with
probability P (s′|s, a) (where

∑
s′∈S′ P (s′|s, a) = 1). The

goal state g is absorbing and zero-cost, i.e., P (g|g, a) = 1
and c(g, a) = 0 for any action a.2

A stationary and deterministic policy π : S → A is a
mapping from state s to action π(s). A policy π is said to be
proper if it reaches the goal with probability 1 when starting
from any state in S (otherwise it is improper). We denote
by Πproper the set of proper, stationary and deterministic
policies. We make the following basic assumption which
ensures that the SSP problem is well-posed.

Assumption 1. There exists at least one proper policy.

The value function (also called cost-to-go) of a policy π and
its associated Q-function are defined as

V π(s) := lim
T→∞

E
[ T∑
t=1

ct(st, π(st))
∣∣ s1 = s

]
,

Qπ(s, a) := lim
T→∞

E
[ T∑
t=1

ct(st, π(st))
∣∣ s1 = s, π(s1) = a

]
,

where ct ∈ [0, 1] is the (instantaneous) cost incurred at
time t at state-action pair (st, π(st)), and the expectation
is w.r.t. the random sequence of states generated by execut-
ing π starting from state s ∈ S (and taking action a ∈ A in
the second case). Note that V π may have unbounded com-
ponents if π never reaches the goal. For a proper policy π,
V π(s) and Qπ(s, a) are finite for any s, a. By definition of
the goal, we set V π(g) = Qπ(g, a) = 0 for all policies π
and actions a. Finally, we denote by Tπ(s) the expected
time that π takes to reach g starting at state s; in particular,
if π is proper then Tπ(s) is finite for all s, yet if π is im-
proper there must exist at least one s such that Tπ(s) =∞.

Equipped with Asm. 1 and an additional condition on im-

2For notational convenience, we will write Ps,a := P (·|s, a),
Ps,a,s′ := P (s′|s, a). For any two vectors X,Y of size S′, we
write their inner product as XY :=

∑
s∈S′ X(s)Y (s), we denote

by X2 the vector [X(1)2, X(2)2, . . . , X(S′)2]>, let ‖X‖∞ :=
maxs∈S′ |X(s)|, and if X is a probability distribution on S ′, then
V(X,Y ) :=

∑
s∈S′ X(s)Y (s)2 − (

∑
s∈S′ X(s)Y (s))2.

proper policies defined below, one can derive important
properties on the optimal policy π? that minimizes the value
function component-wise.
Lemma 2 (Bertsekas & Tsitsiklis, 1991;Yu & Bertsekas,
2013). Suppose that Asm. 1 holds and that for every im-
proper policy π′ there exists at least one state s ∈ S such
that V π

′
(s) = +∞. Then the optimal policy π? is station-

ary, deterministic, and proper. Moreover, V ? = V π? is
the unique solution of the optimality equations V ? = LV ?
and V ?(s) < +∞ for any s ∈ S, where for any vector
V ∈ RS the optimal Bellman operator L is defined as
LV (s) := mina∈A

{
c(s, a) + Ps,aV

}
. Also, the optimal

Q-value, denoted by Q? = Qπ
? , is related to the optimal

value function as follows: Q?(s, a) = c(s, a)+Ps,aV
? and

V ?(s) = mina∈AQ
?(s, a), for all (s, a) ∈ S ×A.

Learning formulation. The agent does not have any prior
knowledge of the cost function c or transition function P .
Each episode starts at the initial state s0 (the extension to
any possibly unknown distribution of initial states is straight-
forward), and ends only when the goal state g is reached
(note that this may never happen if the agent does not reach
the goal). We evaluate the performance of the agent after K
episodes by its regret, which is defined as

RK :=

K∑
k=1

Ik∑
h=1

ckh −K · min
π∈Πproper

V π(s0), (1)

where Ik is the time needed to complete episode k and ckh is
the cost incurred in the h-th step of episode k when visiting
(skh, a

k
h). If there exists k such that Ik is infinite, then we

define RK =∞. Throughout we denote the optimal proper
policy by π? and V ?(s) := V π

?

(s) = minπ∈Πproper V
π(s)

and Q?(s, a) := Qπ
?

(s, a) = minπ∈Πproper Q
π(s, a) for all

(s, a). Let B? > 0 bound the values of V ?, i.e., B? :=
maxs∈S V

?(s). Note that Q?(s, a) ≤ 1 +B?. Let T? > 0
bound the expected time-to-goal of the optimal policy, i.e.,
T? := maxs∈S T

π?(s). We see that B? ≤ T? < +∞.

3. Main Algorithm
We introduce our algorithm EB-SSP (Exploration
Bonus for SSP) in Alg. 1. It takes as input the state-
action space S × A and confidence level δ ∈ (0, 1). For
now it considers that an estimate B such that B ≥ B? is
available, and we later handle the case of unknown B?. It
enforces the conditions of Lem. 2 to hold by adding a small
cost perturbation η ∈ [0, 1] (cf. lines 3, 12 in Alg. 1): either
η = 0 if the agent is aware that costs are already positive,
otherwise a careful choice of η > 0 will be specified.

EB-SSP sequentially constructs optimistic lower bounds on
the optimal Q-function and executes the policy that greedily
minimizes them. Similar to the MVP algorithm in Zhang
et al. (2020) designed for finite-horizon RL, we adopt the
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Algorithm 1: Algorithm EB-SSP

1 Input: S, s0 ∈ S, g 6∈ S, A, δ.
2 Input: an estimate B guaranteeing B ≥ max{B?, 1} (see

Sect. 4 if not available).
3 Optional input: cost perturbation η ∈ [0, 1].
4 Specify: Trigger setN ← {2j−1 : j = 1, 2, . . .}.

Constants c1 = 6, c2 = 36, c3 = 2
√

2, c4 = 2
√

2.
5 For (s, a, s′) ∈ S ×A× S ′, set

N(s, a)← 0; n(s, a)← 0; N(s, a, s′)← 0; P̂s,a,s′ ← 0;
θ(s, a)← 0; ĉ(s, a)← 0; Q(s, a)← 0; V (s)← 0.

6 Set initial time step t← 1 and trigger index j ← 0.
7 for episode k = 1, 2, . . . do
8 Set st ← s0
9 while st 6= g do

10 Take action at = arg mina∈AQ(st, a), incur cost
ct and observe next state st+1 ∼ P (·|st, at).

11 Set (s, a, s′, c)← (st, at, st+1,max{ct, η}) and
t← t+ 1.

12 Set N(s, a)← N(s, a) + 1, θ(s, a)← θ(s, a) + c,
N(s, a, s′)← N(s, a, s′) + 1.

13 if N(s, a) ∈ N then
14 \\ Update triggered: VISGO procedure
15 Set ĉ(s, a)← I[N(s, a) ≥

2] 2θ(s,a)
N(s,a)

+ I[N(s, a) = 1]θ(s, a) and
θ(s, a)← 0.

16 For s′ ∈ S ′, set P̂s,a,s′ ← N(s, a, s′)/N(s, a),
n(s, a)← N(s, a), and P̃s,a,s′ as in Eq. 2.

17 Set j ← j + 1, εVI ← 2−j/(SA) and i← 0,
V (0) ← 0, V (−1) ← +∞.

18 For all (s, a) ∈ S ×A, set
n+(s, a)← max{n(s, a), 1} and
ιs,a ← ln

(
12SAS′[n+(s, a)]2δ−1

)
.

19 while ‖V (i) − V (i−1)‖∞ > εVI do
20 For all (s, a) ∈ S ×A, set

b(i+1)(s, a)← b(V (i), s, a), \\ see Eq. 3

Q(i+1)(s, a) ← max
{
ĉ(s, a) +

P̃s,aV
(i) − b(i+1)(s, a), 0

}
,

V (i+1)(s) ← min
a
Q(i+1)(s, a).21

22 Set V (i+1)(g) = 0 and i← i+ 1.
23 Set Q← Q(i), V ← V (i).

doubling update framework (first proposed in Jaksch et al.,
2010): whenever the number of visits of a state-action pair
is doubled, the algorithm updates the empirical cost and
transition probability of this state-action pair, and computes
a new optimistic Q-estimate and optimistic greedy policy.

The main algorithmic component lies in how to compute
the Q-values (w.r.t. which the policy is greedy) when a dou-
bling condition is met. To this purpose, we introduce a
procedure called VISGO, for Value Iteration with
Slight Goal Optimism. Starting with optimistic val-
ues V (0) = 0, it iteratively computes V (i+1) = L̃V (i) for a

carefully defined operator L̃. It ends when a stopping condi-
tion is met, specifically once ‖V (i+1) − V (i)‖∞ ≤ εVI for a
precision level εVI > 0 (specified later), and it outputs the
values V (i+1) (and Q-values Q(i+1)). Let P̂ and ĉ be the
current empirical transition probabilities and costs, and let
n(s, a) be the current number of visits to state-action pair
(s, a) (and n+(s, a) = max{n(s, a), 1}). We first define
transition probabilities P̃ that are slightly skewed towards
the goal w.r.t. P̂ , as follows

P̃s,a,s′ :=
n(s, a)

n(s, a) + 1
P̂s,a,s′ +

I[s′ = g]

n(s, a) + 1
. (2)

We then define the bonus for any state-action pair (s, a) ∈
S ×A and vector V ∈ RS′

such that V (g) = 0, as follows

b(V, s, a) := max
{
c1

√
V(P̃s,a, V )ιs,a
n+(s, a)

, c2
Bιs,a
n+(s, a)

}
+ c3

√
ĉ(s, a)ιs,a
n+(s, a)

+ c4
B
√
S′ιs,a

n+(s, a)
, (3)

given the estimate B, specific positive constants
c1, c2, c3, c4 and a state-action dependent logarithmic
term ιs,a. Given the transitions P̃ and exploration bonus b,
we are ready to define the operator L̃ as

L̃V (s) := max
{

min
a∈A

{
ĉ(s, a) + P̃s,aV − b(V, s, a)

}
, 0
}
.

We see that L̃ promotes optimism in two different ways:

(i) On the empirical cost function ĉ, via the bonus b (Eq. 3)
that intuitively lowers the costs to ĉ− b;

(ii) On the empirical transition function P̂ , via the transitions
P̃ (Eq. 2) that slightly bias P̂ with the addition of a
non-zero probability of reaching the goal from every
state-action pair.

While the first feature (i) is standard in finite-horizon ap-
proaches, the second (ii) is SSP-specific, and is required
to cope with the fact that the empirical model P̂ may not
admit any proper policy, meaning that executing value it-
eration for SSP on P̂ may diverge. Our simple transition
skewing actually guarantees that all policies are proper in
P̃ , for any fixed and bounded cost function.3 By decaying
the extra goal-reaching probability inversely with n(s, a),
we can tightly control the gap between P̃ and P̂ and ensure
that it only accounts for a lower-order regret term.

Equipped with these two sources of optimism, as long as
B ≥ B?, we are able to prove that a VISGO procedure
verifies the following two key properties:

(1) Optimism: VISGO outputs an optimistic estimator
of the optimal Q-function at each iteration step, i.e.,
Q(i)(s, a) ≤ Q?(s, a),∀i ≥ 0,

3Interestingly this transition skewing implies that an SSP prob-
lem defined on P̃ is equivalent to a discounted RL problem, with a
varying state-action dependent discount factor.
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(2) Finite-time near-convergence: VISGO terminates
within a finite number of iteration steps (note that the
final iterate V (j) approximates the fixed point of L̃ up
to an error scaling with εVI).

To satisfy (1), we derive similarly to MVP (Zhang et al.,
2020) a monotonicity property for L̃, achieved by carefully
tuning the constants c1, c2, c3, c4 in the bonus of Eq. 3. On
the other hand, the requirement (2) is SSP-specific, as it is
not needed in finite-horizon where value iteration requires
exactly H backward induction steps. Without bonuses, the
design of P̃ would have directly entailed that L̃ is contractive
and convergent (Bertsekas, 1995). However, our variance-
aware exploration bonuses introduce a subtle correlation
between value iterates (i.e., b depends on V in Eq. 3), which
leads to a cost function that varies across iterates. By directly
analyzing L̃, we establish that it is contractive with modulus
ρ := 1 − ν < 1, where ν := mins,a P̃ s,a,g > 0. This
contraction property guarantees a polynomially bounded
number of iterations before terminating, i.e., (2).

4. Main Results
Besides ensuring the computational efficiency of EB-SSP,
the properties of VISGO lay the foundations for our regret
analysis (proof in the full version1). For simplicity we state
here the results in the case of B? ≥ 1.4

Theorem 3. Assume that B ≥ B? and that the conditions
of Lem. 2 hold. Then with probability at least 1 − δ the
regret of EB-SSP (Alg. 1 with η = 0) can be bounded by

RK = O

(
B?
√
SAK log

B?SAT

δ
+BS2A log2 B?SAT

δ

)
,

with T the accumulated time within the K episodes.

Thm. 3 is an intermediate result for the regret of EB-SSP,
as it depends on the random and possibly unbounded total
number of steps T executed over K episodes, it requires the
possibly restrictive second condition of Lem. 2, and it relies
on the parameter B being properly tuned. Nonetheless, it
already displays interesting properties: 1) The dependence
on T is limited to logarithmic terms; 2) The parameter B
only affects the lower order term, while the main order
term naturally scales with the exact range B?; 3) Up to
dependence on T , the main order term displays minimax
optimal dependencies on B?, S, A, and K.

Our analysis proceeds as follows (details in full version1):

Known B?. First we assume that B = B? (i.e., the agent
has prior knowledge of B?) and we focus on bounding T .
We instantiate the regret of EB-SSP under various condi-
tions on the SSP model:

4Otherwise, the bounds hold by replacing B? with
max{B?, 1}, except for the B? factor in the leading term that
becomes

√
B?.

(C1) positive costs, i.e., costs lower bounded by an un-
known constant cmin > 0;

(C2) no almost-sure zero-cost cycles;
(C3) general costs (i.e., non-negative), with no assumption

other than Asm. 1; see row ­ in Table 1;
(C4) general costs when an order-accurate estimate of T? is

available (i.e., a value T ? such that T?υ ≤ T ? ≤ λT ζ?
for some unknown constants υ, λ, ζ ≥ 1 is available);
see row ¬ in Table 1;

In these four cases, the regret achieved by EB-SSP is al-
ways minimax-optimal, and moreover in cases (C1, C2,
C4) it is also horizon-free.

Unknown B?. We now derive our regret bounds for un-
known B?. Note that the challenge of not knowing the
range of the optimal value function does not appear in finite-
horizon MDPs, where the bound H (or 1 in Zhang et al.,
2020) is assumed to be known to the agent. Without a valid
estimate B ≥ B?, one may design an under-specified ex-
ploration bonus which cannot guarantee optimism. The
unknown B? case is non-trivial: it appears impossible to
properly estimate B? (as some states may never be visited)
and it is unclear how a standard doubling trick may be used.5

We devise parameter-free EB-SSP as follows (pseudo-code
and analysis in the full version1). At a high level, it initial-
izes an estimate B̃ = 1 and increments it with two different
speeds. On the one hand, it tracks both the cumulative cost
and the range of the value function computed by VISGO,
and it doubles B̃ whenever either exceeds thresholds (that
depend on B̃, the number of episodes elapsed so far and
other computable terms). We ensure that this happens at
most once when B̃ ≥ B? and we bound the regret by the
cumulative cost threshold. On the other hand, the B̃ esti-
mate is also increased when a new episode begins by setting
B̃ ← max{B̃,

√
k/(S3/2A1/2)}, with k the current episode

index. This ensures that for large enough k we have B̃ ≥ B?,
at which point we can bound the regret using Thm. 3.

Theorem 4. Assume the conditions of Lem. 2 hold. Then
with probability at least 1− δ the regret of parameter-free
EB-SSP can be bounded by

RK = O

(
R?K log

B?SAT

δ
+B3

?S
3A log3 B?SAT

δ

)
,

where T is the cumulative time within the K episodes and
R?K denotes the regret after K episodes of EB-SSP in the
case of known B? (i.e., the bound of Thm. 3 with B = B?).

Thus all our regret bounds can be made parameter-free up
to additional logarithmic and lower-order regret terms.

5Note that Qian et al. (2019) raised an open question whether
it is possible to design an exploration bonus strategy in a setting
where no prior knowledge of the “optimal range” is available.
Indeed their approach in average-reward MDPs relies on prior
knowledge of an upper bound on the optimal bias span.
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