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Abstract
We consider the off-policy evaluation problem
in POMDPs. Prior work on this problem uses a
causal identification strategy based on one-step
observable proxies of the hidden state (Tennen-
holtz et al., 2020a). In this work, we relax the
assumptions made in the prior work by using
spectral methods. We further relax these assump-
tions by extending one-step proxies into the past.
Finally, we derive an importance sampling algo-
rithm which assumes rank, distinctness, and posi-
tivity conditions on certain probability matrices,
and not on sufficiency conditions of observable
trajectories with respect to the reward and hidden
state structure required in the prior work.

1. Introduction
We consider the problem of estimating the value of an
evaluation policy given access only to a batch of trajec-
tories obtained from the behavior policy, known as the off-
policy evaluation (OPE) problem. The OPE problem is
well-motivated by its application to real-world scenarios
in which the deployment of the evaluation policy is poten-
tially too costly for its performance to be determined by
directly intervening with it, but rather must be inferred from
previously existing data under a different policy. As an ex-
ample, in healthcare settings, it may be unsafe to directly
test a new experimental treatment with potentially unknown
side-effects; thus reasoning based on previous treatment
strategies to infer a new treatment’s efficacy is necessary.

We consider the regime of Partially Observable Markov
Decision Processes (POMDPs), in which one has access
only to observable trajectories under the behavior policy,
which do not include underlying latent states (i.e. hidden
confounders), and must infer the value of the evaluation
policy given only these observables. In particular, just as in
(Tennenholtz et al., 2020a), we consider the setting in which
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the behavior policy depends on the latent state, whereas the
evaluation policy at any given time step depends only on
the observed history up to that time step. This choice is
motivated, for example, by the medical treatment scenario
described in (Tennenholtz et al., 2020a): one must determine
the effectiveness of the evaluation treatment, given access
to the behavior treatment administered by a doctor who
had access to—and thus, acted according to—unobserved
confounders such as the patient’s socioeconomic status and
insurance coverage. This choice in the structure of behavior
and evaluation policies captures the realistic possibility that
historical data may depend on hidden confounders which
we are unable to observe or act upon.

In this work, we first generalize the method of (Tennenholtz
et al., 2020a). Motivated by spectral learning in Predictive
State Representations (PSRs) and Hidden Markov Models
(HMMs) (Boots et al., 2011; Kulesza et al., 2015; Hsu et al.,
2012), we give an estimator whose rank assumptions scale
with the size of the hidden state space. We then give further
weaker assumptions by using multi-step proxies for hidden
state, rather than the one-step proxies of (Tennenholtz et al.,
2020a), by using the entire extended history preceding the
confounder as one of the proxies, rather than just the previ-
ous time step. Along the way, we show that there is difficulty
in using extended futures for the other proxy (which would
further relax rank assumptions). Finally, by extending the
eigendecomposition technique of (Kuroki & Pearl, 2014),
we provide an Importance Sampling (IS) algorithm which
requires only rank conditions on certain probability matrices
and not the sufficiency assumptions of (Tennenholtz et al.,
2020a).

2. Related Work
OPE in POMDPs Most closely related to our work is
that of (Tennenholtz et al., 2020a), who consider the finite-
horizon OPE problem in tabular POMDPs by extending
the work of (Miao et al., 2018) and writing the probabil-
ity of seeing reward rt, in terms of matrices of observable
probabilities, whose dimensions scale with the size of the
observation space, Z , and which are required to be invert-
ible. They further develop a Decoupled POMDP model
which factors the state space, U , into both observed and un-
observed variables, allowing for a modified OPE algorithm
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whose observable matrices scale with |U|, which is often
much smaller than |Z|. Our work mitigates difficulty in the
general POMDP setting by requiring that the observable
matrices have rank |U|, rather than |Z|, and further relaxes
assumptions by extending histories.

Causal effect identification Our work is closely related
to the use of negative controls to minimize confounding bias
in the causal inference literature. Of particular interest is
(Miao et al., 2018) and (Kuroki & Pearl, 2014), who con-
sider the static problem of identifying the causal effect of
one variable on another, assuming multiple observable prox-
ies of the latent confounder. (Kuroki & Pearl, 2014) first
identify the confounder’s error mechanism via eigenvalue
analysis and then use the matrix adjustment method (Green-
land & Lash, 2012) to determine the causal effect, while
(Miao et al., 2018) directly determine the causal effect with-
out identifying any of the aspects of the confounding model,
allowing for weaker assumptions. Our work generalizes
the latter’s results and extends to the setting of POMDPs,
similar to (Tennenholtz et al., 2020a). We extend the for-
mer’s analysis to give an IS algorithm which does not rely
on sufficiency assumptions.

3. Preliminaries
POMDPs A POMDP is a 7-tuple 〈U ,Z,A, O, T,R,H〉,
where U and Z denote the hidden state and observa-
tion spaces, respectively, A denotes the set of actions, O
gives observation emission probabilities, T governs the
hidden state transition dynamics, R is a (potentially non-
deterministic) function of the hidden state and action giving
the reward, and H denotes the horizon. In this work, we
assume that the sets U ,Z, and A are all finite.

Using the notation of (Tennenholtz et al., 2020a),
a trajectory τ of length t denotes a sequence
(u0, z0, a0, . . . , ut, zt, at) while τo denotes the ob-
servable trajectory (z0, a0, . . . , zt, at). We use Tt to denote
the set of trajectories of length t, and, correspondingly,
T ot to denote the set of observable trajectories of length
t. Additionally, an observable history of length t is given
by a sequence of the form (z0, a0, . . . , at−1, zt), and is
denoted by hot . Finally, we will assume the existence of an
observation z−1 preceding the initial time step which is
conditionally independent of z0 and a0 given u0.

Policies Let πb and πe denote the behavior and evaluation
policies, respectively. As mentioned in the introduction, we
consider the setting in which the behavior policy at time
step t, π(t)

b , is a stochastic function of the hidden state, u,
whereas the evaluation policy at time t, π(t)

e , is a stochastic
function of only the observable history, hot . Additionally,
we consider the finite-horizon undiscounted setting so that

for any policy π (either depending on observable histories
or hidden state), its value vH(π) is given by Eπ

[∑H
t=0 rt

]
,

the expected sum of rewards seen by following π. Finally,
let P b and P e denote measures over trajectories induced by
the behavior and evaluation policies, respectively.

In addition to the above, we also use the double vertical bar
notation of (Boots et al., 2011) to indicate intervening. For
example, P [z0, . . . , zt||a0, . . . , at−1] denotes the probabil-
ity of seeing the observation sequence (z0, . . . , zt), given
that we intervened with actions a0, . . . , at−1.

Problem Formally, the OPE problem asks, given a batch
of observable trajectories collected under the behavior pol-
icy, to estimate the value of the evaluation policy. In other
words, we must estimate vH(πe) given only observable tra-
jectories from P b.

For convenience, we use the vector notations of (Ten-
nenholtz et al., 2020a). For example, let the ran-
dom variables x,y, z be supported on the sets X =
{x1, . . . , xn1}, Y = {y1, . . . , yn2}, Z = {z1, . . . , zn3},
respectively. Then P (y|X), P (X), P (Y |x, Z) denote
a row vector, column vector, and matrix, respec-
tively with (P (y|X))i = Pr[y|xi], (P (X))i =
Pr[xi], ((P (Y |x, Z))i,j = P (yi|x, zj). In general, a set
(always denoted by a capital letter) before (after) the condi-
tioning bar indicates vectorization across rows (columns).

3.1. One-Step Proxies

We now briefly review the POMDP OPE algorithm of (Ten-
nenholtz et al., 2020a), who approach the OPE problem
by directly estimating P e(rt) which can then be used to
estimate vH(πe). They make the following assumptions on
observable probability matrices.
Assumption 1. P b(Zi|ai, Zi−1) is invertible ∀i ≤ H, ai ∈
A.

Defining Πe
t (τ

o) =
∏t
i=0 π

(i)
e (ai|hoi ), they give the follow-

ing estimator:
Theorem 1. Under Assumption 1, P e(rt) can be written as∑

τo∈T o
t

Πe(τ
o)P b(rt, zt|at, Zt−1)

·
0∏

i=t−1

(
P b(Zi+1|ai+1, Zi)

−1P b(Zi+1, zi|ai, Zi−1)
)

· P b(Z0|a0, Z−1)−1P b(Z0). (1)

The proof is made possible by first noting that

P e(rt) =
∑
τo∈T o

t

Πe
t (τ

o)P b(rt, zt, zt−1, . . . , z0||a0, . . . , at),

(2)
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2Figure 1. Causal diagrams for proxies of the confounder ui: one-
step proxies (a), multi-step histories (b), multi-step histories, multi-
step futures (c), and multi-step futures with reward-observation
outcome (d).

and then, at each time step i, statically viewing zi−1 as an
observable proxy emitted by the latent state ui, giving the
causal diagram in Figure 1(a) which implies that the proxies
zi and zi−1 are conditionally independent given ui, allowing
for the application of the identification scheme of (Miao
et al., 2018) to identify P b(rt, zt, zt−1, . . . , z0||a0, . . . , at).

4. Relaxing Rank Assumptions
As P b(Zi|ai, Zi−1) = P b(Zi|ai, Ui)P b(Ui|ai, Zi−1), As-
sumption 1 implicitly requires |U| ≥ |Z| (since for matrices,
A, B, rank(AB) ≤ min(rank(A), rank(B))), which is un-
realistic in most real-world settings, where the hidden state
space is often much smaller than the observation space. In-
spired by spectral learning of PSRs and POMDPs (Boots
et al., 2011; Kulesza et al., 2015; Hsu et al., 2012), we show
that we can allow for the more reasonable assumption that
|U| ≤ |Z| by requiring the matrices P b(Zi|ai, Zi−1) to be
of rank |U|. As such, we henceforth assume that |U| ≤ |Z|.
We then relax assumptions by using the entire observable
history as a proxy, rather than just the observation from the
previous time step.

4.1. Spectral Relaxation of One-Step Proxies

We first relax rank assumptions in the case of one-step prox-
ies by performing singular value decompositions (SVDs)
on the matrices P b(Zi|ai, Zi−1) and using the left singular
vectors to derive spectral analogs to the causal identifica-
tion lemmas used in Theorem 1. We make the following
assumption:

Assumption 2. rank(P b(Zi|ai, Zi−1)) ≥ |U|,∀i ≤
H, ai ∈ A.

Under Assumption 2, we obtain the following estimator (see
Appendix for proof):

Theorem 2. Under Assumption 2, let Mi,ai be the
left singular vectors of P b(Zi|ai, Zi−1) and M ′i,ai :=
(MaiP (Zi|ai, Zi−1))+. Then P e(rt) is equal to∑

τo∈T o
t

Πe(τ
o)P b(rt, zt|at, Zt−1)M ′t,at

·
0∏

i=t−1

(
Mi+1,ai+1

P b(Zi+1, zi|ai, Zi−1)M ′i,ai
)
M0,a0P

b(Z0)

(3)

4.2. Multi-Step Histories

We now show that, by extending histories, even weaker
rank assumptions can be made. Specifically, letting
Hot denote the set of observable histories of length t,
the matrices, P b(Zi|ai, Zi−1) and P b(Zi+1, zi|ai, Zi−1),
in Theorem 2 can be replaced with P b(Zi|ai,Hoi−1)
and P b(Zi+1, zi|ai,Hoi−1), respectively, with Mi,ai and
M ′i,ai defined correspondingly in terms of SVDs of
P b(Zi|ai,Hoi−1). We make the following rank assumption:

Assumption 3. rank(P b(Zi|ai,Hoi−1)) ≥ |U|,∀i ≤
H, ai ∈ A.

Similar to Theorem 2, we obtain the following:

Theorem 3. Under Assumption 3, define Mi,ai and M ′i,ai
in terms of P b(Zi|ai,Hoi−1)). Then the probability P e(rt)
is equal to∑

τo∈T o
t

Πe(τ
o)P b(rt, zt|at,Hot−1)M ′t,at

·
0∏

i=t−1

(
Mi+1,ai+1P

b(Zi+1, zi|ai,Hoi−1)M ′i,ai
)
M0,a0P

b(Z0)

(4)

We give a proof of Theorem 3 in the Appendix, but, at a
high level, Figures 1(a) and (b) show the static causal struc-
ture is unchanged when extending the length of observable
histories, allowing for essentially the same analysis as in the
one-step case.

Importantly, note that Assumption 3 is weaker
than Assumption 2 as P b(Zi|ai, Zi−1) =
P b(Zi|ai,Hoi−1)P b(Hoi−1|ai, Zi−1).

5. Multi-Step Futures
We would like to extend futures and replace the ma-
trices P b(Zi|ai,Hoi−1) and P b(Zi+1, zi|ai,Hoi−1) with
probability matrices of length ` futures of the form
P b(Zi:i+`|ai,Hoi−1) and P b(Zi+1:i+1+`, zi|ai,Hoi−1)

(where Zi:j :=
∏j
k=i Zk and zi:j := (zi, . . . , zj) for

i ≤ j; when j < i, these are the empty set and sequence,
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respectively), so as to further relax rank assumptions
by only assuming that rank(P b(Zi:i+`|ai,Hoi−1)) ≥ |U|,
which is implied by Assumption 3. This, however,
as we now show, is not possible via identification of
P b(rt, zt, zt−1, . . . , z0||a0, . . . , at).

The primary difficulty, as indicated by the red edge in Figure
1(c), is that, when extending futures, the treatment, ai, does
have a causal effect on the observables zi:i+`−1, yielding a
causal structure in which the causal effect is nonidentifiable
(Pearl, 2009). Hence, the above identification strategy is des-
tined to fail when using multi-step futures as proxies of the
confounder. In fact, it is, in general, impossible to write the
probability P (rt, zt, . . . , z0||a0, . . . , at) (on whose identi-
fiability our approach crucially depends via (2)) in terms
of probabilities involving multi-step futures, zi:i+`−1 (with-
out, of course, simply marginalizing out zi+1:i+`−1) as ev-
idenced, for example, by Figure 1(d), which also has the
same causal structure, thus implying that even the proba-
bility P (r1, z0||a0) is non-identifiable via multi-step future
proxies.

6. Importance Sampling
We finally derive an IS procedure for OPE in POMDPs.
While the assumptions for our IS procedure are not directly
comparable with those made in previous sections, they in-
volve only rank, distinctness, and positivity conditions on
certain probabilities, and not the sufficiency assumptions
made in (Tennenholtz et al., 2020a) wherein τo is assumed
to be a sufficient statistic for both reward and state. Rather,
we extend the eigendecomposition technique of (Kuroki &
Pearl, 2014), which is used to calculate matrices of proba-
bilities involving unobserved confounders.

In order to satisfy certain rank assumptions of our analysis
we require:
Assumption 4. |U| ≤ |A|.
Assumption 5. |R| ≥ |U|, whereR denotes the support of
possible rewards

Under rank |U| conditions on certain matrices of observable
probabilities, we are then able to write vectors of the form
πb(ai|Ui) via eigendecompositions of matrices of observ-
able probabilities under the behavior measure, where the
entries are subject to an unknown, but consistent, ordering
(i.e., the kth entry of πb(ai|Ui) is πb(ai|u(k)

i ), but with the
identity of u(k)

i unknown). We, additionally, make a weak
assumption on the reward distribution so that, the causal
structure of rewards and observations are identical:
Assumption 6. The reward function R is a (possibly
stochastic) function of only latent state, and does not depend
on action.

Assumption 6 allows for the reward probability distribu-

tion P b(ri|Ui) to also be written in terms of observable
probabilities in the same way as described above and un-
der similar rank |U| assumptions. Additionally, in order
to ensure uniqueness in the eigendecompositions, we fur-
ther require certain probabilities to be distinct. As these
conditions are in terms of probability matrices which lack
succinct representation, we relegate the assumptions and
proof to the Appendix but summarize here:
Theorem 4. Under Assumptions 4, 5, and 6, as well as rank
|U| and distinctness conditions on certain probability matri-
ces, the vectors π(i)

b (ai|Ui), and P b(ri|Ui) can be written
in terms of observable probabilities under the behavior mea-
sure with respect to an unknown, but consistent, ordering
on Ui for all i ≤ H .

Defining Πb(u0:t) =
∏t
i=0 π

(i)
b (ai|ui) and letting v denote

value, we then obtain an IS procedure under the two follow-
ing additional exponential rank and positivity assumptions,
as well as additional probability positivity assumptions (see
Appendix):
Assumption 7. rank(P b(U0:H |T oH)) = |U|H+1

Assumption 8. P b(v|τo) > 0,∀v, τo and π(i)
b (ai|ui) >

0,∀i ≤ H, ai ∈ A, ui ∈ U .
Theorem 5. Under Assumptions 4, 5, 6, 7, 8, as well as
additional rank, distinctness, and positivity conditions on
certain observable probability matrices, we have that

vH(πe) = Eτo [Ev[vWe,b(v, τ
o)|τo]]

with We,b(v, τ
o) := P b(τo)

P b(v|τo)
Πe(τ

o)Γb(v, τ
o) and

Γb(v, τ
o) =

∑
r0:H :

∑
ri=v

∑
u0:H

∏H
i=0 P

b(ri|ui)P b(u0:H |τo)
Πb(u0:H)

,

where We,b(v, τ
o) is identifiable in terms of observable

probabilities.

7. Conclusion
In this work we consider OPE in POMDPs under the frame-
work posed in (Tennenholtz et al., 2020a). We extend their
work, relaxing assumptions on observable probability ma-
trices to only have rank |U| rather than |Z|, simultaneously
assuming that |U| ≤ |Z|. By additionally extending one
of the proxy variables into the past, we further relax as-
sumptions by assuming the matrices P b(Zi|ai,Hoi−1) have
rank |U|, allowing for our estimator to apply to a broader
class of POMDPs. We show that futures, however, can-
not be extended using this strategy, and additionally can-
not, in general, be used to obtain probabilities of the form
P (rt, zt, . . . , z0||a0, . . . , at). Finally, we give an IS algo-
rithm for OPE in POMDPs which only depends on rank,
distinctness, and positivity conditions on certain probability
matrices and not on sufficiency assumptions.
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A. OPE via Observable Proxies
We extend the identification scheme of (Tennenholtz et al., 2020a) and (Miao et al., 2018) to make weaker rank assumptions.
The proofs in this section use the same general strategy as in (Tennenholtz et al., 2020a), but use spectral methods to relax
their assumptions. We first give a sketch of the proof of 1 in (Tennenholtz et al., 2020a) before proceeding to our rank
relaxations.

A.1. (Tennenholtz et al., 2020a) One-Step Proxies

Proof Sketch. Note that
P e(rt) =

∑
τo∈T o

t

Πe
t (τ

o)P b(rt, zt, zt−1, . . . , z0||a0, . . . , at). (5)

We will identify P b(rt, zt, zt−1, . . . , z0||a0, . . . , at). Essentially, the analysis rests on the ability to non-parametrically
identify the causal effect of the control ai on the outcome (ui+1, zi) given confounded proxy variables zi−1 and zi at each
time step using the procedure of (Miao et al., 2018).

More specifically, this is done by first noting that

P (rt, zt, zt−1, . . . , z0||a0, . . . , at) = P b(rt, zt|at, Ut)

(
0∏

i=t−1

P b(Ui+1, zi|ai, Ui)

)
P b(U0), (6)

and extending off of the static causal identification setting, to show that

P b(Ui+1, zi|ai, Ui)P b(Ui, zi−1|ai−1, Ui−1)

= P b(Ui+1, zi|ai, Zi−1)P b(Zi|ai, Zi−1)−1P b(Zi, zi−1|ai−1, Zi−2)P b(Zi−1|ai−1, Zi−2)−1P b(Zi−1|ai−1, Ui−1) (7)

and

P b(rt, zt|at, Ut)P b(Ut, zt−1|at−1, Ut−1)

= P b(rt, zt|at, Zt−1)P b(Zt|at, Zt−1)−1P b(Zt, zt−1|at−1, Zt−2)P b(Zt−1|at−1, Zt−2)−1P b(Zt−1|at−1, Ut−1) (8)

while also observing that

P b(Zi|ai, Ui)P b(Ui, zi−1|ai−1, Zi−2) = P b(Zi, zi−1|ai−1, Zi−2). (9)

From these 4 core identities, it is then not hard to inductively derive the result.

A.2. Spectral One-Step Proxies

The proof of Theorem 2 relies on deriving the following analogs to equations (7) – (8) and using equations (6) and (9) to
similarly proceed by induction.

Lemma 1. Given Assumption 2, define Mi,ai and M ′i,ai as described in Section . Then

P b(Ui+1, zi|ai, Ui)P b(Ui, zi−1|ai−1, Ui−1)

= P b(Ui+1, zi|ai, Zi−1)M ′i,aiMi,aiP
b(Zi, zi−1|ai−1, Zi−2)

·M ′i−1,ai−1
Mi−1,ai−1

P b(Zi−1|ai−1, Ui−1) (10)

and

P b(rt, zt|at, Ut)P b(Ut, zt−1|at−1, Ut−1)

= P b(rt, zt|at, Zt−1)M ′t,atMt,atP
b(Zt, zt−1|at−1, Zt−2)

·M ′t−1,at−1
Mt−1,at−1P

b(Zt−1|at−1, Ut−1) (11)
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A.2.1. PROOF OF LEMMA 1

Proof. First, notice that
P b(Ui+1, zi|ai, Ui)P b(Ui|ai, Zi−1) = P b(Ui+1, zi|ai, Zi−1)

=⇒ P b(Ui+1, zi|ai, Ui)P b(Ui|ai, Zi−1)M ′i,ai = P b(Ui+1, zi|ai, Zi−1)M ′i,ai . (12)

Additionally,
P b(Zi|ai, Zi−1) = P b(Zi|ai, Ui)P b(Ui|ai, Zi−1) (13)

=⇒ P b(Zi|ai, Zi−1)M ′i,ai = P b(Zi|ai, Ui)P b(Ui|ai, Zi−1)M ′i,ai . (14)

From the definition of M ′i,ai , we have that
P b(Zi|ai, Zi−1)M ′i,ai

= P b(Zi|ai, Zi−1)(Mi,aiP
b(Zi|ai, Zi−1))+ = P b(Zi|ai, Zi−1)Vi,ai(I|U|×|Z|Σi,ai)

+

= Ui,aiΣi,ai(I|U|×|Z|Σi,ai)
+,

which has rank |U|, thus implying, by equation (14), that rank
(
P b(Ui|ai, Zi−1)M ′i,ai

)
= |U |, and so equation (12) implies

that
P b(Ui+1, zi|ai, Ui) = P b(Ui+1, zi|ai, Zi−1)M ′i,ai

(
P b(Ui|ai, Zi−1)M ′i,ai

)−1
. (15)

Now, notice that equation (13) implies that

Mi,aiP
b(Zi|ai, Ui)P b(Ui|ai, Zi−1) = Mi,aiP

b(Zi|ai, Zi−1). (16)

Similarly notice that rank
(
Mi,aiP

b(Zi|ai, Zi−1)
)

= |U | as, from the definition ofMi,ai , we haveMi,aiP
b(Zi|ai, Zi−1) =

I|U|×|Z|Σi,aiV
T
i,ai

. This, in turn, implies that rank
(
Mi,aiP

b(Zi|ai, Ui)
)

= |U | by equation (16), and so equation (16)
implies that

P b(Ui|ai, Zi−1) =
(
Mi,aiP

b(Zi|ai, Ui)
)−1

Mi,aiP
b(Zi|ai, Zi−1),

implying that
P b(Ui|ai, Zi−1)M ′i,ai =

(
Mi,aiP

b(Zi|ai, Ui)
)−1

Mi,aiP
b(Zi|ai, Zi−1)M ′i,ai . (17)

Now, we claim that Mi,aiP
b(Zi|ai, Zi−1)M ′i,ai = I|U|×|U| since

Mi,aiP
b(Zi|ai, Zi−1)M ′i,ai = I|U|×|Z|U

T
i,aiUi,aiΣi,aiV

T
i,ai

(
I|U|×|Z|U

T
i,aiUi,aiΣi,aiV

T
i,ai

)+
= I|U|×|Z|Σi,ai(I|U|×|Z|Σi,ai)

+

and thus equation (17) becomes

P b(Ui|ai, Zi−1)M ′i,ai =
(
Mi,aiP

b(Zi|ai, Ui)
)−1

. (18)

Finally, substituting (18) into (15) gives
P b(Ui+1, zi|ai, Ui)

= P b(Ui+1, zi|ai, Zi−1)M ′i,aiMi,aiP
b(Zi|ai, Ui).

This, in combination with the fact that

P b(Zi|ai, Ui)P b(Ui, zi−1|ai−1, Zi−2) = P b(Zi, zi−1|ai−1, Zi−2) (19)

immediately implies that

P b(Ui+1, zi|ai, Ui)P b(Ui, zi−1|ai, Ui) = P (Ui+1, zi|ai, Zi−1)M ′i,ai

·Mi,aiP
b(Zi, zi−1|ai−1, Zi−2)M ′ai−1

Mai−1P
b(Zi−1|ai−1Ui−1),

as desired. Replacing Ui+1 with ri gives the second part of the Lemma.
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The proof of Theorem 2 then follows first from writing P (rt, zt, . . . , z0||a0, . . . , at) as

P b(rt, zt|at, Ut)

(
0∏

i=t−1

P b(Ui+1, zi|ai, Ui)

)
P b(U0),

using Lemma 1 and equation (19) above to inductively show that

P b(rt, zt|at, Ut)

(
0∏

i=t−1

P b(Ui+1, zi|ai, Ui)

)
P b(U0)

= P b(rt, zt|at, Zt−1)M ′t,at

0∏
i=t−1

(
Mi+1,ai+1

P b(Zi+1, zi|ai, Zi−1)M ′i,ai
)
M0,a0P

b(Z0), (20)

and then using the fact that
P e(rt) =

∑
τo∈T o

t

Πe(τ
o)P (rt, zt, . . . , z0||a0, . . . , at)

to obtain the final result.

A.3. Multi-Step Histories

A.3.1. PROOF OF THEOREM 3

The proof of Theorem 3 is essentially the same as that of Theorem 2, except that we replace the one-step history Zi−1 with
Hoi−1. For completeness, we include it below, first proving a Lemma analogous to Lemma 1:

Lemma 2. Given Assumption 3, let Ui,aiΣi,aiV
T
i,ai

be an SVD of P b(Zi|ai,Hoi−1) with the diagonal entries of Σi,ai in
descending order and define Mi,ai := I|U|×|Z|UTi,ai and M ′i,ai := (MaiHoi−1)+. Then

P b(Ui+1, zi|ai, Ui)P b(Ui, zi−1|ai−1, Ui−1)

= P b(Ui+1, zi|ai,Hoi−1)M ′i,aiMi,aiP
b(Zi, zi−1|ai−1,Hoi−2)

·M ′i−1,ai−1
Mi−1,ai−1

P b(Zi−1|ai−1, Ui−1)

and

P b(rt, zt|at, Ut)P b(Ut, zt−1|at−1, Ut−1)

= P b(rt, zt|at,Hot−1)M ′t,atMt,atP
b(Zt, zt−1|at−1,Hot−2)

·M ′t−1,at−1
Mt−1,at−1P

b(Zt−1|at−1, Ut−1)

Proof. First, notice that
P b(Ui+1, zi|ai, Ui)P b(Ui|ai,Hoi−1) = P b(Ui+1, zi|ai,Hoi−1)

=⇒ P b(Ui+1, zi|ai, Ui)P b(Ui|ai,Hoi−1)M ′i,ai = P b(Ui+1, zi|ai,Hoi−1)M ′i,ai . (21)

Additionally,
P b(Zi|ai,Hoi−1) = P b(Zi|ai, Ui)P b(Ui|ai,Hoi−1) (22)

=⇒ P b(Zi|ai,Hoi−1)M ′i,ai = P b(Zi|ai, Ui)P b(Ui|ai,Hoi−1)M ′i,ai . (23)

From the definition of M ′i,ai , we have that
P b(Zi|ai,Hoi−1)M ′i,ai

= P b(Zi|ai,Hoi−1)(Mi,aiP
b(Zi|ai,Hoi−1))+ = P b(Zi|ai,Hoi−1)Vi,ai(I|U|×|Z|Σi,ai)

+

= Ui,aiΣi,ai(I|U|×|Z|Σi,ai)
+ = Ui,aiI|Z×|U| = Ui,aiI|Z×|U|,
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which has rank |U|, thus implying, by equation (23), that rank
(
P b(Ui|ai,Hoi−1)M ′i,ai

)
= |U |, and so equation (21) implies

that
P b(Ui+1, zi|ai, Ui) = P b(Ui+1, zi|ai,Hoi−1)M ′i,ai

(
P b(Ui|ai,Hoi−1)M ′i,ai

)−1
. (24)

Now, notice that equation (22) implies that

Mi,aiP
b(Zi|ai, Ui)P b(Ui|ai,Hoi−1) = Mi,aiP

b(Zi|ai,Hoi−1). (25)

Similarly notice that rank
(
Mi,aiP

b(Zi|ai,Hoi−1)
)

= |U | as, from the definition ofMi,ai , we haveMi,aiP
b(Zi|ai,Hoi−1) =

I|U|×|Z|Σi,aiV
T
i,ai

. This, in turn, implies that rank
(
Mi,aiP

b(Zi|ai, Ui)
)

= |U | by equation (25), and so equation (25)
implies that

P b(Ui|ai,Hoi−1) =
(
Mi,aiP

b(Zi|ai, Ui)
)−1

Mi,aiP
b(Zi|ai,Hoi−1),

implying that
P b(Ui|ai,Hoi−1)M ′i,ai =

(
Mi,aiP

b(Zi|ai, Ui)
)−1

Mi,aiP
b(Zi|ai,Hoi−1)M ′i,ai . (26)

Now, we claim that Mi,aiP
b(Zi|ai,Hoi−1)M ′i,ai = I|U|×|U| since

Mi,aiP
b(Zi|ai,Hoi−1)M ′i,ai = I|U|×|Z|U

T
i,aiUi,aiΣi,aiV

T
i,ai

(
I|U|×|Z|U

T
i,aiUi,aiΣi,aiV

T
i,ai

)+
= I|U|×|Z|Σi,ai(I|U|×|Z|Σi,ai)

+

and thus equation (26) becomes

P b(Ui|ai,Hoi−1)M ′i,ai =
(
Mi,aiP

b(Zi|ai, Ui)
)−1

. (27)

Finally, substituting (27) into (24) gives
P b(Ui+1, zi|ai, Ui)

= P b(Ui+1, zi|ai,Hoi−1)M ′i,aiMi,aiP
b(Zi|ai, Ui).

This, in combination with the fact that

P b(Zi|ai, Ui)P b(Ui, zi−1|ai−1,Hoi−2) = P b(Zi, zi−1|ai−1,Hoi−2) (28)

immediately implies that

P b(Ui+1, zi|ai, Ui)P b(Ui, zi−1|ai, Ui) = P (Ui+1, zi|ai,Hoi−1)M ′i,ai

·Mi,aiP
b(Zi, zi−1|ai−1,Hoi−2)M ′ai−1

Mai−1P
b(Zi−1|ai−1Ui−1),

as desired. Replacing Ui+1 with ri and i with gives the second part of the Lemma.

Again, the proof of Theorem 3 follows first from writing P (rt, zt, . . . , z0||a0, . . . , at) as

P b(rt, zt|at, Ut)

(
0∏

i=t−1

P b(Ui+1, zi|ai, Ui)

)
P b(U0),

using Lemma 2 and equation (28) above to inductively show that

P b(rt, zt|at, Ut)

(
0∏

i=t−1

P b(Ui+1, zi|ai, Ui)

)
P b(U0)

= P b(rt, zt|at,Hot−1)M ′t,at

0∏
i=t−1

(
Mi+1,ai+1P

b(Zi+1, zi|ai,Hoi−1)M ′i,ai
)
M0,a0P

b(Z0), (29)

and again using the fact that
P e(rt) =

∑
τo∈T o

t

Πe(τ
o)P (rt, zt, . . . , z0||a0, . . . , at)

to obtain the final result.
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A.4. Multi-Step Futures

While we showed that our approach cannot use extended futures as proxy for a single confounder, we now show that it is
possible to incorporate some extended futures under prohibitive rank assumptions. In particular, we make the following
assumption, in addition to Assumption 4:

Assumption 9. rank(P b(Zi:i+`−1|ai+`−1, Ai:i+`−2 ×Hoi−1)) ≥ |U|`,∀i, ai : `− 1 ≤ i ≤ H, ai+`−1 ∈ A.

We then obtain the following estimator:

Theorem 6. Let ` > 1. Under Assumptions 9 and 4, take Mi+`,ai+`
to be the matrix of left singular vectors of

P b(Zi:i+`−1|ai+`−1, Ai:i+`−2 × Hoi−1) and M ′i+`,ai+`
:= (Mi,aiP

b(Zi:i+`−1|ai+`−1, Ai:i+`−2 × Hoi−1))+. Then the
probability P e(rt) is equal to∑

τo∈T o
t

Πe(τ
o)P b(rt, zt−`+1:t|at, At−`+1:t−1 ×Hot−`)M ′t,at

·
0∏

i=t−`

(
Mi+`,ai+`

P b(Zi+1:i+`, zi|ai+`−1, Ai:i+`−2 ×Hoi−1)

·M ′i+`−1,ai+`−1

)
M`−1,a`−1

P b(Z0:`−1||a0:`−2) (30)

While the vector P b(Z0:`−1||a0:`−2) is not directly observable from data, it can be calculated via marginalizing out r`−1 in
P b(r`−1, z`−1, . . . , z0||a0, . . . , a`−1) and is thus estimable under Assumption 3, for all i ≤ `− 1.

To prove Theorem 6, we use zi:i+`−1 and (hoi−1, ai:i+`−1) as proxy variables for the confounder ui:i+`−1 under the treatment
ai+`−1. As seen in Figure ??, the causal structure is the same as that in both the one-step proxy and extended history cases,
allowing for a similar analysis, which we now present.

A.4.1. NECESSITY OF ASSUMPTION 4

First, we show that Assumption 4 is a necessary condition for Assumption 9. This is simply because

P b(Zi:i+`−1|ai+`−1, Ai:i+`−2 ×Hoi−1)

can be written as

P b(Zi:i+`−1|ai+`−1, Ui ×Ai:i+`−2)P b(Ui ×Ai:i+`−2|ai+`−1,Ai:i+`−2 ×Hoi−1)

so that
rank(P b(Zi:i+`−1|ai+`−1, Ai:i+`−2 ×Hoi−1)) ≤ |U||A|`−1.

Thus, Assumption 9 cannot be met if |A| < |U|, hence the necessity of Assumption 4.

A.4.2. PROOF OF THEOREM 6

Again, the proof of Theorem 6 is essentially the same as those for Theorems 2 and 3 except that we decompose the
probability P (rt, zt, . . . , z0||a0, . . . , at) in a slightly different way. We proceed, again, by proving the analogous Lemma to
Lemmas 1 and 2:

Lemma 3. Under Assumptions 9 and 4, take Mi+`,ai+`
to be the matrix of left singular vectors of

P b(Zi:i+`−1|ai+`−1, Ai:i+`−2 ×Hoi−1) and M ′i+`,ai+`
:= (Mi,aiP

b(Zi:i+`−1|ai+`−1, Ai:i+`−2 ×Hoi−1))+. Then

P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)P b(Ui:i+`−1, zi−1|ai+`−2, Ui−1:i+`−2)

= P b(Ui+1:i+`, zi|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1
Mi+`−1,ai+`−1

· P b(Zi:i+`−1, zi−1|ai+`−2,Ai−1:i+`−3 ×Hoi−2)M ′i+`−2,ai+`−2

·Mi+`−2,ai+`−2
P b(Zi−1:i+`−2|Ui−1:i+`−2)
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and

P b(rt, zt−`+1:t|at, Ut−`+1:t)P
b(Ut−`+1:t, zt−`|at−1, Ut−`:t−1)

= P b(rt, zt−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,atMt,atP
b(Zt−`+1:t, zt−`|at−1,At−`:t−2 ×Hot−`−1)

·M ′t−1,at−1
Mt−1,at−1

P b(Zt−`:t−1|Ut−`:t−1)

Proof. First, notice that

P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)

= P b(Ui+1:i+`, zi|ai+`−1,Ai:i+`−2 ×Hoi−1)

=⇒ P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= P b(Ui+1:i+`, zi|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1
. (31)

Additionally,

P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1) = P b(Zi:i+`−1|Ui:i+`−1)P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1) (32)

=⇒ P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= P b(Zi:i+`−1|Ui:i+`−1)P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1
. (33)

From the definition of M ′i+`−1,ai+`−1
, we have that

P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)

· (Mi+`−1,ai+`−1
P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1))+

= P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)Vi+`−1,ai+`−1
(I|U|`×|Z|`Σi+`−1,ai+`−1

)+

= Ui+`−1,ai+`−1
Σi+`−1,ai+`−1

(I|U|`×|Z|`Σi+`−1,ai+`−1
)+ = Ui+`−1,ai+`−1

I|Z|`×|U|` ,

which has rank |U|`, thus implying, by equation (33), that

rank
(
P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

)
= |U |`,

and so equation (31) implies that

P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)

= P b(Ui+1:i+`, zi|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

· (P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1
)−1. (34)

Now, notice that equation (32) implies that

Mi+`−1,ai+`−1
P b(Zi:i+`−1|Ui:i+`−1)P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)

= Mi+`−1,ai+`−1
P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1). (35)

Similarly notice that
rank

(
Mi+`−1,ai+`−1

P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)
)

= |U |`
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as, from the definition of Mi+`−1,ai+`−1
, we have

Mi+`−1,ai+`−1
P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)

= I|U|`×|Z|`Σi+`−1,ai+`−1
V Ti+`−1,ai+`−1

.

This, in turn, implies that rank
(
Mi+`−1,ai+`−1

P b(Zi:i+`−1|Ui:i+`−1)
)

= |U |` by equation (35), and so equation (35)
implies that

P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)

= (Mi+`−1,ai+`−1
P b(Zi:i+`−1|Ui:i+`−1))−1Mi+`−1,ai+`−1

P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1),

implying that

P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= (Mi+`−1,ai+`−1
P b(Zi:i+`−1|Ui:i+`−1))−1Mi+`−1,ai+`−1

· P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1
. (36)

Now, we claim that Mi+`−1,ai+`−1
P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= I|U|`×|U|` since

Mi+`−1,ai+`−1
P b(Zi:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= I|U|`×|Z|`U
T
i+`−1,ai+`−1

Ui+`−1,ai+`−1
Σi+`−1,ai+`−1

V Ti+`−1,ai+`−1

·
(
I|U|`×|Z|`U

T
i+`−1,ai+`−1

Ui+`−1,ai+`−1
Σi+`−1,ai+`−1

V Ti+`−1,ai+`−1

)+

= I|U|`×|Z|`Σi+`−1,ai+`−1
(I|U|`×|Z|`Σi+`−1,ai+`−1

)+

and thus equation (36) becomes

P b(Ui:i+`−1|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

= (Mi+`−1,ai+`−1
P b(Zi:i+`−1|Ui:i+`−1))−1. (37)

Finally, substituting (37) into (34) gives

P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)

= P b(Ui+1:i+`, zi|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

·Mi+`−1,ai+`−1
P b(Zi:i+`−1|Ui:i+`−1). (38)

This, in combination with the fact that

P b(Zi:i+`−1|Ui:i+`−1)P b(Ui:i+`−1, zi−1|ai+`−2,Ai−1:i+`−3 ×Hoi−2)

= P b(Zi:i+`−1, zi−1|ai+`−2,Ai−1:i+`−3 ×Hoi−2) (39)

immediately implies that

P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)P b(Ui:i+`−1, zi−1|ai+`−2, Ui−1:i+`−2)

= P b(Ui+1:i+`, zi|ai+`−1,Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1
Mi+`−1,ai+`−1

· P b(Zi:i+`−1, zi−1|ai+`−2,Ai−1:i+`−3 ×Hoi−2)M ′i+`−2,ai+`−2

·Mi+`−2,ai+`−2
P b(Zi−1:i+`−2|Ui−1:i+`−2)
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as desired.

For the second identity, we first note that

P b(rt, zt−`+1:t|at, Ut−`+1:t)P
b(Ut−`+1:t|at,At−`+1:t−1 ×Hot−`)

= P b(rt, zt−`+1:t|at,At−`+1:t−1 ×Hot−`)

=⇒ P b(rt, zt−`+1:t|at, Ut−`+1:t)P
b(Ut−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,at

= P b(rt, zt−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,at , (40)

which, by the fact that rank(P b(Ut−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,at) = |U|`, as shown above, implies that

=⇒ P b(rt, zt−`+1:t|at, Ut−`+1:t)

= P b(rt, zt−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,at(P
b(Ut−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,at)

−1. (41)

Substituting equation (37) with i = t− `+ 1 into equation (41), then gives

P b(rt, zt−`+1:t|at, Ut−`+1:t)

= P b(rt, zt−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,atMt,atP
b(Zt−`+1:t|Ut−`+1:t),

implying, via equations (39) and (38) with i = t− `+ 1 and i = t− `, respectively, that

P b(rt, zt−`+1:t|at, Ut−`+1:t)P
b(Ut−`+1:t, zt−`|at−1, Ut−`:t−1)

= P b(rt, zt−`+1:t|at,At−`+1:t−1 ×Hot−`)M ′t,atMt,atP
b(Zt−`+1:t, zt−`|at−1,At−`:t−2 ×Hot−`−1)

·M ′t−1,at−1
Mt−1,at−1P

b(Zt−`:t−1|Ut−`:t−1),

as desired.

Finally, the proof of Theorem 6 follows first from writing P (rt, zt, . . . , z0||a0, . . . , at) in the following, slightly different
way from the previous two sections:

P b(rt, zt−`+1:t|at, Ut−`+1:t)

(
0∏

i=t−`
P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)

)
P b(U0:`−1||a0:`−2).

The result then follows from using Lemma 3 and equation (39) above to inductively show that

P b(rt, zt−`+1:t|at, Ut−`+1:t)

(
0∏

i=t−`
P b(Ui+1:i+`, zi|ai+`−1, Ui:i+`−1)

)
P b(U0:`−1||a0:`−2)

= P b(rt, zt−`+1:t|at, At−`+1:t−1 ×Hot−`)M ′t,at
0∏

i=t−`

(
Mi+`,ai+`

· P b(Zi+1:i+`, zi|ai+`−1, Ai:i+`−2 ×Hoi−1)M ′i+`−1,ai+`−1

)
M`−1,a`−1

P b(Z0:`−1||a0:`−2),

and again using the fact that
P e(rt) =

∑
τo∈T o

t

Πe(τ
o)P (rt, zt, . . . , z0||a0, . . . , at)

to obtain the final result.
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A.4.3. IDENTIFICATION OF P b(Z0:`−1||a0:`−2)

As mentioned in Section 5, the identification of P b(Z0:`−1||a0:`−2) in Theorem 6 can be achieved via the estimator in Theo-
rem 3. In particular, as mentioned in Section A.3.1, the estimator rests on the identification of P (rt, zt, . . . , z0||a0, . . . , at)
as

P b(rt, zt|at,Hot−1)M̃ ′t,at

0∏
i=t−1

(
M̃i+1,ai+1P

b(Zi+1, zi|ai,Hoi−1)M̃ ′i,ai

)
M̃0,a0P

b(Z0),

under Assumption 3, and where M̃i,ai is the matrix of left singular vectors of P b(Zi|ai,Hoi−1) and M̃ ′i,ai :=

(Mi,aiP
b(Zi|ai,Hoi−1))+. Hence, marginalizing out rt, we see have the following

Corollary 6.1. Under Assumption 3, we have that

P (rt, zt, . . . , z0||a0, . . . , at)

= P b(zt|at,Hot−1)M̃ ′t,at

0∏
i=t−1

(
M̃i+1,ai+1

P b(Zi+1, zi|ai,Hoi−1)M̃ ′i,ai

)
M̃0,a0P

b(Z0)

Hence, Corollary 6.1 allows for the identification of P b(Z0:`−1||a0:`−2) under Assumption 3.

B. OPE via Importance Sampling
We now give a derivation for the IS estimator given in Section 6. We have that

vH(πe) =
∑
τ∈TH

∑
v

vP e(v|τ)P e(τ)

=
∑
τ∈TH

∑
v

vP b(v|u0:H)P b(τ)

(
Πe(τ

o)

Πb(u0:H)

)

=
∑
v

v
∑
τo∈T o

t

P b(τo)Πe(τ
o)
∑
u0:H

P b(v|u0:H)P b(u0:H |τo)
Πb(u0:H)

=
∑
v

v
∑
τo∈T o

t

P b(v|τo)We,b(v, τ
o) = Eτo [Ev[vWe,b(v, τ

o)|τo]] ,

where the second and penultimate equalities are made possible by Assumption 8.

Thus, we can write
vH(πe) = Eτo [Ev[vW (v, τo)|τo]] (42)

with

W (v, τo) :=
P b(τo)

P b(v|τo)
Πe(τ

o)Γb(v, τ
o) (43)

and

Γb(v, τ
o) =

∑
r0:H :

∑
ri=v

∑
u0:H

∏H
i=0 P

b(ri|ui)P b(u0:H |τo)
Πb(u0:H)

. (44)

Hence, all that must be shown is the identifiability of Γb(v, τ
o), as the terms of P b(τo)

P b(v|τo)
Πe(τ

o) are all either given or
directly estimable from observable data.

B.1. Identifiability of Γb(v, τ
o)

First, we show that under certain rank and distinctness assumptions, the vectors π(i)
b (ai|Ui) and P b(ri|Ui) are identifiable

by extending the diagonalization method of (Kuroki & Pearl, 2014). We will treat both of the above vectors individually.
However, letting κ = |U|, we first define a matrix which will be used in both derivations:

∆i,zi+1 := diag(P b(zi+1|u(1)
i ), . . . , P b(zi+1|u(κ)

i ).
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The ordering u(j)
i is such that the elements on the diagonal of ∆i,zi+1

are in non-decreasing order. That is, P b(zi+1|u(1)
i ) ≥

. . . ≥ P b(zi+1|u(κ)
i )). Furthermore, we will let zj , rj , and aj denote the jth elements of the sets Z ,R, and A, respectively.

Henceforth, the vectors π(i)
b (ai|Ui) and P b(zi|Ui) are defined such that their jth entries are π(i)

b (ai|u(j)
i ) and P b(zi|u(j)

i ),
respectively. Throughout our identification procedure for both of these vectors, we make the following crucial distinctness
assumption, which will allow for unique eigendecomposition (up to constants):

Assumption 10 (Distinctness). For each zi+1 ∈ Z , the probabilities {P b(zi+1|ui) : ui ∈ U} are all distinct.

B.1.1. IDENTIFYING π
(i)
b (ai|Ui)

Similar to those defined by (Kuroki & Pearl, 2014), we first define the following matrices which will be key to the analysis,
explicitly state all assumptions in terms of them, and then show the result.

Define the matrix following matrices

P ai,zi :=


1 P b(a1

i |zi) · · · P b(a
|A|−1
i |zi)

P b(z1
i−1|zi) P b(a1

i , z
1
i−1|zi) · · · P b(a

|A|−1
i , z1

i−1|zi)
...

...
. . .

...
P b(z

|Z|−1
i−1 |zi) P b(z

|Z|−1
i−1 , a1

i |zi) · · · P b(a
|A|−1
i , z

|Z|−1
i−1 |zi)

 ,

Qai,zi,zi+1
:=


P b(zi+1|zi) P b(a1

i , zi+1|zi) · · · P b(a
|A|−1
i , zi+1|zi)

P b(z1
i−1, zi+1|zi) P b(a1

i , z
1
i−1, zi+1|zi) · · · P b(a

|A|−1
i , z1

i−1, zi+1|zi)
...

...
. . .

...
P b(z

|Z|−1
i−1 , zi+1|zi) P b(a1

i , z
|Z|−1
i−1 , zi+1|zi) · · · P b(a

|A|−1
i , z

|Z|−1
i−1 , zi+1|zi)

 ,

Uai :=


1 π

(i)
b (a1

i |u
(1)
i ) · · · π

(i)
b (a

|A|−1
i |u(1)

i )
...

...
. . .

...
1 π

(i)
b (a1

i |u
(κ)
i ) · · · π

(i)
b (a

|A|−1
i |u(κ)

i )

 ,

Rai,zi =


1 P b(z1

i−1|zi, u
(1)
i ) · · · P b(z

|Z|−1
i−1 |zi, u(1)

i )
...

...
. . .

...
1 P b(z1

i−1|zi, u
(κ)
i ) · · · P b(z

|Z|−1
i−1 |zi, u(κ)

i )

 ,

Ma
i,zi := diag(P b(u

(1)
i |zi), . . . , P

b(u
(κ)
i |zi)).

In addition to Assumptions 4, 5, 6, and 10, we also make the following rank assumption:

Assumption 11 (Rank). The matrices P ai,zi and Qai,zi have rank at least |U|.

With these conditions, we now show how to obtain the matrixUai , which contains the desired probabilities, via diagonalization
of observable matrices.

Notice that
P ai,zi = Rai,zi

TMa
i,ziU

a
i (45)

and
Qai,zi,zi+1

= Rai,zi
TMa

i,zi∆i,zi+1
Uai (46)

Now, for any subset Λ of {2, . . . , |Z|} of size |U|− 1, define Uai (Λ) to be the |U|× |U| matrix whose first column is the first
column of Uai and whose jth column is the Λj th column of Uai for all 2 ≤ j ≤ |U|, where Λj is the jth smallest element of
Λ. Equivalently, Uai (Λ) can be written as Uai L(Λ) where L(Λ) is the |Z| × |U| matrix whose first column is e1 and whose
jth column is eΛj , where ek denotes the kth standard basis vector of R|Z|, for 2 ≤ j ≤ |U|. Right-multiplying equations
(45) and (46) by L(Λ) thus give, for each such subset Λ,

P ai,ziL(Λ) = Rai,zi
TMa

i,ziU
a
i (Λ) (47)
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and
Qai,zi,zi+1

L(Λ) = Rai,zi
TMa

i,zi∆i,zi+1
Uai (Λ) (48)

Notice that Assumption 11 implies that rank(Uai ) = |U| via equation (45), and thus that Uai (Λ) is invertible for all such
sets Λ. Additionally, Assumption 11 implies that Ma

i,zi
is invertible and rank(Rai,zi) = |U|, via equation (45), and so,

from equation (47), we have (P ai,ziL(Λ))+ = (Uai (Λ))−1(Ma
i,zi

)−1(Rai,zi
T )+. This along with equation (48) gives the

following:

Lemma 4. For any Λ ⊂ {2, . . . , |Z|} of size |U| − 1, under Assumption 11, we have that

(P ai,ziL(Λ))+Qai,zi,zi+1
L(Λ) = (Uai (Λ))−1∆i,zi+1

Uai (Λ).

We now show how to identify Uai (Λ) for any such subset Λ.

Lemma 5. The matrices Uai (Λ) are identifiable from observable matrices.

Proof. We use the diagonalization strategy of (Kuroki & Pearl, 2014). At a high-level, the procedure is as follows:

1. Diagonalize the observable matrix (P ai,ziL(Λ))+Qai,zi,zi+1
L(Λ) with the eigenvalues of the diagonal matrix in descend-

ing order to get Ti,zi,zi+1
(Λ)∆i,zi+1

T−1
i,zi,zi+1

(Λ)

2. Recover Uai (Λ) from Ti,zi,zi+1
(Λ).

Notice, importantly, that in the first step of the above, the matrix of eigenvalues is ∆i,zi+1 . This is guaranteed because
Lemma 4 writes the matrix (P ai,ziL(Λ))+Qai,zi,zi+1

L(Λ) in diagonal form, where we have specified the ordering such that
the entries of the diagonal matrix are in decreasing order. Furthermore, the distinctness of the diagonal entries of ∆i,zi+1

assumed in Assumption 10 ensures uniqueness of the eigenvectors up to constant factors, thus implying that the columns of
(Uai (Λ))−1 are constant multiples of the columns of the observable matrix Ti,zi,zi+1

(Λ). We show how these are recovered
in the second step.

Let CTi,zi,zi+1
(Λ) = diag(c1i,zi,zi+1

, . . . , cκi,zi,zi+1
) be the diagonal matrix of constants such that

(Uai (Λ))−1 = Ti,zi,zi+1
(Λ)CTi,zi,zi+1

(Λ). (49)

As the left hand side is invertible, the right hand side is also invertible, and so equation (49) implies that

Uai (Λ) = C−1
Ti,zi,zi+1

(Λ)T
−1
i,zi,zi+1

(Λ).

Finally, as the first column of Uai (Λ) is~1, the matrix C−1
Ti,zi,zi+1

(Λ) can be written in terms of T−1
i,zi,zi+1

(Λ), and consequently,

so can its inverse CTi,zi,zi+1
(Λ), thus allowing for the identification of Uai (Λ) = Ti,zi,zi+1

(Λ)CTi,zi,zi+1
(Λ).

The above allows for the columns given the set Λ of Uai to be identified. Hence, choosing multiple different such Λ’s of size
|U| − 1, such that their union is {2, . . . , |Z|} (i.e., this will require d |Z|−1

|U|−1 e different choices of Λ), the entire matrix Uai can

be identified, and thus all probabilities π(i)
b (ai|u(j)

i ) can be written in terms of observables, as desired.

B.1.2. IDENTIFYING P b(ri|Ui)

The identification procedure for P b(ri|Ui) is essentially the same as that in the previous section, except that we use the
following matrices:

P ri,ai,zi =


1 P b(r1

i |zi) · · · P b(r
|R|−1
i |zi)

P b(z1
i−1, ai|zi) P b(r1

i , z
1
i−1, ai|zi) · · · P b(r

|R|−1
i , z1

i−1, ai|zi)
...

...
. . .

...
P b(z

|Z|−1
i−1 , ai|zi) P b(r1

i , z
|Z|−1
i−1 , ai|zi) · · · P b(r

|R|−1
i , z

|Z|−1
i−1 , ai|zi)

 ,
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Qri,zi,zi+1,ai =


P b(zi+1|zi) P b(r1

i , zi+1|zi) · · · P b(r
|R|−1
i , zi+1|zi)

P b(z1
i−1, zi+1, ai|zi) P b(r1

i , z
1
i−1, zi+1, ai|zi) · · · P b(r

|R|−1
i , z1

i−1, zi+1, ai|zi)
...

...
. . .

...
P b(z

|Z|−1
i−1 , zi+1, ai|zi) P b(r1

i , z
|Z|−1
i−1 , zi+1, ai|zi) · · · P b(r

|R|−1
i , z

|Z|−1
i−1 , zi+1, ai|zi)

 ,

Uri =


1 P b(r1

i |u
(1)
i ) · · · P b(r

|R|−1
i |u(1)

i
...

...
. . .

...
1 P b(r1

i |u
(k)
i ) · · · P b(r

|R|−1
i |u(k)

i )

 ,

Rri,zi,ai =


1 P b(ai, z

1
i−1|zi, u

(1)
i ) · · · P b(ai, z

|Z|−1
i−1 |zi, u(1)

i )
...

...
. . .

...
1 P b(ai, z

1
i−1|zi, u

(k)
i ) · · · P b(ai, z

|Z|−1
i−1 |zi, u(k)

i )

 ,

and
Mr
i,zi = diag(P b(u

(1)
i |zi), . . . , P

b(u
(k)
i |zi)).

Again, analogously to the previous section, in addition to Assumptions 4, 5, 6, and 10, we also make the following rank
assumption:

Assumption 12 (Rank). The matrices P ri,zi and Qri,zi have rank at least |U|.

Importantly, we have the same identities on the above matrices:

P ri,zi = Rri,zi
TMr

i,ziU
a
i (50)

and
Qri,zi,zi+1

= Rri,zi
TMr

i,zi∆i,zi+1
Uri (51)

The procedure for identifying Uri is then precisely the same as that described in the previous section. Importantly, because
the diagonal matrix is the same matrix ∆i,zi+1 used to identify π(i)

b (ai|Ui), the ordering u(1)
i , . . . , u

(k)
i is the same, so that

when we identify the vector P b(ri|Ui), the ordering of entries is indeed in corresponding order to our identification of
π

(i)
b (ai|Ui).

We summarize the results from the previous 2 sections here before we proceed with the rest of the identification procedure
for Γb(v, τ

o).

Theorem 7. Under Assumptions 4, 5, 6, 10, 11, and 12, the vectors π(i)
b (ai|Ui) and P b(ri|Ui) are identifiable, under the

consistent ordering that their jth entries are π(i)
b (ai|u(j)

i ) and P b(ri|u(j)
i ), respectively.

We now proceed with the identification procedure for Γb(v, τ
o). The sole remaining ingredient is the identification of

P b(U0:H |T oH), which we now derive.

B.1.3. IDENTIFYING P b(U0:H |T oH)

We now propose an identification scheme for P b(U0:H |T oH) which rests on a Bayes’ rule and eigenvalue analysis argument.
Our two key assumptions will be an exponential rank assumption in H and an additional probability positivity assumption:

Assumption 13 (Rank). rank(P b(U0:H |T oH)) = |U|H+1.

Assumption 14 (Positivity). P b(τo) > 0,∀τo ∈ T oH .

With these two assumptions we now derive the identification procedure for P b(U0:H |T oH).

By Bayes’ Rule, we have that
P b(a0, . . . , aH |u0, . . . , uH , z0, . . . , zH)

=
P b(u0, . . . , uH |τo)P b(τo)
P b(u0, . . . , uH |T oH)P b(T oH)

.
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Now, let P bu0,...,uH
denote the column vector in R(|A||Z|)H+1

whose jth entry is P b(a0, . . . , aH |u0, . . . , uH , z0, . . . , zH),
where τo = (z0, a0, . . . , zH , aH) is the jth element of the set T oH . Then, letting 1

P b(T o
H)

denote the vector whose jth element

is 1
(P b(T o

H))j
(which is allowable under Assumption 14) and letting � denote Hadamard product, we have that

P bu0,...,uH
� 1

P b(T oH)
=

P b(u0, . . . , uH |T oH)T

P b(u0, . . . , uH |T oH)P b(T oH)
,

implying, for each (j0, . . . , jH) ∈ [κ]H+1, that

P b
u
(j0)
0 ,...,u

(jH )

H

� 1

P b(T oH)
=

P b(u
(j0)
0 , . . . , u

(jH)
H |T oH)T

P b(u
(j0)
0 , . . . , u

(jH)
H |T oH)P b(T oH)

. (52)

Now, we claim that the left hand side of the above is identifiable. This is because, firstly, the vector P b(T oH) is clearly
directly estimable from observable data and, secondly, each entry in the vector P bu0,...,uH

is of the form

P b(a0, . . . , aH |u(j0)
0 , . . . , u

(jH)
H , z0, . . . , zH) =

H∏
i=0

π
(i)
b (ai|u(ji)

i ),

and we have shown the indentification procedure for π(i)
b (ai|Ui) in Section B.1.1. Then equation (52) implies that(

P b
u
(j0)
0 ,...,u

(jH )

H

� 1

P b(T oH)

)
P b(T oH)TP b(u

(j0)
0 , . . . , u

(jH)
H |T oH)T = P b(u

(j0)
0 , . . . , u

(jH)
H |T oH)T .

Defining Ω(u
(j0
0 , . . . , u

(jH)
H ) to be the outer product

(
P b
u
(j0)
0 ,...,u

(jH )

H

� 1
P b(T o

H)

)
P b(T oH)T , we note that from what we have

said, Ω(u
(j0
0 , . . . , u

(jH)
H ) is also identifiable.

Thus, we must identify P b(u(j0)
0 , . . . , u

(jH)
H |T oH)T from the equation

Ω(u
(j0
0 , . . . , u

(jH)
H )P b(u

(j0)
0 , . . . , u

(jH)
H |T oH)T = P b(u

(j0)
0 , . . . , u

(jH)
H |T oH)T (53)

Equation (53) implies that Ω(u
(j0
0 , . . . , u

(jH)
H ) has 1 as an eigenvalue. But as Ω(u

(j0
0 , . . . , u

(jH)
H ) can be written as an outer

product of length |T oH | vectors, it has 0 as an eigenvalue with multiplicity |T oH | − 1, thus implying that the multiplicity of the
eigenvalue 1 is 1.

Hence, diagonalizing the observable matrix Ω(u
(j0
0 , . . . , u

(jH)
H ) allows for identification of P b(u(j0)

0 , . . . , u
(jH)
H |T oH) up to

an unknown constant factor α
u
(j0)
0 ,...,u

(jH )

H

. Thus, all that remains to show is the recovery of α
u
(j0)
0 ,...,u

(jH )

H

.

Letting Aj be the diagonal matrix whose entries, for each sequence j ∈ [κ]H+1, are α
u
(j0)
0 ,...,u

(jH )

H

in order corresponding to

the rows of P b(U0:H |T oH), the above identification scheme allows us to recover the matrix

AjP
b(U0:H |T oH)

with Aj unknown but all entries of Aj non-zero (i.e. since the rows of AjP
b(U0:H |T oH) are eigenvectors).

Letting bj ∈ R|U|H+1

, note that the equation

bTj AjP
b(U0:H |T oH) = ~1T ,

has a solution given by the vector b∗j such that (b∗j )k = (A−1
j )kk. Note also, however, that Assumption 13, guarantees that

P b(U0:H |T oH) is of full row rank, thus implying that

bTj = ~1T (AjP
b(U0:H |T oH))+.

Hence,
(A−1

j )kk = (~1T (AjP
b(U0:H |T oH))+)k,

and so the matrixAj is recoverable from the observable matrixAjP
b(U0:H |T oH)), thus implying that the matrix P b(U0:H |T oH)

is also identifiable, as desired.
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B.1.4. COMBINING IDENTIFICATIONS

Finally, recalling that

Γb(v, τ
o) =

∑
r0:H :

∑
ri=v

∑
u0:H

∏H
i=0 P

b(ri|ui)P b(u0:H |τo)
Πb(u0:H)

,

=
∑

r0:H :
∑
ri=v

∑
1≤j0,...,jH≤κ

∏H
i=0 P

b(ri|u(ji)
i )P b(u

(j0)
0 , . . . , u

(jH)
H |τo)

Πb(u
(j0)
0 , . . . , u

(jH
H ))

,

the above derivations allow for identification for each of the terms P b(ri|u(ji)
i ), P b(u

(j0)
0 , . . . , u

(jH)
H |τo), and

Πb(u
(j0)
0 , . . . , u

(jH
H )), thus implying the desired identifiability for the entire IS estimation procedure, as desired.

We summarize this result and all conditions below:

Theorem 8. Under Assumptions 4, 5, 6, 7, 8, 10, 11, 12, 13, and 14, the quantity Γb(v, τ
o) is identifiable for all values v

and τo ∈ T oH . Hence, the importance weights

W (v, τo) :=
P b(τo)

P b(v|τo)
Πe(τ

o)Γb(v, τ
o)

are all identifiable, allowing for the IS procedure given by vH(πe) = Eτo [Ev[vW (v, τo)|τo]]


