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Abstract
We use functional mirror ascent to propose a
general framework (referred to as FMA-PG) for
designing policy gradient methods. The func-
tional perspective distinguishes between a pol-
icy’s functional representation (what are its suffi-
cient statistics) and its parameterization (how are
these statistics represented), and naturally results
in computationally efficient off-policy updates.
For simple policy parameterizations, the FMA-
PG framework ensures that the optimal policy is
a fixed point of the updates. It also allows us
to handle complex policy parameterizations (e.g.,
neural networks) while guaranteeing policy im-
provement. Our framework unifies several PG
methods and opens the way for designing sample-
efficient variants of existing methods. Moreover,
it recovers important implementation heuristics
(e.g., using forward vs reverse KL divergence)
in a principled way. With a softmax functional
representation, FMA-PG results in a variant of
TRPO with additional desirable properties. It also
suggests an improved variant of PPO, whose ro-
bustness we empirically demonstrate on MuJoCo.

1 Introduction
Policy gradient (PG) methods [33; 30; 18; 16] are an im-
portant class of model-free methods in reinforcement learn-
ing. They allow for a differentiable policy parameteriza-
tion, and can easily handle function approximation and
structured state-action spaces. PG methods based on REIN-
FORCE [34] are equipped with strong theoretical guarantees
in restricted settings [2; 22; 6]. However, these methods are
computationally intractable especially when used with rich
function approximation models like neural networks. On
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the other hand, methods such as TRPO [25], PPO [26] and
MPO [1] are efficiently implementable and have good em-
pirical performance [7]. Consequently, these methods are
commonly used in deep reinforcement learning [9]. How-
ever, they only have weak theoretical guarantees in the tab-
ular setting [15; 25; 23; 10; 27]. Consequently, there are
numerous discrepancies between the theory and practice
of these methods [19; 21; 8]. Most importantly, there is
no principled way to design such PG methods or a unified
framework to analyze their theoretical properties.

To address these issues, we view PG methods through the
lens of a functional mirror ascent framework. This view-
point distinguishes between a policy’s functional represen-
tation (its sufficient statistics) such as the conditional dis-
tribution over actions given states or the induced stationary
distribution; and its parameterization (how are these statis-
tics represented) such as a linear model or deep network.
Our framework unifies different perspectives and provides
a principled way to develop and analyze PG methods. In
particular, we make the following contributions.

Functional mirror ascent for policy gradient: In Sec-
tion 3, we specify the functional mirror ascent (FMA) update
and connect it to policy gradient methods. In particular, we
show that FMA can be interpreted as the repeated appli-
cation of a policy improvement and a projection (onto the
set of feasible policies) operator [11]. For simple policy
parameterizations, we prove that the FMA updates are con-
sistent [11] ensuring that the optimal policy (in the class) is
a fixed point of the resulting PG method.

Instantiating the FMA framework: In Section 4, we in-
stantiate the general FMA framework with two common
functional representations – direct and softmax represen-
tations. In the tabular finite state-action setting, we show
that the resulting FMA updates recover conservative policy
iteration [15] and REINFORCE-based methods [2; 22; 6].

Generic policy gradient framework: In Section 5, we
propose a reparameterization technique to handle arbitrarily
complex policy parameterizations. This results in FMA-
PG, a generic policy gradient framework based on FMA.
FMA-PG naturally results in computationally efficient off-
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policy updates and is instantiated by choosing a functional
representation and a policy parameterization. When instan-
tiated with the softmax functional representation, FMA-PG
results in an improved, more stable variant of TRPO [25]
and MDPO [32]. Moreover, it recovers implementation
heuristics (e.g. using forward vs reverse KL divergence) in
a principled manner. In Appendix B, we show that the FMA-
PG framework can handle stochastic value gradients [12].

Theoretical guarantees: In Section 6, we give a principled
way to set the FMA step-size for the direct and softmax
representations. With appropriate step-sizes, FMA-PG is
guaranteed to improve the policy and converge to a station-
ary point for any arbitrary policy parameterization.

Experimental evaluation: FMA-PG suggests a variant of
PPO [26], whose robustness and efficiency we demonstrate
on the MuJoco environment [31] (Appendix A).

2 Problem Formulation
We consider an infinite-horizon discounted Markov de-
cision process (MDP) [24] defined by the tuple M =
〈S,A, p, r, d0, γ〉 where S is a potentially infinite set of
states, A is a potentially infinite action set, p : S×A→ ∆S

is the transition probability function, r : S×A→ R is the
reward function, d0 is the initial distribution of states, and
γ ∈ [0, 1) is the discount factor.

Throughout this paper, we distinguish a policy’s functional
representation from its parameterization. We will use π
to denote the functional representation of the correspond-
ing policy. A policy’s functional representation defines
its sufficient statistics and can be non-parametric. For ex-
ample, we may define a policy via a distribution pπ(·|s)
over the actions for each state s ∈ S, which we call
the direct representation. Such a representation is used
for stochastic policies typically used with policy gradi-
ent algorithms [29]. Since pπ(·|s) is a probability distri-
bution, an equivalent form is the softmax representation
pπ(a|s) = exp(zπ(a,s))/

∑
a′ exp(zπ(a′,s)) where the policy is

specified by the zπ(a, s) variables. Note that though the di-
rect and softmax representations are equivalent in the class
of policies they define, they result in different functional up-
dates (Sections 4.1 and 4.2). The functional representation
affects the final algorithm but it is never made explicit.

Regardless of its representation, each policy π induces
a distribution pπ(·|s) over actions for each state s. It
also induces a measure dπ over states such that dπ(s) =∑∞
t=0 γ

tP(st+1 = s | s0 ∼ d0, at ∼ pπ(at|st)).
Similarly we define µπ as the unnormalized distribu-
tion over state-action pairs induced by policy π, im-
plying that µπ(s, a) = dπ(s)pπ(a|s) and dπ(s) =∑
a µ

π(s, a). The expected discounted return for π is

defined as J(π) = Es0,a0,...
[∑∞

t=0 γ
tr(st, at)

]
, where

s0 ∼ d0, at ∼ pπ(at|st), and st+1 ∼ p(st+1|st, at). Given
a policy representation, the agent’s objective is to learn the
policy that maximizes the expected discounted return.

While the functional representation defines a policy’s suffi-
cient statistics, the parameterization specifies the practical
realization of these statistics. The policy parameterization is
independent of its functional representation, it is explicit and
determined by a model whose parameters θ are optimized
by a policy gradient algorithm. For example, we could rep-
resent a policy by its state-action occupancy measure and
use a linear parameterization to define this measure, imply-
ing µπ(s, a|θ) = 〈θ, φ(s, a)〉, where θ is the parameter to
be optimized and φ(s, a) are the known features providing
information about the state-occupancy measures. Similarly,
we could use a neural-network parameterization for the
variables that define a policy in its softmax representation,
rewriting zπ(a, s) = zπ(a, s|θ). The tabular parameteriza-
tion is special and makes the functional representation of a
policy equivalent to its parameterization. For a finite state-
action MDP with S states and A actions, choosing a tabular
parameterization with the softmax representation results in
θ ∈ RSA such that ∀s ∈ S, a ∈ A, zπ(a, s|θ) = θs,a. The
tabular parameterization is studied in previous work [2; 22].
The policy parameterization defines the set Π of realizable
(representable) policies, e.g., when using the direct func-
tional representation with a tabular parameterization, the set
Π is a simplex. We denote by π∗ := arg maxπ∈Π J(π) as
the optimal policy in the class.

3 Functional mirror ascent framework
To specify the functional mirror ascent (FMA) update, we
define a strictly convex, differentiable function φ as the mir-
ror map. We denote by Dφ(π, µ) the Bregman divergence
associated with the mirror map φ between policies π and µ.
Each iteration t ∈ [T ] of FMA consists of the update and
projection steps [5]: Eq. (1) computes the gradient∇πJ(πt)
with respect to the policy’s functional representation and
updates πt to πt+1/2 using a step-size η; Eq. (2) computes
the Bregman projection of πt+1/2 onto the class of realizable
policies, obtaining πt+1.

πt+1/2 = (∇φ)−1 (∇φ(πt) + η∇J(πt)) , (1)
πt+1 = arg min

π∈Π
Dφ(π, πt+1/2). (2)

The above FMA updates can also be written as [c.f. 5]

πt+1 = arg max
π∈Π

[
〈π, ∇πJ(πt)〉 −

1

η
Dφ(π, πt)

]
. (3)

Note that the FMA update is solely in the functional space
and requires solving the above projection as a sub-problem.
The policy parameterization defines the set Π of realizable
policies and influences the difficulty of solving Eq. (3). We
now connect the FMA update to policy gradient and explain
the conditions under which π∗ is its fixed point.
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3.1 Connecting FMA to policy gradient

Several iterative PG methods can be viewed as the re-
peated application of the improvement and projection op-
erators [11]. Specifically, at iteration t of a PG method
(1) An improvement operator I transforms the current pol-
icy πt into an improved policy πt+1/2 = Iπt. The im-
provement operator guarantees a higher expected return,
implying that J(πt+1/2) ≥ J(πt). However, the policy
πt+1/2 might be outside of the policy class Π. (2) The
projection operator P projects πt+1/2 onto set Π to yield
πt+1 = Pπt+1/2 = P ◦ Iπt.

Ghosh et al. [11] introduced the notion of consistency of a
pair of operators (I,P) to mean that π∗ is a fixed point of
P ◦ I. Using a pair of consistent operators is a necessary
but not a sufficient condition for convergence to the optimal
policy. In this paper, we associate the pair (I,P) of opera-
tors with the update and projection steps of the functional
mirror descent step. Specifically, we define the operators I
and P such that, at iteration t, Iπt := πt+1/2 (Eq. (1)) and
P ◦ Iπt := Pπt+1/2 = πt+1 (Eq. (2)). We now show that
this choice always results in pairs of consistent operators.

Proposition 1 (Operator consistency for the FMA update).
By defining the improvement and projection operators as
the update and projection step of FMA, for the same mirror
map (as in Eqs. (1) and (2)), π∗ is a fixed point of P ◦ I.

Note that the proof of the above proposition relies on exactly
solving the minimization step in Eq. (2). When using the
tabular or linear parameterization, the set Π of realizable
policies is convex and, since the function Dφ(·, π) is convex
for all π, the minimization can be done exactly. In this
case, Proposition 1 implies that the optimal policy π∗ is a
fixed point (of many) of the FMA update.

4 Instantiating the FMA framework
We use FMA with two common functional representations –
the direct representation (Section 4.1) and the softmax rep-
resentation (Section 4.2). In this section, we only consider
the functional aspect and the tabular parameterization, while
we handle general policy parameterization in Section 5.

4.1 Direct functional representation

In the direct functional representation, the policy π is repre-
sented by the set of distributions pπ(·|s) over actions for
each state s ∈ S. In this case, ∂J(π)

∂pπ(a|s) = dπ(s)Qπ(s, a).
Since pπ(·|s) is a set of distributions, we define the
mirror map as φ(π) =

∑
s∈S w(s)φ(pπ(·|s)), where

w(s) is any positive weighting on the states s. Note
that the positive weights ensure that φ(π) is a valid
mirror-map. The resulting Bregman divergence is
Dφ(π, π′) =

∑
s w(s)Dφ(pπ(·|s), pπ′

(·|s)), that is, the
weighted sum of the Bregman divergences between the

action distributions in state s. By choosing w(s) equal
to dπt(s), Eq. (3) involves maximizing (over the set Π)
E(s,a)∼µπt

[(
Qπt(s, a) pπ(a|s)

pπt (a|s)

)
− 1

ηDφ(pπ(·|s), pπt(·|s))
]
.

For finite states and actions, the tabular parameterization
results in an equivalence between the functional and para-
metric spaces and the first term is the same as in conservative
policy iteration (CPI) [15]. In this case, the feasible set Π is
the SA-dimensional simplex. With the squared Euclidean
distance as the mirror map, the above equation is the same
as the standard REINFORCE update [34; 2]. Choosing the
negative entropy as the mirror map results in a Bregman
divergence equal to the KL divergence. With this choice
and a tabular parameterization, we recover the natural policy
gradient update [14; 17]. In this case, the FMA update is
also similar to that of uniform TRPO [27] and MDMPI [10].

4.2 Softmax functional representation

Using the softmax functional representation re-
sults in an FMA update on the logits zπ(a, s) of
the conditional distributions pπ(a|s). Formally,
pπ(a|s) = exp(zπ(a,s))∑

a′ exp(zπ(a′,s)) and the policy gradient theorem

yields ∂J(π)
∂zπ(a,s) = dπ(s)Aπ(s, a)pπ(a|s). Here, Aπ(s, a) is

the advantage function equal to Qπ(s, a)− V π(s). Similar
to Section 4.1, we use a mirror map φz(z) that decomposes
across states, i.e. φz(z) =

∑
s w(s)φz(z

π(·, s)) for
some positive weighting w. We denote the corresponding
Bregman divergence as Dφz . Using w(s) = dπt(s), Eq. (3)
involves maximizing E(s,a)∼µπt

[
Aπt(s, a) pπt(a|s)

− 1
η

∑
s w(s)Dφz (zπ(·, s), zπt(·, s))

]
. In the tabular finite

state-action case, with the squared Euclidean mirror map,
the update is equal to that analyzed in [2; 22].

A possible choice for φ is the normalized exponen-
tial, i.e. φz(z) =

∑
s w(s)

∑
a exp(zπ(a,s))∑
a exp(zπt (a,s)) . With

w(s) = dπt(s), Eq. (3) is equal to πt+1 =

arg maxπ∈ΠE(s,a)∼µπt

[(
Aπt(s, a) + 1

η

)
log pπ(a|s)

pπt (a|s)

]
.

The full derivation of this computation can be found
in Proposition 4 of Appendix D. Unlike for the direct repre-
sentation, the above expression only involves the logarithm
of the importance sampling ratio pπ(a|s)/pπt (a|s). This will
result in more stable off-policy updates in Section 5. In
the tabular, finite state-action case, the update is equal to
pπt+1(a|s) ∝ pπt(a|s) max(1 + ηAπt(s, a), 0). Next, we
handle arbitrary policy parameterizations and discuss the
choice of η in Section 6.

5 Policy parameterization
For simple parameterizations such as tabular, the set Π is
convex and the minimization in Eq. (3) can be done exactly.
When using more complex policy parameterizations (e.g.
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Algorithm 1 FMA-PG: Framework for policy optimization
Input: π0, T , m (inner-loops), η,α
for t← 0 to T − 1 do

Form the surrogate function `π,φ,ηt (θ)
Initialize inner-loop: ω0 = θt
for k ← 0 to m do

ωk+1 = ωk + α∇ω`π,φ,ηt (ωk)
end
θt+1 = ωm ; πt+1 = π(θt+1)

end
Return θT

deep neural network), the set of realizable policies Π can
become arbitrarily complicated and non-convex, making the
projection in Eq. (3) infeasible. Instead, to handle arbitrary
policy parameterizations, we assume that Π consists of poli-
cies that are realizable by a model parameterized by θ ∈ Rd.
We will continue to use π to refer to a policy’s functional
representation whereas π(θ) will refer to the parametric re-
alization of π. Note that any generic model (e.g. neural
network) can be used to parameterize π and is implicit in
the π(θ) notation. For the special case of the tabular param-
eterization, π = π(θ) = θ. The following two problems are
equivalent: maxπ∈Π J(π) = maxθ∈Rd J(π(θ)).

With this reparameterization, no projection is required
and the update in Eq. (3) can be written as a paramet-
ric, unconstrained optimization problem, with πt = π(θt),
πt+1 = π(θt+1) and θt+1 = arg maxθ∈Rd `

π,φ,η
t (θ) where

`π,φ,ηt (θ) depends on the functional representation, the mir-
ror map, and η and is defined as `π,φ,ηt (θ) := J(π(θt)) +
〈π(θ)− π(θt), ∇πJ(πt)〉 − 1

ηDφ(π(θ), πt).

Compared to Eq. (3), we added terms independent of θ
which do not change the arg max but are useful to derive
guarantees. The above objective is non-concave in general
and can be maximized using a gradient-based algorithm.
We will use m gradient steps with a step-size α to maximize
`π,φ,ηt (θ). The overall algorithm is referred to as FMA-
PG and its pseudo-code is given in Algorithm 1. Observe
that the policy’s functional representation affects the gra-
dient ∇πJ(πt). It is used to form the function `π,φ,ηt that
acts as a “guide” for the parametric updates in the inner-
loop, similar to the recent algorithm proposed for supervised
learning [13]. FMA-PG can be used with any functional
representation or policy parameterization. We now consider
the special case of the direct and softmax function represen-
tations and derive the corresponding `π,φ,ηt functions.

Specifically, we parameterize the direct functional rep-
resentation as pπ(·|s, θ). Noting that pπt(·|s) =

pπ(·|s, θt), `π,φ,ηt (θ) = E(s,a)∼µπt
[ (
Qπt(s, a) pπ(a|s,θ)

pπ(a|s,θt)

)
− 1
ηDφ(pπ(·|s, θ), pπ(·|s, θt))

]
+ C , with C a constant

independent of θ.

The above equation shows the benefits of first casting pol-
icy gradient methods as functional mirror ascent, and then
using parametric updates to solve the resulting projection
sub-problem. If we had directly chosen a parameteriza-
tion and optimized J(π(θ)) over θ, each parametric update
would require computing the gradient and consequently in-
volve collecting samples from the current policy π(θt). This
makes the PG methods in [2; 21] computationally expensive.
These methods can be obtained by FMA-PG with m = 1.
For multiple steps, m > 1, FMA-PG requires parametric
updates for `t(θ). These updates rely on the states sampled
from the fixed policy πt. This natural off-policyness is an
important feature of commonly used PG methods such as
TRPO [25], PPO [26] and enable policy updates without
interacting with the environment.

With a direct functional representation and the negative
entropy as the mirror map, FMA-PG is similar to the al-
gorithm proposed in MDPO [32]. However, the above for-
mulation and MDPO have two main shortcomings. First,
it involves pπ(a|s, θ) which means that for each paramet-
ric update, either (i) the actions need to be resampled on-
policy or (ii) the update involves an importance-sampling
ratio pπ(a|s,θ)/pπ(a|s,θt). This requires clipping the ratio
for stability, and can result in potentially conservative up-
dates [26]. With the mirror map as the negative entropy,
the Bregman divergence is the reverse KL divergence, i.e.
Dφ(pπ(·|s, θ), pπ(·|s, θt)) = KL(pπ(·|s, θ)||pπ(·|s, θt)).
The reverse KL divergence makes this objective mode seek-
ing, in that the policy π might only capture a subset of
the actions covered by πt. Past works have addressed
this issue either by adding entropy regularization [10; 27],
or by simply reversing the KL, using the forward KL -
KL(pπ(·|s, θt)||pπ(·|s, θ)) [21]. However, using entropy
regularization will result in a biased policy, whereas forward
KL does not correspond to a valid Bregman divergence in
pπ and can converge to a sub-optimal policy. We now show
how FMA-PG with the softmax representation addresses
both these issues in a principled way.

For the softmax functional representation consid-
ered in Section 4.2, we parameterize the logits as
zπ(a, s, θ). Defining pπ(a|s, θ) = zπ(a,s,θ)/

∑
a′ z

π(a′,s,θ)

and noting that pπt(a|s) = pπ(a|s, θt),

`π,φ,ηt (θ) = Es∼dπt
[
Ea∼pπt

(
Aπt(s, a) log pπ(a|s,θ)

pπ(a|s,θt)

)
− 1
η KL(pπ(·|s, θt)||pπ(·|s, θ))

]
+ C.

Unlike for the direct formulation, we see that the above ex-
pression relies on the logarithm of the importance sampling
ratios. Moreover, we observe that the KL divergence is in
the forward direction and is mode covering. This naturally
prevents a mode-collapse of the policy π and encourages
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exploration. We thus see that FMA-PG recovers the forward
vs reverse KL heuristic in a principled manner.

Compared to TRPO [25], we observe that the above ex-
pression involves the logarithm of pπ. When the policy is
modeled by a deep network with a final softmax layer, this
leads to an objective concave in the last layer, which is easier
to optimize than the TRPO objective. Unlike TRPO, the pro-
posed update enforces the proximity between policies via a
regularization rather than a constraint, a modification found
to be beneficial [19]. Instead of tuning the hyper-parameters
like for TRPO, the regularization strength 1/η in proposed
update can be determined theoretically (Section 6).

6 Theoretical guarantees
In this section, we will discuss how to set η according to
the properties of J(π) for the direct and softmax functional
representations, thus completely specifying `π,φ,ηt (θ).

FMA-PG obtains πt+1 = π(θt+1) through the (poten-
tially approximate) maximization of `π,φ,ηt . Observe that
J(πt) = J(π(θt)) = `π,φ,ηt (θt). A sufficient condi-
tion to guarantee that J(πt+1) ≥ J(πt) is to make sure
that `π,φ,ηt (θ) ≤ J(π(θ)) for all θ. Indeed, if `t lower
bounds J , improving `t leads to J(πt+1) = J(π(θt+1)) ≥
`π,φ,ηt (θt+1) ≥ `π,φ,ηt (θt) = J(π(θt)) = J(πt).

The following proposition shows that the values of η guar-
anteeing improvement are only dependent on properties of
J and the mirror map in the function space and independent
of the parameterization.
Proposition 2 (Smoothness and improvement guarantees).
The surrogate function `π,φ,ηt is a lower bound of J if and
only if J + 1

ηφ is a convex function of π.

The consequence of this proposition is that maximizing,
even partially, `π,φ,ηt (θ) and hence `π,φ,ηt (θ) over θ, starting
from θ = θt, guarantees J(πt+1) ≥ J(πt).

The following proposition details how the direct and softmax
functional representations satisfy the conditions of Proposi-
tion 2 and thus offer improvement guarantees:
Proposition 3 (Improvement guarantees for direct and soft-
max representation). Assume that the rewards are in [0, 1].
Then both the direct and the softmax representation accept
values of η that guarantee improvement:

• Direct: J ≥ `p
π,φ,η
t with φ the negative entropy and

η ≤ (1−γ)3

2γ|A| .

• Softmax: J ≥ `z
π,φz,ηz
t with φz the exponential mirror

map and ηz ≤ 1− γ.

Propositions 2 and 3 state that for specific values of η, any
improvement to `t results in an improvement on the original

objective. Moreover, these step-sizes only depend on the
functional representation and the mirror map, and not on the
particular parameterization chosen.

In order to show guaranteed improvement of πt+1 =
π(θt+1), we need to ensure that the parametric step-size
α is chosen according to the smoothness of `t. With this,
we obtain the following theorem:

Theorem 1 (Guaranteed improvement for parametric up-
date). Assume that `t is β-smooth w.r.t. the Euclidean norm
and that η satisfies the condition of Proposition 2. Then,
for any α ≤ 1/β, iteration t of Algorithm 1 guarantees
J(πt+1) ≥ J(πt) for any number m of inner loop updates.

We see that even with an arbitrary parameterization, repa-
rameterizing Eq. (3) into an unconstrained problem and
solving it approximately with the correct choices of η and α
guarantees improvement in J(π) and results in convergence
to a stationary point. Hence, a successful PG method relies
on two different notions of smoothness, one at the policy
level (to set η) and one at the parameter level (to set α).
Note that Algorithm 1 and the corresponding theorem can
be easily extended to handle stochastic parametric updates.
This will guarantee that E[J(πt+1)] ≥ J(πt) where the ex-
pectation is over the sampling in the parametric SGD steps.
Similarly, both the algorithm and theoretical guarantee can
be generalized to incorporate the relative smoothness of
`t(θ) w.r.t. a general Bregman divergence.

Although we have used the same η for all states s, the
updates can accommodate a different step-size η(s) for each
state. This is likely to yield tighter lower bounds and larger
improvements in the inner loop. Determining such step-
sizes is left for future work.

7 Conclusion
In this paper, we proposed FMA-PG, a general framework
to design computationally efficient policy gradient meth-
ods. By disentangling the functional representation of a
policy from its parameterization, we unified different PG
perspectives, recovering several existing algorithms and im-
plementation heuristics in a principled manner. We also en-
abled the design of new, improved PG methods, as testified
by the strong results of the softmax formulation in various
settings. By using the appropriate theoretically-determined
hyper-parameters, FMA-PG guarantees policy improvement
for the resulting PG method, even with arbitrarily complex
policy parameterizations and for arbitrary number of inner
loop steps. We believe this to be of great interest as it allows
the natural design of sample-efficient, off-policy methods.
Our theoretical results assume the exact computation of the
action-value and advantage functions, and are thus, limiting
in practice. In the future, we aim to handle sampling errors
and extend these results to the actor-critic framework.
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E Proofs for Section 6

A Experiments using FMA-PG with the softmax functional representation
While this work focuses on providing a general framework for designing PG methods, we explore the behaviour of FMA-PG
with the softmax functional representation. For continuous-control tasks on the Mujoco environment, we modify the update
to make it similar to PPO [26], calling the resulting algorithm sPPO.

For the sPPO update, the `t function in Algorithm 1 is given by: `π,φ,ηt (θ) =

E(s,a)∼µπt

[
Aπt(s, a) log

(
clip

(
pπ(a|s,θ)
pπ(a|s,θt) ,

1
1+ε , 1 + ε

))]
where the importance weight is clipped to the [ 1

1+ε , 1 + ε] range,
like PPO. We investigate the performance of sPPO on five standard continuous control environments from the OpenAI
Gym suite [4]: Hopper-v1, Walker2d-v1, HalfCheetah-v1, Ant-v1, and Humanoid-v1. As a baseline, we use the PPO
implementation from Andrychowicz et al. [3] with their standard configuration and all the hyperparameters set to the default
values in Table 2 of Appendix C of [3]. We implement sPPO by adding a binary flag (use_softmax).

We investigate the differences between PPO and sPPO by training 180 different policies for each environment and
all combinations of use_softmax ∈ {True,False}, m ∈ {10, 100} and the importance weight capping value
ε ∈ {0.1, 0.3, 0.5, 0.7} (a total compute of 1400 days with TPUv2). We evaluate each policy 18 times during training, using
the action with largest probability rather than a sample. We compute the average return and 95% confidence intervals for
each of the settings. The results are presented in Fig. 1, where we see that sPPO outperforms PPO across all environments.
Furthermore, we see that the difference is more pronounced when the number of iterations m in the inner loop is increased
(linestyles) or when less capping is used (columns).

In Fig. 2, we show additional results but with learning rate decay and gradient clipping disabled, two commonly used
techniques to stabilize PPO training [8]. In this setting, sPPO only suffers a mild degradation while PPO fails completely,
again confirming the additional robustness of sPPO compared to PPO.

B Handling stochastic value gradients
Thus far we have worked with the original formulation of policy gradients where a policy is a distribution over actions given
states. An alternative approach is that taken by stochastic value gradients [12], that rely on the reparametrization trick. In
this case, a policy is not represented by a distribution over actions but rather by a set of actions. Formally, if ε are random
variables drawn from a fixed distribution ν, then policy π is a deterministic map from S × ν → A. This corresponds to
the functional representation of the policy. The action a chosen by π in state s (when fixing the random variable ε = ε) is
represented as π(s, ε) and

J(π) =
∑
s

dπ(s)

∫
ε

ν(ε) r(s, π(s, ε)) dε (4)

and Silver et al. [28] showed that
∂J(π)

∂π(s, ε)
= dπ(s)∇aQπ(s, a)

∣∣
a=π(s,ε)

.
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Figure 1: Average return and 95% confidence intervals (over 180 runs) for PPO and sPPO on 5 environments rows) and for
four different clipping values (columns). sPPO is more robust to large values of clipping, even more so when the number of
updates in the inner loop grows (linestyle).
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Figure 2: Average discounted return and 95% confidence interval (over 180 runs) for PPO and softmax PPO on 4
environments (env - rows) and for four different clipping strengths (epsilon - columns).
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If the policy π is parameterized by model f with parameters θ, then π(s, ε) = f(θ, s, ε). If f(θt, ε) and f(θ, ε) are
S-dimensional vectors, then Eq. (3) is given as

θt+1 = arg minEε∼ν

[
−
∑
s

dπt(s)f(θ, s, ε)∇aQπt(s, a)
∣∣
a=f(θt,s,ε)

+
1

η
Dφ(f(θ, ε), f(θt, ε))

]
. (5)

Similar to Sections 4.1 and 4.2, we will use a mirror map that decomposes across states. Specifically, we choose Dφ(π, µ) =∑
s∈S d

πt(s) ||π(s)− µ(s)||2. With this choice, Eq. (5) can be written as:

θt+1 = arg max

[
Es∼dπt

[
Eε∼ν

[
f(θ, s, ε)∇aQπt(s, a)

∣∣
a=f(θt,s,ε)

− 1

η
||f(θ, ε)− f(θt, ε)||2

]]]
(6)

This formulation is similar to Eq (15) of [28], with Qπt instead of Qπ . Additionally, while the authors justified the off-policy
approach with an approximation, our formulation offers guarantees provided η satisfies the condition of Proposition Proposi-
tion 2.

C Proofs for Section 3
Proposition 1 (Operator consistency for the FMA update). By defining the improvement and projection operators as the
update and projection step of FMA, for the same mirror map (as in Eqs. (1) and (2)), π∗ is a fixed point of P ◦ I.

Proof. Since π∗ is the optimal policy, it is a stationary point of J(π), implying that∇J(π∗) = 0. If we use the FMA update
in Eq. (1) with πt = π∗, then,

πt+1/2 = (∇Φ)−1 (∇φ(π∗) + η∇J(π∗)) =⇒ πt+1/2 = π∗.

For the projection in Eq. (2), using the above relation,

πt+1 = arg min
π∈Π

Dφ(π, π∗) =⇒ ∀π ∈ Π,Dφ(πt+1, π
∗) ≤ Dφ(π, π∗)

Since π∗ ∈ Π, minπ∈ΠDφ(π, π∗) = 0, =⇒ Dφ(πt+1, π
∗) ≤ 0. Since the Bregman divergence is non-negative,

Dφ(πt+1, π
∗) =⇒ πt+1 = π∗. The above relations imply that if πt = π∗, the FMA update ensures that πt+1 = π∗ and

hence π∗ is a fixed point of P ◦ I.

D Proofs for Section 4
In this section, we prove the equivalence of the formulations in terms of the logits and in terms of log π.

Lemma 1. Let

φ(z) =

∑
a exp(z(a))∑
a exp(z′(a))

(7)

pπ(a) =
exp(z(a))∑
a′ exp(z(a′))

, (8)

for some fixed z′. Then

Dφ(z, z′) = KL(pπ
′
||pπ) + ∆ (9)

where pπ and pπ
′

use z and z′ respectively, z′ is the one used in the denominator of the mirror map, and ∆ ≤ 0 is
independent of pπ .
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Proof.

Dφ(z, z′) =

∑
a exp(z(a))∑
a exp(z′(a))

−
∑
a exp(z′(a))∑
a exp(z′(a))

−
∑
a exp(z′(a))(z(a)− z′(a))∑

a exp(z′(a))

=

∑
a exp(z(a))∑
a exp(z′(a))

− 1−
∑
a

pπ
′
(a)(z(a)− z′(a))

=

∑
a exp(z(a))∑
a exp(z′(a))

−
∑
a

pπ
′
(a)(z(a)− δ − z′(a) + δ′)− 1−

∑
a

pπ
′
(a)(δ − δ′) ,

where the last equation is true for all δ and all δ′. By choosing

δ = log

(∑
a

exp(z(a))

)

δ′ = log

(∑
a

exp(z′(a))

)
,

we have

z(a)− δ = log pπ(a) ,

and

Dφ(z, z′) = exp(δ − δ′)−
∑
a

pπ
′
(a) log

pπ(a)

pπ′(a)
− 1 + δ′ − δ

= KL(pπ
′
||pπ) + exp(δ − δ′)− 1 + δ′ − δ .

Shifting all values of z by the same amount affects δ but not pπ because of the normalization. Hence, exp(δ−δ′)−1+δ′−δ
is independent of pπ .

Finally, we use that exp(x)− 1− x ≥ 0 for all x with x = δ − δ′ to conclude the proof.

Proposition 4.

`z
π,φ,η
t (θ) = J(πt) + E(s,a)∼µπt

(
Aπt(s, a) +

1

η

)
log

pπ(a|s, θ)
pπt(a|s, θ)

−∆ , (10)

with ∆ ≤ 0 a constant independent of π.

Proof. Because
∑
a p

πt(a|s)Aπt(s, a) = 0, we can shift all values of z by a term that does not depend on a without
changing the sum, in particular by log (

∑
a′ exp(zπ(a′, s|θ)). Thus,

`z
π,φ,η
t (θ) = J(πt) + E(s,a)∼µπtA

πt(s, a)

(
zπ(a, s|θ)− log

(∑
a′

exp(zπ(a′, s|θ))

))

− 1

η

∑
s

dπt(s)Dφz (z
π(·, s|θ), zπ(·, s, θt))

= J(πt) + E(s,a)∼µπtA
πt(s, a) log pπ(a|s, θ)− 1

η

∑
s

dπt(s)Dφz (z
π(·, s|θ), zπ(·, s|θt)) .

Using Lemma 1, we have

Dφz (z
π(·, s|θ), zπ(·, s|θt)) =

∑
s

dπt(s)
(
KL(pπ

′
(·|s)||pπ(·|s)) + exp(δ(s)− δ′(s))− 1 + δ′ − δ

)
,
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for some δ and δ′ independent of pπ .

Noting that

KL(pπ
′
(·|s)||pπ(·|s) =

∑
a

pπt(a|s) log
pπ(a|s)
pπt(a|s)

,

`z
π,φ,η
t (θ) = J(πt) + E(s,a)∼µπt

(
Aπt(s, a) +

1

η

)
log

pπ(a|s, θ)
pπt(a|s, θ)

−∆ ,

with ∆ ≤ 0 independent of pπ . This concludes the proof.

E Proofs for Section 6

Proposition 2 (Smoothness and improvement guarantees). The surrogate function `π,φ,ηt is a lower bound of J if and only
if J + 1

ηφ is a convex function of π.

Proof.

J(π)− `π,φ,ηt (π) = J(π)− J(πt)− 〈π − πt, ∇πJ(πt)〉+
1

η
Dφ(π, πt)

= J(π)− J(πt)− 〈π − πt, ∇πJ(πt)〉+
1

η
(φ(π)− φ(πt)− 〈∇πφ(πt), π − πt〉)

=

(
J +

1

η
φ

)
(π)−

(
J +

1

η
φ

)
(πt)− 〈π − πt, ∇π

(
J +

1

η
φ

)
(πt)〉 .

The last equation is positive for all π and all πt if and only if J + 1
ηφ is convex.

To prove the value of η guaranteeing improvement for the softmax parameterization, we first need to extend a lower bound
result from Ghosh et al. [11]:

Proposition 5. Let us assume that the rewards are lower bounded by −c for some c ∈ R. Then we have

J(π) ≥ J(πt) + E(s,a)∼µπt

[(
Qπt(s, a) +

c

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
. (11)

Proof. Let us define the function Jν for a policy ν as

Jν(π) =

+∞∑
h=0

γh
∫
τh

(r(sh, ah) + c)

(
1 + log

πh(τh)

νh(τh)

)
νh(τh) dτh −

c

1− γ
,

where τh is a trajectory of length h that is a prefix of a full trajectory τ and πh is the policy restricted to trajectories of length
h. We first show that it satisfies Jν(π) ≤ J(π) for any ν and any π such that the support of ν covers that of π.

Indeed, we can rewrite

J(π) =

∫
τ

(
R(τ) +

c

1− γ

)
π(τ) dτ − c

1− γ

=

∫
τ

(∑
h

γh(r(ah, sh) + c)

)
π(τ) dτ − c

1− γ
(using

∑
h γ

hc = c/(1− γ))

=
∑
h

γh
∫
τh

(r(ah, sh) + c)πh(τh) dτh −
c

1− γ
,
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where the last line is obtained by marginalizing over steps h + 1, . . . ,+∞ for all h and all trajectories τ . Because
r(ah, sh) + c is positive, as the rewards are lower bounded by −c, we have

J(π) =
∑
h

γh
∫
τh

(r(ah, sh) + c)
πh(τh)

νh(τh)
νh(τh) dτh −

c

1− γ

≥
∑
h

γh
∫
τh

(r(ah, sh) + c)

(
1 + log

πh(τh)

νh(τh)

)
νh(τh) dτh −

c

1− γ
(using x ≥ 1 + log x)

= Jν(π) .

Let us denote JSAν the right-hand side of Eq. (11), i.e.:

JSAν (π) = J(ν) + E(s,a)∼µν

[(
Qν(s, a) +

c

1− γ

)
log

pπ(a|s)
pν(a|s)

]
.

We now prove that Jν has the same gradient as JSAν :

∇θJν(π) = ∇θ

(∑
h

γh
∫
τh

(r(ah, sh) + c)

(
1 + log

πh(τh)

νh(τh)

)
νh(τh) dτh

)

= ∇θ

(∑
h

γh
∫
τh

(r(ah, sh) + c) log πh(τh)νh(τh)

)
dτh

=
∑
h

γh
∫
τh

(r(ah, sh) + c)∇θ log πh(τh)νh(τh) dτh ,

where all terms independent of θ were moved outside of the gradient. As the log probability of a trajectory decomposes into
a sum of the probabilities of actions given states and of the transition probabilities, and as the latter are independent of θ, we
get

∇θJν(π) =
∑
h

γh
∫
τh

(r(ah, sh) + c)∇θ log πh(τh)νh(τh) dτh

=
∑
h

γh
∫
τh

(r(ah, sh) + c)

(∑
h′

∇θ log pπ(ah′ |sh′)

)
νh(τh) dτh

=

∫
τ

∑
h′

∇θ log pπ(ah′ |sh′)

(
+∞∑
h=h′

γh(r(ah, sh) + c)

)
ν(τ) dτ .

But

+∞∑
h=h′

γh(r(ah, sh) + c) = γh
′
(
Qν(s, a) +

c

1− γ

)
∫
τ

ν(τ)dτ1ah′=a1sh′=s = dh
′

ν (s)ν(a|s) ,
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with dh
′

ν (s) the undiscounted probability of reaching state s at timestep h′. Hence, we have

∇θJν(π) =

∫
τ

∑
h′

∇θ log pπ(ah′ |sh′)

(
+∞∑
h=h′

γh(r(ah, sh) + c)

)
ν(τ) dτ

=
∑
h′

∑
s

∑
a

∇θ log pπ(a|s)dh
′

ν (s)ν(a|s)γh
′
(
Qν(s, a) +

c

1− γ

)
=
∑
h′

γh
′ ∑
s

dh
′

ν (s)
∑
a

∇θ log pπ(a|s)ν(a|s)
(
Qν(s, a) +

c

1− γ

)
=
∑
s

dν(s)
∑
a

(
Qν(s, a) +

c

1− γ

)
ν(a|s)∇θ log pπ(a|s)

= ∇θ

(∑
s

dν(s)
∑
a

(
Qν(s, a) +

c

1− γ

)
ν(a|s) log pπ(a|s)

)

= ∇θ
(
J(ν) + E(s,a)∼µν

[(
Qν(s, a) +

c

1− γ

)
log

pπ(a|s)
pν(a|s)

])
= ∇θJSAν (π) ,

with dν(s) the unnormalized probability of s under the discounted stationary distribution.

Because Jν and JSAν have the same gradient, they differ by a constant, i.e. JSAν = Jν + C for some C. But we also know
that Jν(ν) = J(ν), which means that

C = JSAν (ν)− Jν(ν)

= JSAν (ν)− J(ν)

= E(s,a)∼µν

[(
Qν(s, a) +

c

1− γ

)
log

pν(a|s)
pν(a|s)

]
= 0 .

Hence, Jν = JSAν and, becomes Jν is a lower bound of J , we have

J(π) ≥ J(ν) +
∑
s

dν(s)
∑
a

(
Qν(s, a) +

c

1− γ

)
pν(a|s) log

pπ(a|s)
pν(a|s)

. (12)

Setting ν = πt concludes the proof.

Proposition 3 (Improvement guarantees for direct and softmax representation). Assume that the rewards are in [0, 1]. Then
both the direct and the softmax representation accept values of η that guarantee improvement:

• Direct: J ≥ `p
π,φ,η
t with φ the negative entropy and η ≤ (1−γ)3

2γ|A| .

• Softmax: J ≥ `z
π,φz,ηz
t with φz the exponential mirror map and ηz ≤ 1− γ.

Proof. Agarwal et al. [2] show that, when using the direct parameterization, J is
(

2γ|A|
(1−γ)3

)
-smooth w.r.t. the Euclidean

distance. By using the properties of relative smoothness [20], if the mirror map φ is µ-strongly convex w.r.t. Euclidean
distance, then J is L-smooth with L = (2γ|A|/(1−γ)3 µ). Using the fact that negative entropy is 1-strongly convex w.r.t. the
1-norm, we can set η = (1−γ)3/2γ|A| for the direct formulation.

We now prove the result for the softmax formulation. Assume

η =
1− γ
rm − rl

. (13)
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We know from Proposition 4 that

`z
π,φ,η
t (θ) ≤ J(πt) + E(s,a)∼µπt

(
Aπt(s, a) +

1

η

)
log

pπ(a|s, θ)
pπt(a|s, θ)

.

Since the rewards are between rl and rm, we have

`z
π,φ,η
t (π) ≤ J(πt) + E(s,a)∼µπt

[(
Aπt(s, a) +

1

η

)
log

pπ(a|s)
pπt(a|s)

]
= J(πt) + E(s,a)∼µπt

[(
Aπt(s, a) +

rm − rl
1− γ

)
log

pπ(a|s)
pπt(a|s)

]
= J(πt) + E(s,a)∼µπt

[(
Aπt(s, a) + V πt(s) +

(
rm

1− γ
− V πt(s)

)
− rl

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
= J(πt) + E(s,a)∼µπt

[(
Qπt(s, a)− rl

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
− Es∼dπt

[(
rm

1− γ
− V πt(s)

)
KL(pπt(·|s)||pπ(·|s))

]
.

The last term on the RHS of the last equation is negative. Indeed, because the rewards are less than rm, the value functions
are less than rm/(1− γ) and rm/(1− γ)− V πt(s) is positive. As the KL divergences are positive, the product of the two
is positive and the whole term is negative because of the minus term. Thus, we have

`z
π,φ,η
t (π) ≤ J(πt) + E(s,a)∼µπt

[(
Qπt(s, a)− rl

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
≤ J(π) . (by Proposition 5)

Hence, choosing η = 1−γ
rm−rl leads to an improvement guarantee. Because our rewards are bounded between 0 and 1, setting

rm = 1 and rl = 0 gives η = 1− γ. This concludes the proof.

Theorem 1 (Guaranteed improvement for parametric update). Assume that `t is β-smooth w.r.t. the Euclidean norm and
that η satisfies the condition of Proposition 2. Then, for any α ≤ 1/β, iteration t of Algorithm 1 guarantees J(πt+1) ≥ J(πt)
for any number m of inner loop updates.

Proof. Using the update in Algorithm 1 with α ≤ 1
β and the β-smoothness of `t(ω), for all k ∈ [m− 1],

`t(ωk+1) ≥ `t(ωk) +
1

2β
||∇`t(ωk)||2

After m steps,

`t(ωm) ≥ `t(ω0) +
1

2β

m−1∑
k=0

||∇`t(ωk)||2

Since θt+1 = ωm and ω0 = θt in Algorithm 1,

=⇒ `t(θt+1) ≥ `t(θt) +
1

2β
||∇`t(θt)||2 +

m−1∑
k=1

||∇`t(ωk)||2

Note that J(πt) = `t(θt) and if η satisfies Proposition 2, then J(πt+1) ≥ `t(θt+1). Using these relations,

J(πt+1) ≥ J(πt) +
1

2β
||∇`t(θt)||2 +

m−1∑
k=1

||∇`t(ωk)||2︸ ︷︷ ︸
+ve

=⇒ J(πt+1) ≥ J(πt).


