
Robust Online Control with Model Misspecification

Xinyi Chen * 1 2 Udaya Ghai * 1 2 Elad Hazan * 1 2 Alexandre Megretski * 3

Abstract

We study online control of an unknown nonlin-
ear dynamical system that is approximated by a
time-invariant linear system with model misspeci-
fication. Our study focuses on robustness, which
measures how much deviation from the assumed
linear approximation can be tolerated while main-
taining a bounded `2-gain.

Some models cannot be stabilized even with per-
fect knowledge of their coefficients: the robust-
ness is limited by the minimal distance between
the assumed dynamics and the set of unstabiliz-
able dynamics. Therefore it is necessary to as-
sume a lower bound on this distance. Under this
assumption, and with full observation of the d
dimensional state, we describe an efficient con-
troller that attains Ω( 1√

d
) robustness together with

an `2-gain whose dimension dependence is near
optimal. We also give an inefficient algorithm that
attains constant robustness independent of the di-
mension, with a finite but sub-optimal `2-gain.

1. Introduction
The control of linear dynamical systems is well studied and
understood. Classical algorithms such as LQR and LQG
are known to be optimal for stochastic control, while robust
H∞ control is optimal in the worst case, assuming quadratic
costs. Recent advancements gave rise to efficient online con-
trol methods based on convex relaxation that can minimize
regret in the presence of adversarial perturbations. How-
ever, the problem of efficient control for general nonlinear
systems is intractable.

In this paper we revisit a natural and well studied approach
for nonlinear control: that of linear dynamics with model
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misspecification. The deviation of the nonlinear dynam-
ics from a linear system is captured by an adversarial dis-
turbance term that can scale with the system state history.
The amount of such deviation that can be tolerated while
maintaining system stability is called the robustness of the
system.

Our study is motivated by a long standing research direction.
The field of adaptive control has addressed the problem
of controlling a linear dynamical system with uncertain
parameters, providing guarantees of asymptotic optimality
of adaptive control algorithms. However, these algorithms
were shown to lack robustness under model misspecification
(e.g. Rohrs et al. (1982)).

In this paper, we show that a properly designed adaptive
control algorithm can exhibit a significant degree of robust-
ness to unmodeled dynamics, even though the associated
closed loop `2 gain grows rapidly1. We explore the limits of
robust control of a linear dynamical system with adversarial
perturbation whose magnitude can depend on the state his-
tory. We show that it is indeed possible to achieve constant
robustness which depends only on the system dimension,
and independent of its other natural parameters.

The controller that achieves this performance is computa-
tionally efficient. It is based on recent system identification
techniques from non-stochastic control whose main com-
ponent is active large-magnitude deterministic exploration.
This technique deviates from one of the classical approaches
of using least squares for system estimation and solving for
the optimal controller.

1.1. Our contributions

We consider the setting of a linear dynamical system with
time-invariant dynamics, together with model misspecifica-
tion, as illustrated in Fig. 1. The system evolves according
to the following rule,

xt+1 = Axt +But + ∆t(x1:t) + ft,

where A,B ∈ Rd×d is the (unknown) linear approxima-
tion to the system , ut, xt, ft ∈ Rd are the control, state
and adversarial perturbation respectively. The perturbation

1The `2 gain has to grow rapidly regardless of robustness, as
per the lower bounds of (Chen & Hazan, 2021)
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Figure 1. Diagram of the system, where ∆ represents model mis-
specification.

wt = ∆t(x1:t) : Rd×t → Rd represents the deviation of
the nonlinear system from the nominal system (A,B), and
it crucially satisfies the following assumption:

t∑
s=1

‖ws‖22 ≤ h2(

t∑
s=1

‖xs‖22). (1)

The parameter h is a measure of the robustness of the system,
and is the main object of study. The larger h is, the more
model misspecification can be tolerated in the system, and
our goal is to study the limits of stabilizability of the system
with robustness being as large as possible. The measure of
stability we use is taken from classical control theory, and
is called the `2-gain of a closed-loop system with control
algorithm A in the feedback loop,

`2-gain(A) = max
ft

‖x1:T ‖2
‖f0:T−1‖2

, (2)

where x1:T , f0:T−1 ∈ RdT are concatenations of x1, . . . ,
xt, and f0, . . . , fT−1, respectively. This notion is closely
related to the competitive ratio of the control algorithm A,
as we show in App. B. With this notation, we can formally
state our main question:

How large can h be for the system to allow a control
algorithm which yields a finite `2-gain?

Our study initiates an answer to this question from both
lower and upper bound perspectives. Specifically, for any
system with a non-degenerate control matrix B,

• We give an efficient algorithm that is able to control
the system with robustness h = Ω( 1√

d
), where d is

the system dimension, and independently of the other
system parameters.

In addition, we show that this algorithm achieves finite
`2-gain of 2Õ(d logM), where M is an upper bound on
the spectral norm of the system. While the exponential
dependence on the dimension may seem daunting, it is
known to be necessary as per the lower bound of Chen
& Hazan (2021), which is Ω(2d).

• We give an (inefficient) control algorithm with a finite
`2-gain and constant robustness h = Ω(1), indepen-
dent of the other system parameters.

We also consider the limits of finite `2-gain and robust con-
trol. Clearly if the system A,B is not stabilizable, then
one cannot obtain any lower bound on the robustness. The
distance of the system A,B from being stabilizable is thus
an upper bound on the robustness, and we provide a proof
for completeness in App. A.

For our main results, we use an active explore-then-commit
method, and we use a doubling strategy to handle unknown
disturbance levels. We also study system identification us-
ing online least squares, and prove that it gives constant
robustness and finite `2-gain bounds for one dimensional
systems in App. C. We explain why this methodology is
hard to generalize to higher dimensions, and motivate our
use of the active exploration technique.

1.2. Related work

Adaptive Control. The most relevant field to our work is
adaptive control, see for example a survey by Tao (2014).
This field has addressed the problem of controlling a liner
dynamical system with uncertain parameters, providing, in
the 70s, guarantees of asymptotic optimality of adaptive
control algorithms. However, reports of lack of robustness
of such algorithms to unmodeled dynamics (as in the Rohrs
et al. (1982) example) have emerged. One can argue that this
lack of robustness was due to poor noise rejection transient
performance of such controllers, which can be measured in
terms of `2 induced norm (gain) of the overall system. The
general task of designing adaptive controllers with finite
closed loop `2 gain was solved, in abstract, by Cusumano
& Poolla (1988b), but the `2 gain bounds obtained there
grow very fast with the size of parameter uncertainty, and
are therefore only good to guarantee a negligible amount of
robustness. It has been confirmed by Megretski & Rantzer
(2002/2003) that even in the case of one dimensional linear
models, the minimal achievable `2 gain grows very fast with
the size of parameter uncertainty.

Nonlinear Control. Recent research has studied provable
guarantees in various complementary (but incomparable)
models for nonlinear control. These include planning re-
gret in nonlinear control (Agarwal et al., 2021), adaptive
nonlinear control under linearly-parameterized uncertainty
(Boffi et al., 2020), online model-based control with access
to non-convex planning oracles (Kakade et al., 2020), con-
trol with nonlinear observation models (Mhammedi et al.,
2020), system identification for nonlinear systems (Mania
et al., 2020) and nonlinear model-predictive control with
feedback controllers (Sinha et al., 2021).

Robustness and `2-gain in Control The achievability of
finite `2-gains for systems with unknown level of distur-
bance has been studied in control theory. Cusumano &
Poolla (1988a) gives a claim on the level of disturbance
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needed for finite `2-gain. Megretski & Rantzer (2002/2003)
gives a lower bound on the closed loop `2-gain of adaptive
controllers that achieve finite `2-gain for all systems with
bounded spectral norm. However, the systems studied in
this paper do not contain any model misspecification.

Competitive Analysis for Control Yu et al. (2020) gives
a control algorithm with constant competitive ratio for the
setting of delayed feedback and imperfect future disturbance
predictions. Shi et al. (2021) proposes algorithms whose
competitive ratios are dimension-free for the setting of opti-
mization with memory, with connections to control under a
known, input-disturbed system and adversarial disturbances.

System Identification for Linear Dynamical Systems.
For an LDS with stochastic perturbations, the least squares
method can be used to identify the dynamics in the par-
tially observable and fully observable settings (Oymak &
Ozay, 2019; Simchowitz et al., 2018; Sarkar & Rakhlin,
2019; Faradonbeh et al., 2019). However, least squares can
lead to inconsistent solutions under adversarial disturbances.
The algorithms by Simchowitz et al. (2019) and Ghai et al.
(2020) tolerate adversarial disturbances, but the guarantees
only hold for stable or marginally stable systems. If the ad-
versarial disturbances are bounded, Hazan et al. (2020) and
Chen & Hazan (2021) give system identification algorithms
for any unknown system, stable or not, with and without
knowledge of a stabilizing controller, respectively.

2. Definitions and Preliminaries
Notation. We use the Õ notation to hide constant and
logarithmic terms in the relevant parameters. We use ‖ · ‖2
to denote the spectral norm for matrices, and the Euclidean
norm for vectors. We use xs:t ∈ Rd(t−s+1) to denote the
concatenation of xs, xs+1, . . . , xt, and similar notations are
used for f , w, z. We denote an ε-net as Nε,d, defined as:

Definition 1. We define Nε,d ⊆ Rd to be an ε-net of Sd−1,
the unit sphere with the euclidean metric, if for any x ∈
Sd−1, we have x′ ∈ Nε,d such that ‖x− x′‖2 ≤ ε.

Goal. Given access to a black box LDS as in Section 1.1
satisfying the assumptions below, and without the ability
to restart the system, obtain the best possible `2-gain. First
we make the assumption on the disturbances in Section 1.1
formal.

Assumption 1. We treat the model misspecification com-
ponent of the system, ws, as an adversarial disturbance
sequence. They are arbitrary functions of past states such

that for all t:2

‖w1:t‖2 ≤ h‖x1:t‖2.

The disturbance ft in the system is arbitrary, and let zt =
wt + ft. Without loss of generality, let w0 = x0 = u0 = 0.

Further, we assume the system is bounded and the control
matrix is invertible.

Assumption 2. The magnitude of the dynamics A,B are
bounded by a known constant ‖A‖2, ‖B‖2 ≤ M , where
M ≥ 1. B’s minimum singular value is also lower bounded
as σmin(B) > L, where 0 < L ≤ 1.

`2-gain and Competitive Ratio. The competitive ratio of
a controller is a concept that is closely related to `2-gain,
but is more widely studied in the machine learning com-
munity. Informally, for any sequence of cost functions, the
competitive ratio is the ratio between the cost of a given
controller and the cost of the optimal controller, which has
access to the disturbances f0:T−1 a priori. Importantly, the
notion of competitive ratio is counterfactual: it allows for
different state trajectories x1:T as a function of the control
inputs. Under some assumptions that our algorithm satisfies,
`2-gain bounds can be converted to competitive ratio bounds
(see App.B). We choose to present our results in terms of
`2-gain for simplicity.

3. Algorithm and Results
In this section we describe our algorithm. The main algo-
rithm, Alg.1, is run in epochs, each with a proposed upper
bound q on the disturbance magnitude ‖f0:T−1‖2. A new
epoch starts whenever the controller discovers that q is not
sufficiently large and increases the upper bound. The key
to this doubling strategy is identifying when and how much
the upper bound should increase.
The algorithm uses an exploration set for system identifi-
cation, and then executes the stabilizing controller of the
estimated system. If the upper bound q indeed exceeds
‖f0:T−1‖2, the algorithm is guaranteed to find a stabilizing
controller. The efficient version of the algorithm uses the
standard basis vectors as the exploration set, but attains ro-
bustness depending on

√
d. The inefficient version of the

algorithm achieves dimension-free robustness, but uses an
ε-net for exploration, resulting in an exponential number of
large controls for system estimation.
The theorems below present the main guarantees of our
algorithm.

Theorem 1. For h ≤ 1
12
√
d

, V = {e1, . . . , ed}, there exists

ε, α such that Alg. 1 has `2-gain(A) ≤ (Md
L )O(d).

2Notice that wt can depend on the actual trajectory of states,
and not only their magnitude. This is important to capture miss-
specification of the dynamics.
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Theorem 2. For h ≤ 1
15 , V = N1/2,d, there exists ε, α

such that Alg. 1 has `2-gain(A) ≤
(
Md
L

)2O(d)

.

Remark 1. We note that when V is the standard basis,
Â has a closed form. In particular, the unconstrained
solution3 of Line 16 in Alg. 2 has Φ(Â) = 0, where
Â = [xd+3

ξ0
· · · xd+2(d−1)+3

ξd−1
]. When V is an ε-net, Φ is a

maximum of convex functions, and hence a convex function.

Algorithm 1 `2-gain algorithm
1: Input: System upper bound M , control matrix singular

value lower bound L, system identification parameter ε,
threshold parameter α, and exploration set V ⊆ Sd−1.

2: Set q = 0,K = 0.
3: while t ≤ T do
4: Observe xt.
5: if ‖x1:t‖2 > αq then
6: Update q = ‖x1:t‖2.
7: Call Alg 2 with parameters (q,M,L, ε, α, V ), ob-

tain updated K and budget q.
8: else
9: Execute ut = −Kxt.

10: t← t+ 1
11: end if
12: end while

Algorithm 3 Adversarial Control Matrix ID on Budget
1: Input: disturbance budget q, system upper bound M ,

control matrix singular value lower bound L, system
identification parameter ε, threshold parameter α.

2: for i = 0, 1, . . . , d− 1 do
3: observe xt+i.
4: if ‖x1:t+i‖2 > αq then
5: Restart SysID with q = ‖x1:t+i‖2.
6: end if
7: play ut+i = λiei+1, λi = 42iM2i+1q

εi+1 .
8: end for
9: observe xt+d, compute

B̂ = [
xt+1

λ0
· · · xt+d

λd−1
].

10: if ‖x1:t+d‖2 > αqk or σmin(B̂) < L/2 then
11: Restart SysID with q = ‖x1:t+d‖2.
12: end if
13: Return q, B̂

3With small modifications to analysis, the constrained opti-
mization can be replaced by a failure check if ‖Â‖2 > 2M as this
would indicate our disturbance budget is too small.

Algorithm 2 Adversarial System ID on Budget
1: Input: disturbance budget q, system upper bound M ,

control matrix singular value lower bound L, system
identification parameter ε, threshold parameter α, and
exploration set V ⊆ Sd−1.

2: Define N = |V | ≥ d with V = (v0, v1, . . . , vN−1).
3: Call Alg. 3 with parameters (q,M,L, ε, α), obtain es-

timator B̂ and updated budget q. Suppose the system
evolves to time t′ = t+ d.

4: Set q′ = 42dM2dε−dq.
5: for i = 0, 1, . . . , 2N − 1 do
6: observe xt′+i.
7: if ‖x1:t′+i‖2 > αq then
8: Restart SysID from Line 2 with q = ‖x1:t′+i‖2.
9: end if

10: if i is even then
11: play ut′+i = ξi/2B̂

−1vi/2, ξi/2 = 43i/2M3i/2+2q′

εi/2+1 .
12: else
13: Play ut′+i = 0.
14: end if
15: end for
16: Observe xt′+2N , compute

Â ∈ arg min
Ã:‖Ã‖2<M

Φ(Ã) := max
i∈[0,N)

‖Ãvi −
xt′+2i+2

ξi
‖2 .

17: Return q,K = B̂−1Â

3.1. Proof sketch

The algorithm has three components: exploration to estimate
B, exploration to estimate A, and controlling the system
with linear controller K = B̂−1Â. We first sketch out the
analysis if the upper bound on the disturbance magnitude
is correct and ‖f0:T−1‖2 ≤ q. In this case, the algorithm
will not start a new epoch and we are guaranteed to obtain a
stabilizing controller. Note that in both exploration stages,
the state can grow exponentially, so exploratory controls
must also grow to keep up.

Identifying B (see App. D.2). Alg. 3 works by probing
the system with scaled standard basis vectors. With suffi-
ciently large scaling, xt+1 = Axt +But + zt ≈ But. This
allows us to estimate B one column at a time.

Identifying A (see App. D.3). Once we have an accurate
estimate B̂, identification of A in Alg. 2 works by applying
controls ut = ξB̂−1vt every other iteration, where ‖vt‖2 =
1 and ξ is a large constant such that xt+1 ≈ Axt + ξvt +
zt ≈ ξvt. One more time evolution with zero control gives
xt+2 = Axt+1 + zt+1 ≈ ξAvt + zt+1. By Assumption 1,
‖zt+1‖2 ≤ h‖x1:t+1‖2 + ‖f0:t+1‖2 = O(hξ + q). As a
result, we have ‖xt+2

ξ −Avt‖2 = O(h). By definition of Â
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in Line 16, we also have ‖xt+2

ξ − Âvt‖2 = O(h), so ‖(A−
Â)vt‖2 = O(h). Exploratory controls are precondtioned
with B̂−1 to acheive robustness independent of σmin(B).

Exploration on the standard basis and on an ε-net (see
Lem. 14 and Lem. 15). If we explore with the standard
basis, then we assure that each row of Â is accurate to O(h),
so ‖A − Â‖2 ≤ ‖A − Â‖F ≤ h

√
d. Because we use

a Frobenius norm analysis, we only produce an accurate
estimate ofA for h = Ω(1/

√
d). Exploration using an ε-net

guarantees ‖(A−Â)v‖2 = O(h) in all directions, providing
an accurate estimate Â for h = Ω(1).

Stabilizing the system (see Lem. 13). Once exploration
is complete, the system is stabilized by linear controller K.
By controlling the accuracy of Â and B̂, we guarantee the
closed loop system satisfies ‖A − BK‖2 < 1

2 . We can
obtain an end-to-end `2-gain bound by bounding ‖x1:t‖22 in
terms of ‖f0:t−1‖22 and using our exploration analysis.

Handling changing disturbance budget (see App. D.7).
We now sketch out the extension to unknown disturbance
magnitude. In Alg 1, q is the proposed upper bound on
‖f0:T−1‖2. There are a variety of conditions for failure in
the algorithms (i.e. where we have proof that q was not a
valid upper bound) which trigger re-exploration and the start
of a new epoch. If q is indeed an upper bound, the above
steps all will work without triggering a failure and we have
‖x1:T ‖2 ≤ αq for some constant α. On the other hand,
when a failure is detected, it is proof that ‖f0:T−1‖2 > q.
We can relate the penultimate budget q′ to the final budget q
by bounding the state growth from a single time evolution
where budget is exceeded. Combining the upper bound of
‖x1:T ‖2 and lower bound on ‖f0:T−1‖2 produces an `2-gain
bound.

4. Conclusions
We have shown, contrary to common wisdom in control
theory, that it is possible to control a misspecified LDS with
robustness that is independent of the system magnitude. In
addition, our control algorithm has near-optimal dimension
dependence in terms of `2-gain. The most immediate open
question is whether an efficient algorithm can be derived to
obtain constant robustness, independent of the dimension,
and with a tighter bound on `2-gain in terms of the system
magnitude. Other future directions include systems with
partial observability and degenerate control matrices. It is
also interesting to explore whether the same result can be
obtained when the system inputs, not only the states, are
subject to noise and misspecification.
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A. Limits on robustness in online control
In this subsection we give a simple example exhibiting the limitation of robustness, and in particular showing that in the
case of an unstabilizable system, it is impossible to obtain constant robustness.
Definition 2 (Strong Controllability). Given a linear time-invariant dynamical system (A,B), let Ck denote

Ck = [B AB A2B · · ·Ak−1B] ∈ Rd×kd.

Then (A,B) is (k, κ) strongly controllable if Ck has full row-rank, and ‖(CkC>k )−1‖ ≤ κ.

Lemma 3. In general, a system with strong controllability (k, κ) cannot be controlled with robustness larger than 1√
κ

.

Proof. Consider the two dimensional system given by the matrices

Aε =

[
2 ε
0 2

]
, B =

[
0
1

]
The Kalman matrix for this system is given by

Q = [B AB] =

[
0 ε
1 2

]
For ε > 0, this matrix is full rank, and the system is strongly controllable with parameters (2, O( 1

ε2 )). However, for ε = 0,
it can be seen that the system becomes uncontrollable even without any noise, since the first coordinate has no control which
can cancel it, i.e. xt+1(1) = 2xt(1) + zt(1).

For adversarial noise with robustness of ε, we can convert the system Aε to A0, rendering it uncontrollable. The noise
sequence will simply be

wt =

[
0 −ε
0 0

]
xt.

This happens with parameter h which is ε = 1√
κ

.

B. Relating competitive ratio to `2-gain
Here we relate the `2-gain to the competitive ratio. We begin with a formal definition.
Definition 3. (Competitive Ratio) Consider a sequence of cost functions ct(xt, ut). Let JT (A, f0:T−1) denote the cost of
controller A given the disturbance sequence f0:T−1, and let OPT(f0:T−1) denote the cost of the offline optimal controller
with full knowledge of f0:T−1. Both costs are worst case under any model misspecification that satisfies (1) subject to a
fixed f0:T−1. The competitive ratio of a control algorithm A, for w1:T−1 satisfying Assumption 1 is defined as:

C(A) = max
f0:T−1

JT (A, f0:T−1)

OPT(f0:T−1)
.

The `2-gain bounds the ratio between ‖x1:T ‖2 and ‖f0:T−1‖2, while under the time-invariant cost function ct(x, u) = ‖x‖22+
‖u‖22, the competitive ratio bounds the ratio of ‖x1:T ‖22 + ‖u1:T ‖22 to OPT(f0:T−1). Here we show that OPT(f0:T−1) =
Θ(‖f0:T−1‖22), treating M and L as constants. Assuming ‖u1:T ‖2 is bounded by a constant multiple of ‖x1:T ‖2, then
C(A) = Θ(`2-gain(A)2).
Theorem 4. Under the time-invariant cost function ct(x, u) = ‖x‖22 + ‖u‖22, for any system satisfying Assumptions 1 and
2, with h < 1/2,

‖f0:T−1‖22
9M2

≤ OPT(f0:T−1) ≤ 8M2‖f0:T−1‖22
L2

.

Proof. We start by bounding ‖ft‖22 using (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2).

‖ft‖22 = ‖xt+1 −Axt −But − wt‖22
≤ 4M2‖xt‖22 + 4‖xt+1‖22 + 4M2‖ut‖22 + 4‖wt‖22
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Summing over f2t , we have

‖f0:T−1‖22 =

T−1∑
t=0

‖ft‖22 ≤ 4

T−1∑
t=0

(M2‖xt‖22 + ‖xt+1‖22 +M2‖ut‖22 + ‖wt‖22)

≤ 8M2(‖x1:T ‖22 + ‖u1:T−1‖22) + 4‖w1:t‖22
≤ (8M2 + 4h2)(‖x1:T ‖22 + ‖u1:T−1‖22) .

The lower bound follows after applying 2h < 1 ≤M .

For the upper bound, consider ut = −B−1Axt, which produces closed loop dynamics xt+1 = wt + ft and hence
‖xt+1‖22 ≤ 2‖wt‖22 + 2‖ft‖22. Summing over t, we have

‖x1:T ‖22 ≤ 2‖f0:T−1‖22 + 2‖w0:T−1‖22 ≤ 2‖f0:T−1‖22 + 2h2‖x0:T−1‖22 .

Noting that x0 = 0, we have ‖x1:T ‖22 ≤
2‖f0:T−1‖22
(1−2h2) ≤ 4‖f0:T−1‖22 .

Noting that ‖ut‖2 ≤ M
L ‖xt‖2, we have

‖x1:T ‖22 + ‖u1:T−1‖22 ≤
2M2‖x1:T ‖22

L2
≤ 8M2‖f0:T−1‖22

L2
.

Remark 2. Dependence on M2 is required in Theorem 4. Consider the system xt+1 = Mxt +ut + ft with x1 = 1, ut = 0
for all t and ft alternates between −M and 1. As a result, xt oscillates between 1 and 0 for an average cost of 1

2 , while f2t
is on average M2+1

2 .

C. Online Linear Regression
In this section, we provide an algorithm with bounded `2-gain for any disturbance sequence z0:T−1 that satisfies Assumption 1
for h < 1/2, for the 1-d system

xt+1 = axt + ut + zt.

C.1. Algorithm and Analysis

Algorithm 4 Online Least Squares Control
1: Input: time horizon T , system upper bound parameter M .
2: Initialize x0, u0 = 0
3: for t = 1 . . . T do
4: Observe xt and define z̃t−1(â) = xt − âxt−1 − ut−1.
5: Compute āt = arg minâ

∑t−1
s=0 z̃

2
s(â)

6: Compute ât = clip[−M,M ](āt)
7: Execute ut = −âtxt.
8: end for

Proof Sketch The key idea to the analysis is that if the algorithm estimates â inaccurately, strong convexity of the one
dimensional least squares objective implies that the magnitude of the disturbances is a nontrivial fraction of the magnitude
of the states up to that point (see (3)). On the other hand, if ât+1 is an accurate estimate of a, we can bound ‖x1:t‖22 using
the stability of the closed loop dynamics. The result follows from stitching these regimes together. While we would like to
extend this analysis to high dimensions, we note that (3) does not have a natural high dimensional extension. In particular,
‖A− Ât‖2 can be large in a direction where disturbances are small relative to the magnitude of the state.

Theorem 5. Given Assumptions 1 and 2, for h < 1/2, Algorithm 4 has `2-gain bounded by O(M2(1− 4h2)−2.5).
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Proof. Suppose |ât−a| ≥ 1
2 , then |āt−a| ≥ 1

2 . By definition, āt is the unconstrained minimizer of Z̃t−1(â) =
∑t−1
s=0 z̃

2
s(â),

where z̃0(â) = x1. Furthermore, since z̃t(a) = xt+1 − axt − ut = zt, we have

‖z0:t−1‖22 = Z̃t−1(a) = Z̃t−1(āt) + (āt − a)2‖x1:t−1‖22 ≥
‖x1:t−1‖22

4
. (3)

Now suppose t∗ = min(inf{t ≤ T : ∀s ≥ t, |âs − a| ≤ 1/2}, T + 1), is the first time such that the dynamics are stable for
the remainder of the time horizon. If t∗ = T + 1 or if t∗ ≥ 2, then |ât∗−1 − a| > 1

2 . Using Assumption 1, we have

‖z0:t∗−2‖22 =

t∗−2∑
s=0

z2s =

t∗−2∑
s=0

(ws + fs)
2

≤
t∗−2∑
s=0

(1 + 1− 4h2)w2
s + (1 +

1

1− 4h2
)f2s

≤ 2(1− 2h2)h2‖x1:t∗−2‖22 +
2

1− 4h2
‖f0:t∗−2‖22.

Applying (3), we have

‖x1:t∗−2‖22 ≤
8‖f0:t∗−2‖22

(1− 4h2)(1− 8h2(1− 2h2))
=

8‖f0:t∗−2‖22
(1− 4h2)3

.

Beyond t∗, we can bound the states using stability of the dynamics, but we first need to bound the cost from ‖x1:t∗−2‖22
to ‖x1:t∗‖22. Note, if t∗ ≤ 2, we do not need to use (3) and ‖x1:t∗‖22 is appropriately bounded by unrolling dynamics via
Lem. 6. Applying Lem. 6, we have

‖x1:t∗‖22 ≤ 100M4(‖x1:t∗−2‖22 + ‖f0:t∗−1‖22) ≤ 800M4‖f0:t∗−2‖22
(1− 4h2)3

+ 100M4‖f0:t∗−1‖22 ≤
1000M4‖f0:t∗−1‖22

(1− 4h2)3
.

We complete our bound using Lem. 7, yielding

‖x1:T ‖22 ≤
2(1− 4h2)‖x1:t∗‖22 + 8‖ft∗:T−1‖22

(1− 4h2)3
≤ 2000M4‖f0:T−1‖22

(1− 4h2)5
.

Lemma 6. If Assumptions 1 and 2 hold, then for any sequence of ft’s and h < 1/2, xt produced by Algorithm 4 satisfies

‖x1:t+2‖22 ≤ 100M4(‖x1:t‖22 + ‖f0:t+1‖22) .

Proof. We first note that |a− ât| ≤ 2M so unrolling the dynamics once we have

‖x1:t+2‖22 ≤ 2 · 4M2‖x1:t+1‖22 + 2‖z0:t+1‖22 = 8M2‖x1:t+1‖22 + 2‖z0:t+1‖22 .

Applying Assumption 1 with h < 1
2 we have

‖z0:t+1‖22 ≤ 2‖f0:t+1‖22 + 2h2‖x1:t+1‖22 ≤ 2‖f0:t+1‖22 +
‖x1:t+1‖22

2
.

Combining, we have

‖x1:t+2‖22 ≤ (8M2 + 1)‖x1:t+1‖22 + 4‖f0:t+1‖22 ≤ 9M2‖x1:t+1‖22 + 4‖f0:t+1‖22 .

Unrolling, one more time, yields

‖x1:t+2‖22 ≤ 9M2‖x1:t+1‖22 + 10‖f0:t+1‖22
≤ 9M2(9M2‖x1:t‖22 + 10‖f0:t‖22) + 10‖f0:t+1‖22
≤ 100M4(‖x1:t‖22 + ‖f0:t+1‖22) .
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Lemma 7. Suppose for all t ∈ [t∗, T ], Alg. 4 produces ât such that |a − ât| ≤ 1/2. Then for any sequence of ft’s and
h < 1

2 :

‖x1:t‖22 ≤
2(1− 4h2)‖x1:t∗‖22 + 8‖ft∗:t−1‖22

(1− 4h2)3
,

where ‖ft∗:T−1‖22 = 0 if t∗ ≥ T for time horizon T .

Proof. For t ≥ t∗, we will first prove ‖xt∗:t‖22 ≤ 4‖zt∗:t−1‖22 + 2x2t∗ by induction. For the base case, we have ‖xt∗:t∗‖ ≤
2x2t∗ and ‖zt∗:t∗−1‖22 = 0. Now note that

‖xt∗:t+1‖22 =

t+1∑
s=t∗

x2s = x2t∗ +

t∑
s=t∗

x2s+1 = x2t∗ +

t∑
s=t∗

((a− âs)xs + zs)
2

≤ x2t∗ + 2

t∑
s=t∗

(a− âs)2x2s + z2s

≤ x2t∗ +
1

2

t∑
s=t∗

x2s + 2

t∑
s=t∗

z2s

= x2t∗ +
‖xt∗:t‖22

2
+ 2‖zt∗:t‖22.

Applying the inductive hypothesis, we have

‖xt∗:t+1‖22 ≤ x2t∗ +
‖xt∗:t‖22

2
+ 2‖zt∗:t‖22 ≤ x2t∗ +

4‖zt∗:t−1‖22 + 2x2t∗

2
+ 2‖zt∗:t‖22

≤ 2x2t∗ +
4‖zt∗:t‖22

2
+ 2‖zt∗:t‖22

≤ 4‖zt∗:t‖22 + 2x2t∗ .

Adding ‖x1:t∗−1‖22 to both sides, we have, for t ≥ t∗, ‖x1:t‖22 ≤ 2‖x1:t∗‖22 + 4‖zt∗:t−1‖22. Using Assumption 1, we have

‖zt∗:t−1‖22 =

t−1∑
s=t∗

z2s =

t−1∑
s=t∗

(ws + fs)
2

≤
t−1∑
s=t∗

(1 + 1− 4h2)w2
s + (1 +

1

1− 4h2
)f2s

≤ 2(1− 2h2)h2
t−1∑
s=1

x2s +
2

1− 4h2

t−1∑
s=t∗

f2s

= 2(1− 2h2)h2‖x1:t−1‖22 +
2

1− 4h2
‖ft∗:t−1‖22.

Using this bound, we have

‖x1:t‖22 ≤ 2‖x1:t∗‖22 + 4‖zt∗:t−1‖22

≤ 2‖x1:t∗‖22 + 8(1− 2h2)h2‖x1:t‖22 +
8

1− 4h2
‖ft∗:t−1‖22.

Rearranging,

‖x1:t‖22 ≤
2(1− 4h2)‖x1:t∗‖22 + 8‖ft∗:t−1‖22

(1− 8h2(1− 2h2))(1− 4h2)
=

2(1− 4h2)‖x1:t∗‖22 + 8‖ft∗:t−1‖22
(1− 4h2)3

.
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D. Full Analysis
D.1. Epoch Notation.

We define epochs in terms of rounds of system identification. In particular, for the kth epoch sk is t on the kth call to Alg. 2.
and ek = min(sk+1 − 1, T ). As such, within an epoch, q is fixed, so we denote qk = ‖x1:sk‖2 the value of q within epoch
k. Correspondingly, we denote the value of q′ in the kth epoch as q′k.

D.2. Estimation of the Control Matrix

Lemma 8. Suppose ‖f0:T−1‖2 ≤ qk and α ≥ 42dM2dε−d, then in Alg. 3, we have ‖x1:sk+i‖2 ≤ 42iM2iqkε
−i, for

0 ≤ i ≤ d.

Proof. We prove the lemma by induction. Note that if the lemma was true, no new epoch will start because ‖x1:t+i‖2 > αq
for any i. Now for the base case, note that for i = 0, the inequality holds trivially. Suppose the condition holds for i. For
i+ 1, we have

‖xsk+i+1‖2 = ‖Axsk+i +Busk+i + zsk+i‖2
≤M‖xsk+i‖2 +Mλi + h‖x1:sk+i‖2 + qk

≤ 42iM2i+1qkε
−i + 42iM2i+2qkε

−(i+1) + h42iM2iqkε
−i + qk

≤ 42i+1M2i+2qkε
−(i+1)

Adding previous iterations, we have

‖x1:sk+i+1‖2 ≤ 42i+1M2i+2qkε
−(i+1) + 42iM2iqkε

−i ≤ 42(i+1)M2(i+1)qkε
−(i+1).

Lemma 9. Suppose ‖f0:T−1‖2 ≤ qk and α ≥ 42dM2dε−d, then running Alg. 3 with ε ≤ L
12
√
d

produces B̂ such that

‖B̂ −B‖2 ≤ 3ε
√
d and ‖BB̂−1 − I‖2 ≤ 6ε

√
d

L ≤ 1
2 , with ‖x1:sk+d‖2 ≤ 42dM2dqkε

−d.

Proof. First note that as in Lem. 8, no new epoch will start because ‖x1:t+i‖2 > αq for any i. Let i ∈ [0, d). Consider the
estimation error of the i+ 1-th column of B:

‖xsk+i+1

λi
−Bei+1‖2 =

1

λi
‖Axsk+i + zsk+i‖2 ≤

M

λi
‖xsk+i‖2 +

1

λi
‖zsk+i‖2.

By Lem. 8, we have ‖xsk+i‖2, ‖wsk+i‖2 ≤ 42iM2iqkε
−i. Therefore we have

‖xsk+i+1

λi
−Bei+1‖2 ≤

M

λi
‖xsk+i‖2 +

1

λi
‖zsk+i‖2 ≤ 3ε.

Concatenating the column estimates, we upper bound the Frobenius norm of B − B̂,

‖B − B̂‖2F =

d−1∑
i=0

‖xsk+i+1

λi
−Bei+1‖22 ≤ 9dε2.

We conclude that ‖B − B̂‖2 ≤ ‖B − B̂‖F ≤ 3ε
√
d. Moreover, with our choice of ε, we have ‖B − B̂‖2 ≤ L

4 , so by Ky
Fan singular value inequalities, we have σmin(B) ≤ σmin(B̂) + L

4 , and hence σmin(B̂) ≥ L
2 , and the condition in Line 10

will not be triggered.

Now, we can write B = B̂ + 3ε
√
dC for some C ∈ Rd×d, ‖C‖ ≤ 1. Then we have

‖BB̂−1 − I‖ = 3ε
√
d‖CB̂−1‖ ≤ 3

√
dε

σmin(B̂)
≤ 6ε

√
d

L
.
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D.3. Estimation of the System

Lemma 10. Suppose ‖f0:T−1‖2 ≤ qk, α ≥ 42dM2dε−d, and Alg. 2 produces Â such that ‖A − Â‖2 ≤ εA then the
resultant controller K satisfies ‖A−BK‖ ≤ εA + 6εM

√
d

L .

Proof. By Lem. 9, the algorithm will not start a new epoch with the choice of α, and we have ‖BB̂−1 − I‖2 ≤ 6ε
√
d

L , so
we have

BK = BB̂−1Â = Â+
6ε
√
d

L
CÂ

for C with ‖C‖2 ≤ 1. Thus, we have

‖A−BK‖2 ≤ ‖A− Â‖2 +
6ε
√
d

L
‖C‖‖Â‖ ≤ εA +

6εM
√
d

L
.

Lemma 11. Suppose ‖f0:T−1‖2 ≤ qk and α > R = (4M)5Nε−2N , then Alg. 2 produces Â such that

max
v∈V
‖(A− Â)v‖2 ≤

28εM
√
d

L
+ 3h ,

with ‖x1:t′+2N‖2 ≤ Rqk.

Proof. We first note by choice of α, the SysID will not be restarted. We first upper bound Φ(A). We also have Φ(Â) ≤ Φ(A)
by optimality of Â.

Let i ∈ [0, N). Consider the estimation error of Avi:

‖xt
′+2i+2

ξi
−ABB̂−1vi‖2 =

1

ξi
‖A2xt′+2i +Azt′+2i + zt′+2i+1‖2

≤ M2

ξi
‖xt′+2i‖2 +

M

ξi
‖zt′+2i‖2 +

1

ξi
‖zt′+2i+1‖2 .

By Lemma 12, we have ‖xt′+2i‖2, ‖wt′+2i‖2 ≤ 43iM3iq′kε
−i. Therefore for the first two terms we have,

M2

ξi
‖xt′+2i‖2 +

M

ξi
‖zt′+2i‖2 ≤

M2

ξi
‖xt′+2i‖2 +

M

ξi
(‖wt′+2i‖2 + ‖ft′+2i‖2) ≤ 3ε.

For the trajectory-dependent noise at time t′ + 2i+ 1, we have

1

ξi
‖wt′+2i+1‖2 ≤

h

ξi
‖x1:t′+2i+1‖2 ≤

h

ξi
(‖x1:t′+2i‖2 + ‖xt′+2i+1‖2)

≤ h

ξi
(43iM3iq′kε

−i + ‖Axt′+2i + ξiBB̂
−1vi + zt′+2i‖2)

≤ hε+
hM

ξi
‖xt′+2i‖2 + h‖BB̂−1‖+

h

ξi
‖zt′+2i‖2

≤ 4ε+ h‖BB̂−1‖ ≤ 4ε+ h(1 +
1

2
) .

The last inequality holds, via Lem. 9. Therefore we have

‖xt
′+2i+2

ξi
−ABB̂−1vi‖2 ≤ 8ε+

3h

2
.
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Adding the error induced by the bias of B̂,

‖xt
′+2i+2

ξi
−Avi‖2 ≤ ‖

xt′+2i+2

ξi
−ABB̂−1vi‖2 + ‖ABB̂−1vi −Avi‖2

≤ 8ε+
3h

2
+ ‖A‖‖BB̂−1 − I‖

≤ 8ε+
3h

2
+

6M
√
dε

L
≤ 14εM

√
d

L
+

3h

2
.

Therefore, we have Φ(Â) ≤ Φ(A) ≤ 14εM
√
d

L + 3h
2 and it follows that

max
v∈V
‖(A− Â)v‖2 = max

i∈[0,N)
‖(A− Â)vi‖2

≤ max
i∈[0,N)

(
‖Avi −

xt′+2i+2

ξi
‖2 + ‖Âvi −

xt′+2i+2

ξi
‖2
)

≤ Φ(A) + Φ(Â) ≤ 28εM
√
d

L
+ 3h .

Finally, for the state magnitude at the final iteration, by Lem. 12

‖xt′+2N‖2 = ‖Axt′+2N−1 + wt′+2N−1 + ft′+2N−1‖2
≤M‖xt′+2N−1‖2 + h‖x1:t′+2N−1‖2 + qk

≤ 43N−1M3Nq′kε
−N + h43N−1M3N−1q′kε

−N + qk

≤ 3 · 43N−1M3Nq′kε
−N .

Adding previous iterations, we have ‖x1:t′+2N‖2 ≤ 43NM3Nq′kε
−N ≤ 45NM5Nε−2Nqk.

Lemma 12. Suppose ‖f0:T−1‖2 ≤ qk and α > R = (4M)5Nε−2N , then in Alg. 2, for odd iterations after t′, we have
‖x1:t′+2i+1‖2 ≤ 43i+2M3i+2q′kε

−(i+1), and for even iterations we have ‖x1:t′+2i‖2 ≤ 43iM3iq′kε
−i, for 0 ≤ i < N .

Proof. We prove this by induction. Note, by the condition on α, SysID will not be restarted as long as our bounds on
‖x1:t′+j‖2 hold. For the base case, note that for i = 0, the even case holds because by Lemma 8, ‖x1:sk+d‖2 ≤ q′k. For the
odd case, we have

‖xt′+1‖2 ≤ ‖Axt′‖2 + ξ0‖BB̂−1‖2 + ‖zt′‖2
≤M‖xt′‖2 + 2ξ0 + hq′k + qk

≤ 3Mq′k +
2M2q′k
ε

≤ 5M2q′k
ε

,

where the first inequality holds by Lemma 9. Adding the previous iterations, we have ‖x1:t′+1‖2 ≤ 6M2q′kε
−1 ≤

42M2q′kε
−1. Now, suppose the conditions hold for both even and odd iterations for i. For i+ 1, for the even iteration,

‖xt′+2(i+1)‖2 = ‖Axt′+2i+1 + wt′+2i+1 + ft′+2i+1‖2
≤M‖xt′+2i+1‖2 + h‖x1:t′+2i+1‖2 + qk

≤ 43i+2M3(i+1)q′kε
−(i+1) + h43i+2M3i+2q′kε

−(i+1) + qk

≤ 3 · 43i+2M3(i+1)q′kε
−(i+1).

Adding previous iterations, we have

‖x1:t′+2(i+1)‖2 ≤ 43(i+1)M3(i+1)q′kε
−(i+1).
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For the odd iteration,

‖xt′+2(i+1)+1‖2 = ‖Axt′+2(i+1) +But′+2(i+1) + wt′+2(i+1) + ft′+2(i+1)‖2
≤M‖xt′+2(i+1)‖2 + 2ξi+1 + h‖x1:t′+2(i+1)‖2 + qk

≤ 43i+3M3i+4q′kε
−(i+1) + 2 · 43i+3M3i+5q′kε

−(i+2) + h43i+3M3i+3q′kε
−(i+1) + qk

≤ 5 · 43i+3M3i+5q′kε
−(i+2).

Adding the previous iterations, we have

‖x1:t′+2(i+1)+1‖2 ≤ 43(i+1)+2M3(i+1)+2q′kε
−(i+2) .

D.4. Cost of linear control

Lemma 13. If ‖f0:T−1‖2 ≤ qk, and ut = −Kxt for t ≥ t∗ ≥ sk, with ‖A−BK‖2 ≤ 1/2 then for h ≤ 1
6 ,

‖x1:ek‖22 ≤
18‖x1:t∗‖22 + 72q2k

7
.

Proof. We first prove that ‖xt∗:t‖22 ≤ 4‖zt∗:t−1‖22 + 2‖xt∗‖22 by induction on t ≥ t∗. For the base case, we have
‖xt∗:t∗‖22 ≤ 2‖xt∗‖22. Now note that

‖xt∗:t+1‖22 =

t+1∑
s=t∗

‖xs‖22 = ‖xt∗‖22 +

t∑
s=t∗

‖xs+1‖22

= ‖xt∗‖22 +

t∑
s=t∗

‖(A−BK)xs + zs‖22

≤ ‖xt∗‖22 + 2

t∑
s=t∗

‖(A−BK)‖22‖xs‖22 + ‖zs‖22

≤ ‖xt∗‖22 +
1

2

t∑
s=t∗

‖xs‖22 + 2

t∑
s=t∗

‖zs‖22

= ‖xt∗‖22 +
‖xt∗:t‖22

2
+ 2‖zt∗:t‖22.

Applying the inductive hypothesis, we have

‖xt∗:t+1‖22 ≤ ‖xt∗‖22 +
‖xt∗:t‖22

2
+ 2‖zt∗:t‖22 ≤ ‖xt∗‖22 +

4‖zt∗:t−1‖22 + 2‖xt∗‖22
2

+ 2‖zt∗:t‖22

≤ 2‖xt∗‖22 +
4‖zt∗:t‖22

2
+ 2‖zt∗:t‖22

≤ 4‖zt∗:t‖22 + 2‖xt∗‖22.

Adding ‖x1:t∗−1‖22 to both sides, we have, for t ≥ t∗, ‖x1:t‖22 ≤ 2‖x1:t∗‖22 + 4‖zt∗:t−1‖22.

Using Assumption 1 and using the shorthand ws for ws(x1:s), we have

‖zt∗:t−1‖22 =

t−1∑
s=t∗

‖zs‖22 =

t−1∑
s=t∗

‖ws + fs‖22

≤ 2

t−1∑
s=t∗

‖ws‖22 + ‖fs‖22

≤ 2h2‖x1:t−1‖22 + 2‖f0:t−1‖22.
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Using this bound, we have

‖x1:t‖22 ≤ 2‖x1:t∗‖22 + 8h2‖x1:t−1‖22 + 8‖f0:t−1‖22 ≤ 2‖x1:t∗‖22 + 8h2‖x1:t‖22 + 8‖f0:t−1‖22 .

Rearranging and bounding using h = 1
6 , we have

‖x1:t‖22 ≤
2‖x1:t∗‖22 + 8‖f0:t−1‖22

1− 8h2
≤ 18‖x1:t∗‖22 + 72‖f0:t−1‖22

7
.

The result follows using t = ek and using ‖f0:T−1‖ ≤ qk.

D.5. Exploration on Standard Basis

We consider the case where V = {e1, e2, . . . , ed}.

Lemma 14. Suppose h ≤ 1
12
√
d

, V = {e1, e2, . . . , ed}, and ε = L
150Md , then if ‖f0:T−1‖2 ≤ qk and α =

(
414M8d2

L2

)d
, the

running Alg. 1 has states bounded by

‖x1:ek‖2 ≤ αqk .

Proof. We first note that α is sufficiently large such that Lem. 11 holds, and we have for each i, ‖(A−Â)ei‖2 ≤ 28εM
√
d

L +3h.
Now we note,

‖A− Â‖2 ≤ ‖A− Â‖F =

√√√√ d∑
i=1

‖Aei − Âei‖22 ≤
√
d
(28εM

√
d

L
+ 3h

)
.

Applying, Lem. 10 and plugging in bounds on ε and h, we have

‖A−BK‖2 ≤ ‖A− Â‖2 +
6εM

√
d

L
≤ 34εMd

L
+ 3h

√
d ≤ 34

150
+

1

4
<

1

2
.

Now applying, Lem. 13 along with the state bound ‖x1:t′+2d‖ ≤ (4M)5dε−2dqk from Lem. 11, we have

‖x1:ek‖22 ≤
18((4M)5dε−2dqk)2 + 72q2k

7
≤ ((4M)6dε−2dqk)2 .

Noting that ε > L
44Md , we get our result by bounding (4M)6dε−2d.

D.6. Exploration on ε-net

We consider the case where V is an ε-net of the unit sphere.

From Lemma 5.3 of (Vershynin, 2011), there exists an ε-net for the unit sphere of size
(
1 + 2

ε

)d
. We consider V = N1/2,d

such that N = |V | = 5d.

Lemma 15. Suppose h ≤ 1
15 , V = N1/2,d, and ε = L

1000M
√
d

, then if ‖f0:T−1‖2 ≤ qk and α = ( 416M8d
L2 )5

d

, the running
Alg. 1 has states bounded by

‖x1:ek‖2 ≤ αqk .

Proof. By Lem. 11, we have for each v ∈ N1/2,d, ‖(A − Â)v‖2 ≤ 28εM
√
d

L + 3h. Now, we note that ‖A − Â‖2 ≤
(1 − 1/2)−1 maxv∈N1/2,d

‖(A − Â)v‖2 by a triangle inequality argument (see Lemma 5.4 of (Vershynin, 2011)), so we

have ‖A− Â‖2 ≤ 56εM
√
d

L + 6h. Applying, Lem. 10 and plugging in bounds on ε and h, we have

‖A−BK‖2 ≤ ‖A− Â‖2 +
6εM

√
d

L
≤ 62εM

√
d

L
+ 6h ≤ 62

1000
+

2

5
<

1

2
.
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Now applying, Lem. 13 along with the state bound ‖x1:t′+2N‖ ≤ (4M)5Nε−2Nqk from Lem. 11 with N = 5d, we have

‖x1:ek‖22 ≤
18((4M)5Nε−2Nqk)2 + 72q2k

7
≤ ((4M)6Nε−2Nqk)2 .

Noting that ε > L
45M

√
d

, we get our result by bounding (4M)6Nε−2N .

D.7. Final `2 gain bounds

Theorem 16. Suppose h ≤ 1
12
√
d

, V = {e1, e2, . . . , ed}, and ε = L
150Md and α =

(
414M8d2

L2

)d
, then Alg. 1 has `2 gain

bounded by 10M2α2

L <
(
415M10d2

L3

)2d
.

Proof. First, observe that ‖x1:T ‖2 ≤ αqk, where k is the final epoch. Indeed, if sk < T , then by the design of the algorithm
this condition is satisfied. Otherwise, we take qk = ‖x1:T ‖2, and the algorithm stops before entering the system identification
subroutine. Now we will show that running Alg. 1, ‖f0:T−1‖2 ≥ qkL

10M2α , so

‖x1:T ‖2
‖f0:T−1‖2

≤ 10M2α2

L
.

We break into three cases:

1. No failure occurred.

2. σmin(B̂) < L
2 in Alg. 3 (line 10).

3. Failure check ‖x1:sk‖2 > αqk−1 occurs in Alg. 1 (line 5), Alg. 3 (line 4), or Alg. 2 (line 7),or Alg. 3 (line 10).

We first note that qk = ‖x1:sk‖2 by definition. We also note that if k > 1 (Cases 2 and 3), ‖f0:T−1‖2 > qk−1. Suppose
‖f0:T−1‖2 ≤ qk−1, then by Lem. 14 and choice of α, the epoch k − 1 would never have ended. We now analyze each case
separately.

Case 1: Failure never occurs Here we must have ‖x1:T ‖2 = 0 because q is initialized at 0. K is initialized to 0, so
‖u1:T−1‖2 = 0 and ‖f0:T−1‖2 = 0 = q.

Case 2: Failure occurs in Alg. 3 (line 10) second condition
We know σmin(B) > L, so we must have ‖B̂ −B‖ > L

2 . By Lemma 9, if ‖f0:T−1‖ ≤ qk−1, ‖B̂ −B‖ ≤ 3
√
dε ≤ L

2 ,
so by contradiction we must have ‖f0:T−1‖ > qk−1. We now note that qk ≤ αqk−1, otherwise, we would have failed the
other condition of the if-statement. Combining, we have ‖f0:T−1‖ > qk

α .

Case 3: Failure occurs in Alg. 1 (line 5), in Alg. 3 (line 4), or Alg. 2 (line 7), or the first condition of Alg. 3 (line 10)
There are three possibilities for the control in the previous iteration: usk−1 = −Kxsk−1, usk−1 = 0, or usk−1 is

from Alg. 3 (line 5) or Alg. 2 (line 11) and is a fixed control such that ‖usk−1‖2 < αqk−1. To see this, we note that
exploration controls are progressively increasing so we just need to look at the last large control played by Alg. 2. Thus,
‖usk−1‖2 ≤ ‖B̂−1‖ξN ≤

2ξN
L ≤ αqk−1.

For the first case, we note that

‖K‖2 = ‖B̂−1Â‖2 ≤ ‖B̂−1‖2‖Â‖2 ≤
2M

L
.

Above, we use the fact that Alg. 3 always produces a B̂ with σmin(B̂) ≥ L
2 and ‖Â‖2 < M . Noting that ‖x1:sk−1‖2 ≤

αqk−1, because otherwise the epoch would have ended on the previous iteration , we have ‖usk−1‖2 ≤
2Mαqk−1

L in all
cases.
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We now bound ‖xsk‖2 by applying the triangle inequality and system bounds:

‖xsk‖2 = ‖Axsk−1 +Busk−1 + wsk−1 + fsk−1‖2
≤M‖xsk−1‖2 +M‖usk−1‖2 + ‖wsk−1‖2 + ‖fsk−1‖2
≤M‖x1:sk−1‖2 +M‖usk−1‖2 + h‖x1:sk−1‖2 + ‖fsk−1‖2

≤ 4M2α

L
qk−1 + ‖fsk−1‖2

Adding the previous iterations, we have

qk = ‖x1:sk‖2 ≤ ‖x1:sk−1‖2 +
4M2α

L
qk−1 + ‖fsk−1‖2

≤ αqk−1 +
4M2α

L
qk−1 + ‖fsk−1‖2 ≤

5M2α

L
qk−1 + ‖fsk−1‖2 .

Suppose ‖fsk−1‖2 > 5M2α
L qk−1, then we immediately have ‖f0:T−1‖2 ≥ qk

2 . Alternatively, we have qk ≤ 10M2αqk−1

L .
Now since ‖f0:T−1‖2 > qk−1 , we have ‖f0:T−1‖2 > Lqk

10M2α .

Theorem 17. Suppose h ≤ 1
15 , V = N1/2,d, ε = L

1000M
√
d

, and α = ( 416M8d
L2 )5

d

, then Alg. 1 has `2 gain bounded by

( 417M10d
L3 )2·5

d

.

Proof. This follows exactly as Theorem 16 using Lem. 15 in place of Lem. 14.
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