
Online Sub-Sampling for Reinforcement Learning with General Function
Approximation

Dingwen Kong * 1 Ruslan Salakhutdinov * 2 Ruosong Wang * 2 Lin F. Yang * 3

Abstract
Designing provably efficient algorithms with gen-
eral function approximation is an important open
problem in reinforcement learning. Recently,
Wang et al. [2020c] establish a value-based al-
gorithm with general function approximation that
enjoys Õ(poly(dH)

√
K)1 regret bound, where d

depends on the complexity of the function class,
H is the planning horizon, andK is the total num-
ber of episodes. However, their algorithm requires
Ω(K) computation time per round, rendering the
algorithm inefficient for practical use. In this pa-
per, by applying online sub-sampling techniques,
we develop an algorithm that takes Õ(poly(dH))
computation time per round on average, and en-
joys nearly the same regret bound. Furthermore,
the algorithm achieves low switching cost, i.e., it
changes the policy only Õ(poly(dH)) times dur-
ing its execution, making it appealing to be imple-
mented in real-life scenarios. Moreover, by using
an upper-confidence based exploration-driven re-
ward function, the algorithm provably explores
the environment in the reward-free setting. In par-
ticular, after Õ(poly(dH))/ε2 rounds of explo-
ration, the algorithm outputs an ε-optimal policy
for any given reward function.

1. Introduction
Function approximation (FA) is one of the key techniques
to scale up reinforcement learning (RL) in real-world ap-
plications. FA methods have achieved phenomenal empir-
ical success (Mnih et al., 2013; 2015; Silver et al., 2017;
Vinyals et al., 2019; Akkaya et al., 2019), where in these
applications, RL agents learn to control complex systems

*Alphabetical Order 1Peking University 2Carnegie Mellon Uni-
versity 3University of California, Los Angeles. Correspondence to:
Lin F. Yang <linyang@ee.ucla.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1Throughout the paper, we use Õ(·) to suppress logarithm
factors.

by approximating value functions using deep neural net-
works. In contrast, the theoretical understanding of RL with
general FA is still rudimentary, e.g., reasonable theoretical
understandings have only been established in the tabular
setting or the linear setting (Azar et al., 2017; Jin et al.,
2018; Yang & Wang, 2020; Jin et al., 2020b). Designing
RL algorithms with general FA with provable efficiency
becomes increasingly important as it helps understanding
the limits of existing algorithms while inspiring the design
of better practical algorithms.

Recently, Wang et al. (2020c) establish a provably efficient
algorithm with general function approximation that achieves
a regret bound of Õ(poly(dH)

√
K), where d depends on

the eluder dimension (Russo & Roy, 2013) and log-covering
numbers of the function class, H is the planning horizon,
and K is the total number of episodes. Here the regret mea-
sures the difference between the expected rewards collected
by the optimal policy and that of the RL algorithm. Such
a regret bound indicates that the algorithm learns a policy
with suboptimality at most ε after interacting with the en-
vironment for Õ(poly(dH))/ε2 episodes. Their algorithm
is based on least-squares value iteration (LSVI), and to bal-
ance exploration and exploitation, their algorithm employs
the principle of “optimism in the face of uncertainty” and
adds an exploration bonus to the learned value function.
The main technical innovation in their paper is a stable ex-
ploration bonus, which is computed by first sub-sampling
the replay buffer and then computing the uncertainty of
functions in the confidence set, where the confidence set
is defined by the sub-sampled dataset. Such sub-sampling
process gives a dataset with limited complexity and thus
ensures the stability of the exploration bonus.

A notable drawback of the work of Wang et al. (2020c) is
the requirement of resampling and recomputing the bonus
function in each round. Note that implementing this step
requires making a full scan over the entire dataset, requiring
Ω(KH) time per round. Furthermore, their algorithm com-
putes the solution to a regression problem to obtain a new
policy in each round, which requires Ω(KH2) time. Hence,
the overall running time of the algorithm is Ω(K2H2). Such
running time becomes inefficient when K becomes large.
The goal of the current paper is to obtain an algorithm with

Online Sub-sampling for Reinforcement Learning with General Function Approximation

general FA that achieves the same regret bound but with
better computational efficiency.

In this paper, we achieve the above goal by applying on-
line sub-sampling techniques. The core idea is to maintain
a small sub-sampled dataset, and each time a new datum
arrives, instead of making a full scan over the whole dataset,
the algorithm decides whether to keep the new data or not
by scanning only the sub-sampled dataset, which is much
smaller in size. The main difficulty here is how to define
the sub-sampling probabilities using only the sub-sampled
dataset so that (i) the size of the sub-sampled dataset is
bounded and (ii) the sub-sampled dataset provides a good
approximation to the confidence set. The sensitivity sam-
pling framework employed in Wang et al. (2020c) can only
deal with static datasets and therefore requires a full scan
over the whole dataset in each round.

To achieve this goal, we borrow ideas from the online lever-
age score sampling technique introduced in the streaming
algorithm literature (Cohen et al., 2016), which sub-samples
a given n × d matrix (n � d) row by row and preserves
the covariance matrix approximately. Each time a new row
arrives, the algorithm computes a probability to keep that
row according to the online leverage score, which depends
only on the sub-sampled rows and the new row. However,
the algorithm and analysis in (Cohen et al., 2016) works
only in the linear setting, while the main focus of the current
paper is to obtain an algorithm for RL with general FA. This
renders the need for new techniques.

In this paper, we establish a novel notion of online sensi-
tivity score, which measures the importance of a data point
relative to the sub-sampled dataset over a given function
class. Online sensitivity score generalizes the notion of on-
line leverage score, which is defined specifically for linear
functions (Cohen et al., 2016). We show that for a general
function class, by sub-sampling according to online sensi-
tivity scores, the size of the sub-sampled dataset is bounded
by the complexity of the function class during the execution
of the algorithm, while preserving the same accuracy as
in Wang et al. (2020c). Therefore, defining the exploration
bonus as the uncertainty of the function class on the sub-
sampled dataset will be sufficient for achieving a similar
regret guarantee. We also give efficient algorithms for com-
puting online sensitivity scores as well as the bonus function.
Using our techniques, our algorithm spends Õ(poly(dH))
time per round for sub-sampling and computing the explo-
ration bonus, where d depends on the complexity of the
function class.

The online sub-sampling technique naturally implies a low
switching property of the algorithm. Since the sub-sampled
dataset only changes for Õ(poly(dH)) times, the number
of different policies we need to use is also Õ(poly(dH)).
Hence, we only need to solve Õ(poly(dH)) different re-

gression problems, and therefore our new algorithm spends
at most Õ(poly(dH)) time per round on average for solv-
ing regression problems. We note that the low switching
property is desirable in many scenarios, like medical do-
mains and recommendation systems (Almirall et al., 2014;
Theocharous et al., 2015) (see also Bai et al. (2019) for a
detailed survey). As a natural application, our algorithm can
be applied in the concurrent RL setting (Silver et al., 2013;
Guo & Brunskill, 2015; Dimakopoulou et al., 2018), where
multiple agents act concurrently and apply the same policy
to collect samples.

Finally, we show that the exploration bonus based on online
sub-sampling can be used to explore the environment in
an unsupervised fashion. More specifically, we show that
even without the guidance of the reward function, after
exploring the environment for Õ(poly(dH))/ε2 episodes,
our algorithm computes an ε-optimal policy for any reward
function from a prespecified function class. Reward-free
exploration with general function approximation is new and
previously was only shown for the tabular setting and the
linear setting (Jin et al., 2020a; Wang et al., 2020b).

2. Preliminaries
Throughout the paper, we use [N] to denote the set
{1, 2, ..., N}. We use β as a global parameter, and the
choice of β will be elaborated in the appendix.

2.1. Episodic Markov Decision Process

In this paper, we consider a finite-horizon Markov decision
process (MDP) M = (S,A, P, r,H, s1), where S is the
state space, A is the action space, P = {Ph}Hh=1 where
Ph : S × A → 4(S) are the transition operators, r =
{rh}Hh=1 where rh : S × A → [0, 1] are the deterministic
reward functions, H is the planning horizon. Without loss
of generality, we assume that the initial state s1 is fixed.2

The agent interacts with the environment episodically. Each
episode consists of H time steps. A deterministic policy π
chooses an action a ∈ A based on the current state s ∈ S
at each time step h ∈ [H]. Formally, π = {πh}Hh=1

where for each h ∈ [H], πh : S → A maps a given
state to an action. In each episode, the policy π induces a
trajectory s1, a1, r1, s2, a2, r2, ..., sH , aH , rH , sH+1 where
a1 = π1(s1), r1 = r1(s1, a1), s2 ∼ P1(·|s1, a1), etc.

We use Q-function and V-function to evaluate the long-
term expected cumulative reward in terms of the cur-
rent state (state-action pair) and the policy deployed.
Concretely, the Q-function and V-function are defined
as: Qπh(s, a) = E

[∑H
h′=h rh′ |sh = s, ah = a, π

]
and

2For a general initial distribution ρ, we can treat it as the first
stage transition probability, P1.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

V πh (s) = E
[∑H

h′=h rh′ |sh = s, π
]
. We also denote the op-

timal Q-function and V-function as Q∗h(s, a) = Qπ
∗

h (s, a)
and V ∗h (s) = V π

∗

h (s), where π∗ is the optimal policy. For a
set of state-action pairs Z ⊆ S ×A and a function f : S ×

A → R, we define ‖f‖Z =
(∑

(s,a)∈S×A f(s, a)2
)1/2

.

In this paper we use regret to measure the effective-
ness of the learning algorithm. The regret is defined as
Regret(K) =

∑K
k=1

(
V ∗1 (s1)− V πk1 (s1)

)
, whereK is the

number of episodes, s1 is the fixed initial state and πk is the
policy used in k-th episode. We further define T := KH to
be the total number of steps.

2.2. General Function Classes and Complexity
Measures

In our setting, we assume that a function class F ⊂ {f :
S ×A → [0, H + 1]} is given as a priori. In the algorithm
we will use functions from F to approximate the optimal
Q-function. We make the following assumption on the
expressiveness of the function class F .

Assumption 1. For any h ∈ [H] and V : S → [0, H],
there exists fV ∈ F such that for all (s, a) ∈ S × A,
fV (s, a) =

∑
s′∈S Ph(s′|s, a)V (s′) + rh(s, a).

This assumption guarantees that any value function lies in
function class F after applying the Bellman operator. It
poses some implicit constraint on the transition operators
as well as the reward functions. As mentioned in Wang
et al. (2020c), this assumption captures both the tabular
setting and the linear MDP setting (Yang & Wang, 2019; Jin
et al., 2020b). In practice, when F is a function class with
sufficient expressive power (e.g. deep neural networks),
Assumption 1 approximately holds. As we will show in
Section I in the appendix, our algorithm is robust to the
violation of the assumption, i.e., the algorithm still works
well if the above assumption is satisfied approximately.

To measure the complexity of the RL problem, we need to
assume the function class F has bounded eluder dimension
dimE(F , ε) (ε > 0 is a parameter). We also need to assume
bounded covering numbers for both the function class and
the state-action space, denoted asN (F , ε) andN (S ×A, ε)
respectively. These two assumptions are standard in the
literature (Russo & Roy, 2013; Wang et al., 2020c; Jin et al.,
2021). The definitions will be given in the appendix.

2.3. Switching Cost

The concept of switching cost is first introduced in Bai
et al. (2019). It is used to quantify the adaptability of rein-
forcement learning algorithms. In this paper we focus on
the global switching cost, which counts the number of pol-
icy changes in the running of the algorithm in K episodes,
namely: N gl

switch :=
∑K−1
k=1 I{πk 6= πk+1}.

3. Computation-Efficient Algorithm via
Online Sub-Sampling

In this section we introduce our online importance sub-
sampling technique and several key components in the al-
gorithm design. The full algorithms are deferred to the
appendix. For every episode, our algorithm consists of three
steps. In Step 1, we apply online sub-sampling to the data
collected so far to reduce the size of the dataset. This sub-
sampled dataset will be used to compute a stable exploration
bonus in Step 2. The most interesting part is that we are
able to decide whether or not we have collected substantial
new information according to the sub-sampling procedure.
In Step 2, if we have already collected enough new informa-
tion, we do optimistic planning using those new information
to calculate a new policy and then update the current policy
to be the new policy. Otherwise, we keep using the old pol-
icy. In Step 3, we use the current policy to interact with the
environment to collect new data. In this section, we define
d = max(log(N (F , δ/T 2)),dimE(F , 1/T), log(N (S ×
A, δ/T 2))) to be the complexity of the function class.

3.1. Online Importance Sub-Sampling

We use Zkh to denote the dataset of all the state-action
pairs collected in step h up to episode k, i.e., Zkh =
{(sτh, aτh)}τ∈[k−1]. In Wang et al. (2020c), a key step is
to obtain a good approximation of the dataset Zkh , denoted
as the sub-sampled dataset Ẑkh , but with a much lower com-
plexity (i.e., number of distinct points). Thus one can use
Ẑkh to compute a more stable exploration bonus. Wang
et al. (2020c) achieve this goal by resampling all existing
data points each time a new data point is added. There-
fore, the algorithm in Wang et al. (2020c) needs to scan the
dataset for H ·K times, and the dataset could have size as
large as K. Such a method has two shortcomings. First,
for the same h, the datasets {Zkh}k∈[K] are similar to each
other, and therefore sub-sampling each of them separately
could be computationally inefficient. Moreover, because of
the randomness of the sampling procedure, the exploration
bonus changes in each episode, and therefore induces a high
switching cost. We tackle these two problems by modify-
ing the sub-sampling algorithm to an online version which
immediately improves the computational efficiency. Fur-
thermore, we can achieve low switching cost by switching
the policy properly according to the sampling procedure.

Now we describe the procedure for constructing the sub-
sampled dataset {Ẑkh}Hh=1, which is initialized to be an
empty set for all h ∈ [H]. At the beginning of episode k,
the algorithm receives {Ẑk−1h }Hh=1 and {(sk−1h , ak−1h)}Hh=1,
i.e., the current sub-sampled datasets and the trajectory ob-
tained in the previous episode. For each h ∈ [H], we
first compute the online sensitivity score (defined in (1)) of
(sk−1h , ak−1h) with respect to Ẑk−1h by setting Z = Ẑk−1h

Online Sub-sampling for Reinforcement Learning with General Function Approximation

and z = (sk−1h , ak−1h) in (1), to measure the importance of
(sk−1h , ak−1h) relative to Ẑk−1h .

sensitivityZ,F (z) :=

min

{
sup

f1,f2∈F

(f1(z)− f2(z))2

min{‖f1 − f2‖2Z , T (H + 1)2}+ β
, 1

}
.

(1)

For each h ∈ [H], starting with Ẑkh ← Ẑ
k−1
h , our algorithm

then adds (sk−1h , ak−1h) into Ẑkh with probability propor-
tional to its online sensitivity score. We also set the weight
(or equivalently, the number of copies added to the sub-
sampled dataset) of (sk−1h , ak−1h) to be the reciprocal of the
sampling probability, if added.

Sensitivity scores measure how much new information
(sk−1h , ak−1h) contains relative to the sub-sampled dataset
Ẑk−1h . We recompute the policy if a data point is added to
the sub-sampled dataset (explained in the next section). As
will be demonstrated, the total number of added data points
is bounded by Õ(d2), and thus the algorithm achieves low
switching cost and low running time.

3.2. Optimistic Planning

We now describe how to compute an optimistic policy once a
new data point is added to the sub-sampled dataset. Follow-
ing Wang et al. (2020c), we calculate the new Q-functions
using least-squares value iteration. Formally, we calculate
QkH , Q

k
H−1, ..., Q

k
1 as optimistic approximation of the opti-

mal Q-functions iteratively. For each h = H,H − 1, ..., 1,
we solve the following optimization problem:

fkh ←

arg min
f∈F

k−1∑
τ=1

(
f(sτh, a

τ
h)−

(
rτh + max

a∈A
Qkh+1(sτh+1, a)

))2

and set the estimated Q-function to be Qkh(·, ·) ←
min

{
fkh (·, ·) + bkh(·, ·), H

}
, where bkh(·, ·) is an explo-

ration bonus defined by the sub-sampled dataset Ẑkh . We
will discuss how to compute the bkh(·, ·) shortly. The policy
is defined as the greedy policy with respect to Qkh.

3.3. Exploration Bonus

In this section we introduce our design of the explo-
ration bonus. The goal of the exploration bonus is such
that our estimate of the Q-function is an upper bound
of the optimal Q-function. Let f̄kh (·, ·) = rh(·, ·) +∑
s′∈S Ph(s′|·, ·)V kh+1(s′). The bonus function should mea-

sure the difference between f̄kh (·, ·) and fkh (·, ·). Here a
natural choice would be

sup
f1,f2∈F,‖f1−f2‖2Zk

h

≤β
|(f1(·, ·)− f2(·, ·)|,

where β is a parameter determined by the error bound of the
regression problem. As discussed in Wang et al. (2020c), the
above bonus function is not only computationally expensive
but also introduces technical difficulties in proving the regret
guarantee of the algorithm. Fortunately, as we have already
obtained a sub-sampled dataset, Ẑkh , which is a simplified
version of the true dataset Zkh , the bonus function can be
simply defined to be

bkh(·, ·)← sup
f1,f2∈F,‖f1−f2‖2Ẑk

h

≤β
|(f1(·, ·)− f2(·, ·)|.

3.4. Computational Efficiency

Our algorithm can be implemented efficiently by only as-
suming access to a Regression Oracle, which is a mild as-
sumption and is common in the literature (Foster et al., 2018;
Foster & Rakhlin, 2020; Foster et al., 2020). Benefiting from
both the online sub-sampling and the low-switching prop-
erty, our algorithm only takes Õ(poly(dH) · |A|) time per
round on average with access to a regression oracle. The
details are deferred to the appendix.

3.5. Theoretical Guarantee

Theorem 1. Under Assumption 1, for sufficiently large T ,
with probability 1−δ, the algorithm achieves a regret bound
Regret(K) = O(

√
ι1 ·H3 · T) where

ι1 = log(TN (F , δ/T 2)/δ) · dim2
E(F , 1/T) · log2 T

· log
(
N (S ×A, δ/T 2) · T/δ

)
and the global switching cost is bounded byN gl

switch = O(ι2 ·
H) where

ι2 = log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T.

Furthermore, with probability 1 − δ the algorithm takes
Õ(poly(dH) · |A|) time per round on average with access
to a regression oracle.

Note that our regret bound is the same with that in Wang
et al. (2020c) when applied to the same setting, whereas our
running time and switching-cost are much lower.

4. Conclusion
We establish a novel RL algorithm with general function
approximation using the online sub-sampling technique.
Our algorithm greatly improves the computational efficiency
compared to that in Wang et al. (2020c) and enjoys nearly
the same regret bound. Furthermore, our algorithm achieves
low switching cost, making it appealing to be implemented
in real-life scenarios. Moreover, the algorithm can be easily
modified to provably explore the environment without the
guidance of a reward function.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

References
Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W.

Flambe: Structural complexity and representation learn-
ing of low rank mdps. arXiv preprint arXiv:2006.10814,
2020a.

Agarwal, A., Kakade, S., and Yang, L. F. Model-based rein-
forcement learning with a generative model is minimax
optimal. In Conference on Learning Theory, pp. 67–83.
PMLR, 2020b.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Almirall, D., Nahum-Shani, I., Sherwood, N. E., and Mur-
phy, S. A. Introduction to smart designs for the develop-
ment of adaptive interventions: with application to weight
loss research. Translational behavioral medicine, 4(3):
260–274, 2014.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L.
Model-based reinforcement learning with value-targeted
regression. In International Conference on Machine
Learning, pp. 463–474. PMLR, 2020.

Azar, M. G., Munos, R., and Kappen, H. J. Minimax pac
bounds on the sample complexity of reinforcement learn-
ing with a generative model. Machine learning, 91(3):
325–349, 2013.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263–272, 2017.

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. Provably effi-
cient q-learning with low switching cost. In Advances in
Neural Information Processing Systems, pp. 8004–8013,
2019.

Cohen, M. B., Musco, C., and Pachocki, J. Online row
sampling. arXiv preprint arXiv:1604.05448, 2016.

Cui, Q. and Yang, L. F. Minimax sample complexity for turn-
based stochastic game. arXiv preprint arXiv:2011.14267,
2020a.

Cui, Q. and Yang, L. F. Is plug-in solver sample-efficient
for feature-based reinforcement learning? arXiv preprint
arXiv:2010.05673, 2020b.

Dimakopoulou, M., Osband, I., and Van Roy, B. Scal-
able coordinated exploration in concurrent reinforcement
learning. arXiv preprint arXiv:1805.08948, 2018.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. Is
a good representation sufficient for sample efficient re-
inforcement learning? In International Conference on
Learning Representations, 2019.

Du, S. S., Lee, J. D., Mahajan, G., and Wang, R. Agnostic
q-learning with function approximation in deterministic
systems: Near-optimal bounds on approximation error
and sample complexity. Advances in Neural Information
Processing Systems, 33, 2020.

Du, S. S., Kakade, S. M., Lee, J. D., Lovett, S., Mahajan,
G., Sun, W., and Wang, R. Bilinear classes: A struc-
tural framework for provable generalization in rl. arXiv
preprint arXiv:2103.10897, 2021.

Feldman, D. and Langberg, M. A unified framework for
approximating and clustering data. In Proceedings of the
forty-third annual ACM symposium on Theory of comput-
ing, pp. 569–578, 2011.

Feldman, D., Schmidt, M., and Sohler, C. Turning big data
into tiny data: constant-size coresets for k-means, pca and
projective clustering. In Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 1434–1453, 2013.

Foster, D. and Rakhlin, A. Beyond ucb: Optimal and ef-
ficient contextual bandits with regression oracles. In
International Conference on Machine Learning, pp. 3199–
3210. PMLR, 2020.

Foster, D. J., Agarwal, A., Dudik, M., Haipeng, L., and
Schapire, R. E. Practical contextual bandits with re-
gression oracles. In 35th International Conference on
Machine Learning, ICML 2018, pp. 2482–2517. Interna-
tional Machine Learning Society (IMLS), 2018.

Foster, D. J., Rakhlin, A., Simchi-Levi, D., and Xu, Y.
Instance-dependent complexity of contextual bandits and
reinforcement learning: A disagreement-based perspec-
tive. arXiv preprint arXiv:2010.03104, 2020.

Freedman, D. A. On tail probabilities for martingales. the
Annals of Probability, pp. 100–118, 1975.

Gao, M., Xie, T., Du, S. S., and Yang, L. F. A provably effi-
cient algorithm for linear markov decision process with
low switching cost. arXiv preprint arXiv:2101.00494,
2021.

Guo, Z. and Brunskill, E. Concurrent pac rl. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(4), 2010.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In International Con-
ference on Machine Learning, pp. 1704–1713. PMLR,
2017.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? In Advances in neural
information processing systems, pp. 4863–4873, 2018.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu,
T. Reward-free exploration for reinforcement learning.
arXiv preprint arXiv:2002.02794, 2020a.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020b.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman eluder di-
mension: New rich classes of rl problems, and sample-
efficient algorithms. arXiv preprint arXiv:2102.00815,
2021.

Kakade, S. M. On the sample complexity of reinforcement
learning. PhD thesis, UCL (University College London),
2003.

Kaufmann, E., Ménard, P., Domingues, O. D., Jonsson,
A., Leurent, E., and Valko, M. Adaptive reward-free
exploration. arXiv preprint arXiv:2006.06294, 2020.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49(2):209–
232, 2002.

Krishnamurthy, A., Agarwal, A., Huang, T.-K., Daumé III,
H., and Langford, J. Active learning for cost-sensitive
classification. In International Conference on Machine
Learning, pp. 1915–1924. PMLR, 2017.

Langberg, M. and Schulman, L. J. Universal ε-
approximators for integrals. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algo-
rithms, pp. 598–607. SIAM, 2010.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Breaking
the sample size barrier in model-based reinforcement
learning with a generative model. Advances in Neural
Information Processing Systems, 33, 2020.

Li, G., Kamath, P., Foster, D. J., and Srebro, N.
Eluder dimension and generalized rank. arXiv preprint
arXiv:2104.06970, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Osband, I. and Van Roy, B. Model-based reinforcement
learning and the eluder dimension. Advances in Neural
Information Processing Systems, 27:1466–1474, 2014.

Osband, I. and Van Roy, B. On lower bounds for regret in
reinforcement learning. arXiv preprint arXiv:1608.02732,
2016.

Russo, D. and Roy, B. V. Eluder dimension and the sample
complexity of optimistic exploration. In Proceedings of
the 26th International Conference on Neural Information
Processing Systems-Volume 2, pp. 2256–2264, 2013.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving markov
decision processes with a generative model. In Advances
in Neural Information Processing Systems, pp. 5186–
5196, 2018.

Sidford, A., Wang, M., Yang, L., and Ye, Y. Solving dis-
counted stochastic two-player games with near-optimal
time and sample complexity. In International Conference
on Artificial Intelligence and Statistics, pp. 2992–3002.
PMLR, 2020.

Silver, D., Newnham, L., Barker, D., Weller, S., and McFall,
J. Concurrent reinforcement learning from customer inter-
actions. In International conference on machine learning,
pp. 924–932. PMLR, 2013.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Szita, I. and Szepesvari, C. Model-based reinforcement
learning with nearly tight exploration complexity bounds.
In Proceedings of the 27th International Conference on
International Conference on Machine Learning, pp. 1031–
1038, 2010.

Theocharous, G., Thomas, P. S., and Ghavamzadeh, M. Ad
recommendation systems for life-time value optimization.
In Proceedings of the 24th International Conference on
World Wide Web, pp. 1305–1310, 2015.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Wang, R., Du, S. S., Yang, L., and Kakade, S. Is long
horizon rl more difficult than short horizon rl? Advances
in Neural Information Processing Systems, 33, 2020a.

Wang, R., Du, S. S., Yang, L. F., and Salakhutdinov, R. On
reward-free reinforcement learning with linear function
approximation. arXiv preprint arXiv:2006.11274, 2020b.

Wang, R., Salakhutdinov, R. R., and Yang, L. Reinforce-
ment learning with general value function approximation:
Provably efficient approach via bounded eluder dimen-
sion. Advances in Neural Information Processing Sys-
tems, 33, 2020c.

Wang, T., Zhou, D., and Gu, Q. Provably efficient reinforce-
ment learning with linear function approximation under
adaptivity constraints. arXiv preprint arXiv:2101.02195,
2021.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy,
A. Optimism in reinforcement learning with gener-
alized linear function approximation. arXiv preprint
arXiv:1912.04136, 2019.

Yang, L. and Wang, M. Sample-optimal parametric q-
learning using linearly additive features. In International
Conference on Machine Learning, pp. 6995–7004, 2019.

Yang, L. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. In In-
ternational Conference on Machine Learning, pp. 10746–
10756. PMLR, 2020.

Zanette, A. and Brunskill, E. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In Interna-
tional Conference on Machine Learning, pp. 7304–7312.
PMLR, 2019.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E.
Learning near optimal policies with low inherent bellman
error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020a.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill,
E. Provably efficient reward-agnostic navigation with
linear value iteration. arXiv preprint arXiv:2008.07737,
2020b.

Zhang, Z., Ji, X., and Du, S. S. Is reinforcement learn-
ing more difficult than bandits? a near-optimal algo-
rithm escaping the curse of horizon. arXiv preprint
arXiv:2009.13503, 2020a.

Zhang, Z., Zhou, Y., and Ji, X. Almost optimal model-free
reinforcement learningvia reference-advantage decom-
position. Advances in Neural Information Processing
Systems, 33, 2020b.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Organization. The appendix is organized as follows. In Section A, we present missing notations, definitions and
algorithms. In Section B, we discuss related works and its comparisons with our work. In Section C, we extend our results
to the reward-free RL setting and state the theoretical guarantee in this setting. In Section D, we show how to implement our
algorithms efficiently and present computation time guarantee. In Section E, we provide a proof sketch for our main theorem.
In Section F, we formalize and prove the properties of the online sub-sampling procedure. In Section G and Section H we
present formal proofs of Theorem 1 and Theorem 2. In Section I, we present our results in the misspecified setting, i.e., the
case when Assumption 1 and Assumption 3 only hold approximately.

A. Missing Notations, Definitions, and Algorithms
A.1. Missing Notations

We define the infinity-norm of function f : S × A → R and v : S → R as: ‖f‖∞ = sup(s,a)∈S×A |f(s, a)| and
‖v‖∞ = sups∈S |v(s)|. Given a dataset D = {(si, ai, qi)}ni=1 ⊆ S × A × R, for a function f : S × A → R, we define

‖f‖D =
(∑n

i=1(f(si, ai)− qi)2
)1/2

. For n events E1, E2, . . . , En, we write

Pr(E1E2 . . . En) = Pr(E1 ∩ E2 ∩ . . . ∩ En).

For a event E , we use I{E} to denote the indicator function, i.e.,

I{E} =

{
1 E holds
0 otherwise

.

For a event E , we use Ec to denote its complement. For a multiset Z , we use |Z| to denote the cardinality of Z , and nd(Z)
the number of distinct elements in Z .

A.2. Missing Definitions

The eluder dimension (Russo & Roy, 2013) of the function class F is defined as follows. We remark that a wide range of
function classes, including linear functions, generalized linear functions and bounded degree polynomials, have bounded
eluder dimension. For more examples and more discussion, see Russo & Roy (2013); Osband & Van Roy (2014); Li et al.
(2021).

Definition 1 (Eluder Dimension). Let ε ≥ 0 and Z = {(si, ai)}ni=1 ⊆ S ×A be a sequence of state-action pairs.
(1) A state-action pair (s, a) ∈ S × A is ε-dependent on Z with respect to F if any f, f ′ ∈ F satisfying ‖f − f ′‖Z ≤ ε
also satisfies |f(s, a)− f ′(s, a)| ≤ ε.
(2) An (s, a) is ε-independent of Z with respect to F if (s, a) is not ε-dependent on Z .
(3) The ε-eluder dimension dimE(F , ε) of a function class F is the length of the longest sequence of elements in S × A
such that, for some ε′ ≥ ε, every element is ε′-independent of its predecessors.

The covering numbers are defined as follows. Since our final regret bound depends logarithmically on the covering numbers,
it is acceptable for the covers to have exponential size.

Assumption 2 (Covering Numbers). The function class F , and state-action space S × A both have bounded covering
numbers. Concretely, for any ε > 0, there exists an ε-cover C(F , ε) ⊆ F with size |C(F , ε)| ≤ N (F , ε), such that for any
f ∈ F , there exists f ′ ∈ C(F , ε) with ‖f − f ′‖∞ ≤ ε. Also, there exists an ε-cover C(S ×A, ε) with size |C(S ×A, ε)| ≤
N (S ×A, ε), such that for any (s, a) ∈ S ×A, there exists (s′, a′) ∈ C(S ×A, ε) with supf∈F |f(s, a)− f(s′, a′)| ≤ ε.

A.3. Missing Algorithms

The main algorithm is presented in Algorithm 1. The online sub-sampling algorithm used in the main algorithm is presented
in algorithm 2.

B. Related Works and Comparisons
Tabular RL. There is a long line of theoretical work on the sample complexity and regret bound for RL in the tabular
setting. See, e.g., (Kearns & Singh, 2002; Kakade, 2003; Szita & Szepesvari, 2010; Jaksch et al., 2010; Azar et al., 2013;

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Algorithm 1 Low Switching Cost Value Iteration
Input: Failure probability δ ∈ (0, 1), number of episodes K, and function class F .
k̃ ← 1
Ẑ1
h ← {} ∀h ∈ [H]

for episode k = 1, 2, ...,K do
for h = H,H − 1, ..., 1 do
Ẑkh ← Online-Sample(F , Ẑk−1h , (sk−1h , ak−1h), δ) (if k ≥ 2)

end for
if k = 1 or ∃h ∈ [H] Ẑkh 6= Ẑ k̃h then
k̃ ← k
QkH+1(·, ·)← 0,V kH+1(·)← 0
for h = H,H − 1, ..., 1 do
Dkh ← {(sτh, aτh, rτh + V kh+1(sτh+1))}τ∈[k−1]
fkh ← argminf∈F‖f‖2Dkh
bkh(·, ·)← supf1,f2∈F,‖f1−f2‖2Ẑk

h

≤β |(f1(·, ·)− f2(·, ·)|

Qkh(·, ·)← min{fkh (·, ·) + bkh(·, ·), H} and V kh (·) = maxa∈AQ
k
h(·, a)

πkh(·)← argmaxa∈AQ
k
h(·, a)

end for
end if
Receive initial state s1
for h = 1, 2, ...,H do

Take action akh ← πk̃h(skh) and observe skh+1 and rkh
end for

end for

Algorithm 2 Online-Sample(F , Ẑ, z, δ)

Input: Function class F , current sub-sampled dataset Ẑ ⊆ S ×A, new state-action pair z, failure probability δ ∈ (0, 1)
Let pz to be the smallest real number such that 1/pz is an integer and

pz ≥ min{1, C · sensitivityẐ,F (z) · log(TN (F ,
√
δ/64T 3)/δ)}

Let ẑ ∈ C(S ×A, 1/16
√

64T 3/δ)) such that supf∈F |f(z)− f(ẑ)| ≤ 1/16
√

64T 3/δ

Add 1/pz copies of ẑ into Ẑ (or equivalently, set the weight of ẑ to be 1/pz) with probability pz
return Ẑ

Osband & Van Roy, 2016; Azar et al., 2017; Jin et al., 2018; Sidford et al., 2018; Zanette & Brunskill, 2019; Agarwal et al.,
2020b; Wang et al., 2020a; Zhang et al., 2020a; Sidford et al., 2020; Cui & Yang, 2020a; Li et al., 2020) and references
therein. However, as these results all depend polynomially on the size of the state space, they can not be directly applied to
real-world problems with large state spaces.

RL with Function Approximation. As mentioned above, because of the large state spaces in real-world problems, it
is more desirable to design and analyze algorithms with function approximation. The most basic and frequently studied
setting is RL with linear function approximation. See, e.g., (Yang & Wang, 2019; 2020; Jin et al., 2020b; Du et al., 2019;
Wang et al., 2019; Zanette et al., 2020a;b; Du et al., 2020; Cui & Yang, 2020b; Agarwal et al., 2020a) for recent theoretical
advances.

Recently, there are a number of results analyzing RL with general function approximation. Jiang et al. (2017) design
a provably efficient algorithm whose sample complexity can be upper bounded in terms of the Bellman rank. Ayoub
et al. (2020) propose an algorithm for model-based RL based on value-targeted regression. Jin et al. (2021) develop an
algorithm for problems with bounded bellman eluder dimension. Du et al. (2021) propose an algorithm for Bilinear Classes.
Unfortunately, the above methods in general require to solve computationally intractable optimization problems. Wang et al.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

(2020c) design a LSVI-based model-free algorithm whose regret bound depends on the eluder dimension of the function
class. However, as mentioned before, their algorithm requires at least Ω(K2H2) computation time and has Ω(K) switching
cost. Foster et al. (2020) also propose a LSVI-based algorithm whose regret bound depends on the notion of disagreement
coefficient which is upper bounded by the eluder dimension of the function class. However, the algorithm of Foster et al.
(2020) also requires at least Ω(K2H2) computation time and has Ω(K) switching cost. Moreover, the algorithm of Foster
et al. (2020) additionally requires the block MDP assumption.

Reward-Free and Low Switching Cost. The reward-free setting is proposed in (Jin et al., 2020a). Kaufmann et al. (2020)
refine the algorithm proposed in (Jin et al., 2020a) with improved sample complexity. Wang et al. (2020b); Zanette et al.
(2020b) further design provably efficient algorithms with linear function approximation in the reward-free setting. Bai et al.
(2019) is the first work that studies switching cost in RL. This problem was later studied in (Zhang et al., 2020b; Gao et al.,
2021; Wang et al., 2021). Our work focus on the global switching cost studied in (Gao et al., 2021).

Online Sub-Sampling. Our core technique, sub-sampling by online sensitivity score, is inspired by the sensitivity
sampling technique introduced in (Langberg & Schulman, 2010; Feldman & Langberg, 2011; Feldman et al., 2013) and the
online leverage score sampling technique introduced in (Cohen et al., 2016). However, as mentioned earlier, the algorithm
and analysis in (Cohen et al., 2016) works only for linear functions, and the framework in (Langberg & Schulman, 2010;
Feldman & Langberg, 2011; Feldman et al., 2013) can only deal with static datasets. On the other hand, our techniques can
deal with general function classes while operate in an online manner.

Comparison with Wang et al. (2020c) on Sampling Procedure. Our sub-sampling procedure is different from that
in Wang et al. (2020c) in the following two aspects. First, the algorithm in Wang et al. (2020c) resamples the whole
dataset once a new data point is obtained, while in our algorithm, either the sub-sampled dataset keeps unchanged, or
(multiple copies of) the new data point is added to the subsampled dataset. Moreover, the definition of the sensitivity score
in Wang et al. (2020c) depends on the whole dataset, while in our algorithm, the definition depends only on the current
sub-sampled dataset Ẑk−1h . These two differences are crucial for the low switching cost and low running time of our
algorithm. Furthermore, as we will show later, even under this new definition of sensitivity score, the size of the sub-sampled
dataset is bounded and the sub-sampled dataset provides a good approximation to the confidence set.

On the Linear Setting. When F is the class of d-dimensional linear functions, the global switching cost bound given in
Theorem 1 is Õ(d2H), which is worse than the Õ(dH) bound given in Gao et al. (2021). However, for linear functions,
our sampling procedure is equivalent to the online leverage score sampling (Cohen et al., 2016), and therefore, by using
the analysis in (Cohen et al., 2016) which is specific to the linear setting, the switching cost bound can be improved to
Õ(dH), matching the bound given in Gao et al. (2021). Using the same technique, our regret bound can be improved to
Õ(
√
d3H3T) in the linear setting, matching the bound given in Jin et al. (2020b); Gao et al. (2021).

C. Online Sub-Sampling in the Reward-Free Setting
In this section we show that our results can be extended to the reward-free exploration setting, in which the agent explores
the environment without the guidance of a reward, while achieving both low switching cost and computation efficiency. We
begin with some basics and notations of reward-free RL.

C.1. Reward-free RL

The reward-free RL contains two phases, the exploration phase and the planning phase. In the exploration phase, the agent
interacts with the MDP in episodes as usual, but receives no reward signal. After the exploration phase, the agent is given
a reward function in the planning phase. The goal of the reward-free RL is to output a near-optimal policy with respect
to the given reward function with no additional access to the environment. As mentioned in Jin et al. (2020a) and Wang
et al. (2020b), this paradigm is particular suitable for the batch RL setting and the setting where there are multiple reward
functions of interest.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Notations. Slightly changing the notation, we define the value (action-value) functions with respect to a given reward
function r = {rh}Hh=1 as

V πh (s, r) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, π

]
and

Qπh(s, a, r) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a, π

]
.

The optimal value (action-value) functions V ∗h (s, r) and Q∗h(s, a, r) are defined similarly. We say a policy π is a ε-optimal
policy with respect to r if V ∗1 (s1, r)− V π1 (s1, r) ≤ ε. The global switching cost in the reward-free RL setting is defined as
the number of policy changes in the exploration phase: N gl

switch :=
∑K−1
k=1 I{πk 6= πk+1}, where πk is the policy used in the

k-th episode of the exploration phase.

C.2. Algorithm

The algorithm consists of two phases: an exploration phase and a planning phase. Below, we introduce our algorithm.

Algorithm 3 Exploration Phase
Input: Failure probability δ ∈ (0, 1), number of episodes K, and function class F .
k̃ ← 1
Ẑ1
h ← {} ∀h ∈ [H]

for episode k = 1, 2, ...,K do
for h = H,H − 1, ..., 1 do
Ẑkh ← Online-Sample(F , Ẑk−1h , (sk−1h , ak−1h), δ) (if k ≥ 2)

end for
if k = 1 or ∃h ∈ [H] Ẑkh 6= Ẑ k̃h then
k̃ ← k
QkH+1(·, ·)← 0,V kH+1(·)← 0
for h = H,H − 1, ..., 1 do
Dkh ← {(sτh, aτh, V kh+1(sτh+1))}τ∈[k−1]
fkh ← argminf∈F‖f‖2Dkh
bkh(·, ·)← sup‖f1−f2‖2Ẑk

h

≤β |(f1(·, ·)− f2(·, ·)|

rkh(·, ·)← min{bkh(·, ·)/H, 1}
Qkh(·, ·)← min{fkh (·, ·) + bkh(·, ·) + rkh(·, ·), H}
V kh (·)← maxa∈AQ

k
h(·, a)

πkh(·)← argmaxa∈AQ
k
h(·, a)

end for
end if
Receive fixed initial state s1
for h = 1, 2, ...,H do

Take action akh ← πk̃h(skh) and observe skh+1

end for
end for

Exploration Phase. Our algorithm for the exploration phase is quite similar to Algorithm 13. The main difference is
that without the guidance from the reward signal, we use the following exploration-driven reward function to encourage
exploration:

rkh(·, ·)← min{bkh(·, ·)/H, 1}.

The full algorithm used in the exploration phase is presented in Algorithm 3.

3We need to slightly change the choice of β in the reward-free setting. See Section F for details.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Algorithm 4 Planning Phase

Input: Dataset ZKh , h ∈ [H], subsampled dataset ẐKh , h ∈ [H], reward function r = {rh}Hh=1, and function class F .
QH+1(·, ·)← 0,VH+1(·)← 0

Zh ← ZKh , Ẑh ← ẐKh
for h = H,H − 1, ..., 1 do
Dh ← {(sτh, aτh, Vh+1(sτh+1))}τ∈[K−1]
fh ← argminf∈F‖f‖2Dh
bh(·, ·)← sup‖f1−f2‖2Ẑh

≤β |(f1(·, ·)− f2(·, ·)|
Qh(·, ·)← min{fh(·, ·) + bh(·, ·) + rh(·, ·), H}
Vh(·)← maxa∈AQh(·, a)
πh(·)← argmaxa∈AQh(·, a)

end for
return π = {πh}Hh=1

Planning Phase. In the planning phase we do optimistic planning similar to Algorithm 1, but with real reward instead of
exploration-driven reward. We still add the bonus function to guarantee optimism.

C.3. Assumptions

Before presenting our theoretical guarantee, we need to make a few assumptions on the function classes used in the algorithm.
The first assumption is on the expressiveness of the function class F .
Assumption 3. For any h ∈ [H] and any V : S → [0, H], there exists fV ∈ F which satisfies

fV (s, a) =
∑
s′∈S

Ph(s′|s, a)V (s′)

for all (s, a) ∈ S ×A

Compared to Assumption 1, with no reward function, Assumption 3 can be regarded as a constrain on the transition core.
Intuitively, this assumption guarantees that we can use function class F to effectively explore the transition operator.

In Linear MDPs, it is assumed that the reward function is linear in the feature extractor. Instead of making explicit assumption
on the structure of the reward function, we assume the reward function given in the planning phase belongs to a function
class with bounded covering number.
Assumption 4. The reward function r = {rh}Hh=1 belongs to a function classR ⊆ {S ×A → [0, 1]}, i.e., rh ∈ R for all
h ∈ [H]. And for any ε > 0, there exists an ε-cover C(R, ε) with size |C(R, ε)| ≤ N (R, ε).

C.4. Theoretical Guarantee

Now we state our theoretical guarantee in the reward-free RL setting.
Theorem 2. Suppose Assumption 3 holds and T is sufficiently large. For any given δ ∈ (0, 1), after collectingK trajectories
during the exploration phase (by Algorithm 3), with probability at least 1 − δ, for any reward function r = {rh}Hh=1

satisfying Assumption 4, Algorithm 4 outputs an O(H3 ·
√
ι1/K)-optimal policy for the MDP (S,A, P, r,H, s1). Here,

ι1 = log(N (R, 1/T)) · dimE(F , 1/T)

+ log(TN (F , δ/T 2)/δ) · log2 T · dim2
E(F , 1/T) · log

(
N (S ×A, δ/T 2) · T/δ

)
.

Moreover, the global switching cost of Algorithm 3 is upper bounded by

N gl
switch = O(H · ι2)

where
ι2 = log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T.

Furthermore, with probability at least 1−δ, Algorithm 3 takes Õ(poly(dH) · |A|) time per round with access to a regression
oracle.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Using ideas in the proof of Theorem 1, the proof of Theorem 2 follows rather straightforwardly from Wang et al. (2020b).
The high-level idea is to show that, after the exploration phase, for any reward function, the error of the planning policy
is upper bounded by the expectation of the bonus functions, which is shown to be small enough using results proved in
Theorem 1. The formal proof of Theorem 2 is presented in Section H.

Remark 1. Let d(T, δ) := max(log(N (R, 1/T)), log(N (F , δ/T 2)), dimE(F , 1/T), log(N (S × A, δ/T 2))). Then
the output policy is guaranteed to be Õ(H3 · d(T, δ)2/

√
K)-optimal with high probability. In the tabular case we have

d(T, δ) = O(|S||A| · poly log(|S||A|Tδ−1)) = Õ(|S||A|). When F and R are both the class of d-dimensional linear
functions we have d(T, δ) = O(d · poly log(dTδ−1)) = Õ(d). However, it is hard to rigorously show this kind of property
when F and R are both general function classes. Generally speaking, if d(T, δ) = O(d∗ · poly log(d∗Tδ−1)) = Õ(d∗)

where d∗ depends only on the complexity of F andR, then the output policy is guaranteed to be Õ(H3 ·(d∗)2/
√
K)-optimal

with high probability. Thus for any ε > 0, by taking K = C · (d∗)4H6 · ε−2 · polylog(d∗Tδ−1ε−1) where C > 0 is a
sufficiently large constant, our algorithm guarantees to output an ε-optimal policy after exploring the environment for
Õ((d∗)4H6ε−2) episodes. In this case, our sample complexity bound and switching cost bound become Õ((d∗)4H6ε−2)

and Õ((d∗)2H). In particular, when F andR are the class of d-dimensional linear functions, our sample complexity bound
can be improved to Õ(d3H6ε−2) with refined analysis using the technique mentioned in Section B, matching the bound
given in Wang et al. (2020b).

D. Computational Efficiency
In this section we show how to implement our algorithms efficiently by assuming access to the following Regression Oracle.
We remark that this is a mild assumption since the regression problem is common in machine learning practice and can
usually be solved efficiently. This assumption also commonly appears in the literature (Foster et al., 2018; Foster & Rakhlin,
2020; Foster et al., 2020).

Regression Oracle. We assume access to a weighted least-squares regression oracle over the function class G, which
takes a set U of weighted examples (w, z, y) ∈ R+ × (S × A) × R as input, and outputs the function with the smallest
weighted squared loss:

ORACLE(H,G) = argming∈G
∑

(w,z,y)∈U

w(g(z)− y)2.

Furthermore, we assume that the time cost of an oracle call grows linear in |U |. Given this oracle, one can solve the
following optimization problem efficiently using time proportional to the number of distinct elements in Z by directly
calling the oracle with G = F − F := {f1 − f2|f1, f2 ∈ F}:

min ‖f1 − f2‖2Z +
w

2
(f1(s, a)− f2(s, a)− 2H)2 (2)

where w > 0 is a parameter. Such a procedure can be then used to solve the following constrained optimization problem
approximately:

max f1(s, a)− f2(s, a) s.t. ‖f1 − f2‖2Z ≤ ε, f1, f2 ∈ F . (3)

We adopt ideas from Foster et al. (2018): we do binary search over w to find the proper value of w and then the solution
of (2) gives an approximate solution to (3). The full algorithm is presented in Algorithm 5. The following theorem shows
that when F is convex, algorithm 5 solves the constrained optimization problem up to a precision of α in O(log(1/α))
iterations, i.e., O(log(1/α)) oracle invocations. When F is not convex, the constrained optimization problem can be solved
with O(1/α) oracle invocations using the techniques in (Krishnamurthy et al., 2017).

Theorem 3. Assume that the optimal solution to the following constrained optimization problem is g∗ = f∗1 − f∗2 .

maximize f1(s, a)− f2(s, a)

subject to ‖f1 − f2‖2Z ≤ β, f1, f2 ∈ F
We run algorithm 5 to solve the above problem. If the function class F is convex and closed under pointwise convergence,
then algorithm 5 terminate after O(log(1/α)) oracle invocations and the returned values satisfy

|zH − g∗(s, a)| ≤ α.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Algorithm 5 Binary Search
1: Input: Dataset Z , objective (s, a), tolerance β, precision α
2: G ← F − F
3: R(g, w) := ‖g‖2Z + w

2 (g(s, a)− 2(H + 1))2, ∀g ∈ G
4: wL ← 0, wH ← β/(α(H + 1))
5: gL ← 0, zL ← 0
6: gH ← argming∈GR(g, wH), zH ← gH(s, a)

7: ∆← αβ/(8(H + 1)3)
8: while |zH − zL| > α and |wH − wL| > ∆ do
9: w̃ ← (wH + wL)/2

10: g̃ ← argming∈GR(g, w̃), z̃ ← g̃(s, a)

11: if ‖g̃‖2Z > β then
12: wH ← w̃, zH ← z̃
13: else
14: wL ← w̃, zL ← z̃
15: end if
16: end while
17: Output: zH

Note that if F is convex, then F − F is also convex due to the following equation:

λ(f1 − f2) + (1− λ)(f3 − f4) = (λf1 + (1− λ)f3)− (λf2 + (1− λ)f4).

The rest of the proof is identical to Theorem 1 of (Foster et al., 2018). We omit it here for brevity.

Computing Exploration Bonus and Sensitivity. We now show how to reduce the computation of the exploration bonus
and online sensitivity scores to the constrained optimization problem in (3). Given a dataset Z and a state-action pair (s, a),
the exploration bonus is essentially the solution to the following constrained optimization problem:

max f1(s, a)− f2(s, a) s.t. ‖f1 − f2‖2Z ≤ β, f1, f2 ∈ F ,

which can be easily reduced to the constrained optimization problem in (3). On the other hand, the estimation of the online
sensitivity score can be reduced to the following optimization problems:

max f1(s, a)− f2(s, a) s.t. ‖f1 − f2‖2Z ≤ 2α, f1, f2 ∈ F

for α ∈ {0, 1, ..., log(T (H + 1)2),+∞}. Indeed, assuming the solution of the above problem is fα1 , f
α
2 for some α, and let

sensitivityest
Z,F (z) = max

α

{
min

{
(fα1 (z)− fα2 (z))2

min{‖fα1 − fα2 ‖2Z , T (H + 1)2}+ β
, 1

}}
.

We then have 1 ≤ sensitivityZ,F (z)/sensitivityest
Z,F (z) ≤ 2. Note that a 2-approximation of the sensitivity score is sufficient

for our analysis. Hence, both the exploration bonus and the sensitivity scores can be computed in time proportional to the
size of Ẑkh , i.e., Õ(d2).

Time Complexity of the Algorithm. For the online sub-sampling procedure (Algorithm 2), as the online sensitivity score
is computed using the sub-sampled dataset and the size of the sub-sampled dataset is bounded by Õ(d2), this step takes
Õ(poly(dH)) time per episode. For all h ∈ [H], the computation of fkh can be done efficiently by directly calling the
regression oracle with G = F . Since we only compute fkh when the sub-sampled dataset Ẑkh is changed, and each Ẑkh will
be changed for at most Õ(d2) times, this step takes time Õ(poly(dH) · |A|) on average for each episode. Similarly, the
computation of the exploration bonus also takes time Õ(poly(dH) · |A|) on average.

E. Proof Sketch
Now we present the major steps for proving Theorem 1. The detailed Proof is given in the Section F and Section G.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

The Online Sub-Sampling Algorithm. In order to establish the correctness and effectiveness of our algorithm, we need
to show that (i) the sub-sampled datasets Ẑkh always have bounded size and (ii) each Ẑkh provides a good approximation to
Zkh . In our proof (Proposition 2), we first show that the summation of the online sensitivity scores is upper bounded by
Õ(d2) if we use Zkh (the original dataset) instead of Ẑkh (the sub-sampled dataset) to calculate the online sensitivity scores.
This is established by a combinatorial argument (cf. Lemma 5) which draws a connection between the eluder dimension and
the summation of the online sensitivity scores. However, in our algorithm, for efficiency considerations, we use Ẑkh instead
of Zkh to calculate the sensitivity scores. Fortunately, as we will show, Ẑkh provides an accurate estimation to Zkh . Moreover,
thanks to the design of the online sensitivity scores, their summation is robust to perturbations on the datasets. Hence, the
summation of the sensitivity scores can be bounded even if Ẑkh is used in replace of Zkh . Note that the summation of the
sensitivity scores provides an upper bound on the expected size of the sub-sampled dataset, and a high probability bound
can be easily obtained by using martingale concentration bounds.

In order to show that the sub-sampled dataset provides a good approximation to the original dataset, in our proof (Proposi-
tion 1), we show that the confidence set induced by the sub-sampled dataset is close to that induced by the original dataset.
To prove this, for each pair of f1, f2 ∈ F , we show that ‖f1 − f2‖Ẑkh to close to ‖f1 − f2‖Zkh , and therefore the confidence
set is approximately preserved. In order to show that ‖f1 − f2‖Ẑkh is close to ‖f1 − f2‖Zkh , we note that sub-sampling
proportional to online sensitivity scores implies that the estimator is unbiased and has low variance, and thus the desired
result follows by Bernstein-type martingale concentration bounds.

Regret Decomposition. The proof of Theorem 1 consists of a standard regret decomposition step that decomposes the
regret as the summation of the exploration bonus which is common in optimistic algorithms. Here, one core step is to show
optimism, which requires that our exploration bonus upper bounds the estimation error. To show this, one needs to show
that the least-squares estimator fkh is close to T Qkh+1, where T is the Bellman backup operator. To tackle the dependence
between the collected samples and Qkh+1, we apply a uniform convergence argument which also appears in Jin et al. (2020b);
Wang et al. (2020c). Here, we need to build a cover over all possible estimated Q-functions Qkh. This is possible since the
sub-sampled dataset that defines the exploration bonus bkh has bounded complexity. Once optimism is established, we can
then use the mechanism developed in Russo & Roy (2013) to bound the summation of the exploration bonus in terms of the
eluder dimension.

The Switching Cost. In order to achieve low switching cost, we change the policy only when the sub-sampled dataset is
changed. This is best understood from a regret decomposition perspective. Note that our exploration bonus depends only on
the current state-action pair and the sub-sampled dataset Ẑkh , and therefore, if the sub-sampled dataset Ẑkh does not change,
the exploration bonus will also be unchanged. Hence, in terms of the summation of the exploration bonus, our algorithm
(which switches policy only when the sub-sampled dataset is unchanged) is as good as the ideal algorithm which changes its
policy in each round. For the ideal algorithm, the summation of the exploration bonus can be upper bounded in terms of the
eluder dimension using ideas in Russo & Roy (2013). Thus, the regret of our algorithm can also be upper bounded in terms
of the eluder dimension.

F. Properties of Online Sub-Sampling
In this section we first formalize the properties of the online sub-sampling procedure. We then give complete proofs of these
properties.

F.1. Choice of the parameter β

We elaborate the choice of β. In our algorithms, β is used in the computation of the bonus function and the online sensitivity
score (1). In the standard RL setting (Algorithm 1), we set β to be

β = CH2 · log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log
(
C(S ×A, δ/(T 2)) · T/δ

)
.

In the reward-free RL setting (Algorithm 3 and Algorithm 4), we modify the value of β to be

β = CH2 · (log(N (R, 1/T)) · dimE(F , 1/T)

+ log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log
(
C(S ×A, δ/(T 2)) · T/δ

)
).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

F.2. Analysis and Propositions

As mentioned in Section 3.1, we need to show that the sub-sampled dataset Ẑkh

• provides a good approximation to Zkh ; and

• has a much lower complexity than Zkh (in terms of number of distinct elements).

We define the following enlarged and shrunk confidence sets. For all (k, h) ∈ [K]× [H] and α ∈ [β,+∞), define

Bkh(α) := {(f1, f2) ∈ F × F|‖f1 − f2‖2Zkh ≤ α/100},

Bkh(α) := {(f1, f2) ∈ F × F|min{‖f1 − f2‖2Ẑkh , T (H + 1)2} ≤ α},

Bkh(α) := {(f1, f2) ∈ F × F|‖f1 − f2‖2Zkh ≤ 100α}.

For each (k, h) ∈ [K]× [H], we use Ekh(α) to denote the event that

Bkh(α) ⊆ Bkh(α) ⊆ Bkh(α).

Furthermore, we denote that

Ekh :=

∞⋂
n=0

Ekh(100nβ).

Event Ekh characterizes the meaning of “good approximation”. In fact, if Ekh happens, we can show that ‖f1 − f2‖Ẑkh is

close to ‖f1 − f2‖Zkh up to a constant factor, thus the confidence set induced by Ẑkh is accurate. The following proposition
verifies that Ekh happens with high probability.
Proposition 1.

Pr

(
H⋂
h=1

K⋂
k=1

Ekh

)
≥ 1− δ/32.

Moreover, we define the following bonus functions calculated by Zkh instead of Ẑkh :

bkh(·, ·) := sup
‖f1−f2‖2Zk

h

≤β/100
|(f1(·, ·)− f2(·, ·)|,

b
k

h(·, ·) := sup
‖f1−f2‖2Zk

h

≤100β
|(f1(·, ·)− f2(·, ·)|.

If Ekh happens, by taking α = β, we have that

bkh(·, ·) ≤ bkh(·, ·) ≤ bkh(·, ·)

which verifies the correctness of our bonus function bkh used in the algorithm.

Proposition 2 bounds the size of Ẑkh .
Proposition 2. With probability at least 1− δ/8, the following statements hold:

1. For any fixed h ∈ [H], the subsampled dataset Ẑkh (k = 1, 2, ...,K) changes for at most

Smax = C · log(TN (F ,
√
δ/64T 3)/δ) · dimE(F , 1/T) · log2 T

times for some absolute constant C > 0.

As a result, for any pair (k, h) ∈ [K]× [H], nd(Ẑkh) ≤ Smax.

2. For any (h, k) ∈ [H]× [K],
|Ẑkh | ≤ 64T 3/δ.

In the following two sections we prove Proposition 1 and Proposition 2. Throughout the proof, We use Fk to denote the
filtration induced by the history up to episode k (include episode k) and use Ek to denote the expectation conditioned on Fk.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

F.3. Proof of Proposition 1

For completeness, we state a Bernstein-type martingale concentration inequality which will be frequently used in our proofs.

Lemma 1 ((Freedman, 1975)). Consider a real-valued martingale {Yk : k = 0, 1, 2...} with difference sequence {Xk :
k = 1, 2, ...}. Assume that the difference sequence is uniformly bounded:

|Xk| ≤ R almost surely for k = 1, 2, 3,

For a fixed n ∈ N, assume that
n∑
k=1

Ek−1(X2
k) ≤ σ2

almost surely. Then for all t ≥ 0,

P{|Yn − Y0| ≥ t} ≤ 2 exp

{
− t2/2

σ2 +Rt/3

}
.

The next lemma upper bounds the size of Ẑkh .

Lemma 2. With probability at least 1− δ/64T ,

|Ẑkh | ≤ 64T 3/δ ∀(k, h) ∈ [K]× [H].

Proof. Consider a fixed pair (k, h) ∈ [K]× [H]. By Markov’s inequality we have that

|Ẑkh | ≤ 64T 2|Zkh |/δ

holds with probability at least 1− δ/(64T 2). With a union bound for all (k, h) ∈ [K]× [H] we complete the proof.

Now we start to analyze the events defined in Section F.2. Recall that in Section F.2 we mentioned that event Ekh characterizes
the meaning of “good approximation”. Our next lemma formalizes this intuition.

Lemma 3. If Ekh happens, then

1

10000
‖f1 − f2‖2Zkh ≤ min{‖f1 − f2‖2Ẑkh , T (H + 1)2} ≤ 10000‖f1 − f2‖2Zkh , ∀‖f1 − f2‖2Zkh > 100β

and
min{‖f1 − f2‖2Ẑkh , T (H + 1)2} ≤ 10000β, ∀‖f1 − f2‖2Zkh ≤ 100β.

Proof. If ‖f1 − f2‖2Zkh ≤ 100β, we have (f1, f2) ∈ Bkh(10000β). From Ekh we know (f1, f2) ∈ Bkh(10000β), which
implies the desired result.

If ‖f1 − f2‖2Zkh > 100β, assume that 100nβ < ‖f1 − f2‖2Zkh ≤ 100n+1β, n ∈ N∗. Then we have (f1, f2) /∈ Bkh(100n−1β)

and also (f1, f2) /∈ Bkh(100n−1β). This implies that min{‖f1 − f2‖2Ẑkh
, T (H + 1)2} ≥ 100n−1β ≥ 1

10000‖f1 − f2‖
2
Zkh

.

Similarly, we have (f1, f2) ∈ Bkh(100n+2β), then also (f1, f2) ∈ Bkh(100n+2β). Thus we have min{‖f1 − f2‖2Ẑkh
, T (H +

1)2} ≤ 100n+2β ≤ 10000‖f1 − f2‖2Zkh .

Recall that Proposition 1 states that
⋂H
h=1

⋂K
k=1 Ekh happens with high probability. As will be shown in the proof of

Proposition 1 later, to bound the probability of
⋂H
h=1

⋂K
k=1 Ekh we only need to bound Pr

(
E1hE2h...E

k−1
h (Ekh(100nβ))c

)
.

Note that Ekh(100nβ) always holds if 100nβ ≥ T (H + 1)2. We establish the following lemma.

Lemma 4. For α ∈ [β, T (H + 1)2],

Pr
(
E1hE2h...Ek−1h (Ekh(α))c

)
≤ δ/(32T 2).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Proof. We use Zkh to denote the dataset without rounding, i.e., we replace every element ẑ with z in Ẑkh . Denote
C1 := C · log(TN (F ,

√
δ/64T 3)/δ) to be the parameter used in Algorithm 2.

Consider a fixed pair (f1, f2) ∈ C(F ,
√
δ/(64T 3))× C(F ,

√
δ/(64T 3)).

For each i ≥ 2, define
Zi = max{‖f1 − f2‖2Zih ,min{‖f1 − f2‖2Ẑi−1

h

, T (H + 1)2}}

and

Yi =


1

p
z
i−1
h

(f1(zi−1h)− f2(zi−1h))2 zi−1h is added into Zih and Zi ≤ 2000000α

0 zi−1h is not added into Zih and Zi ≤ 2000000α

(f1(zi−1h)− f2(zi−1h))2 Zi > 2000000α

.

Yi’s are used to characterize the sampling procedure. Note that Yi is adapted to the filtration Fi, and Ei−1[Yi] =
(f1(zi−1h)− f2(zi−1h))2. In order to use Freedman’s inequality, we need to bound Yi and its variance.

If pzi−1
h

= 1 or min{‖f1−f2‖2Ẑi−1
h

, T (H+1)2} > 2000000α, then Yi−Ei−1[Yi] = Vari−1[Yi−Ei−1[Yi]] = 0. Otherwise
from the definition of pz in Algorithm 2 we have that:

|Yi − Ei−1[Yi]| ≤ (min{‖f1 − f2‖2Ẑi−1
h

, T (H + 1)2}+ β) · 1/C1

≤ 3000000α/C1

and

Vari−1[Yi − Ei−1[Yi]] ≤
1

pzi−1
h

(f1(zi−1h)− f2(zi−1h))4

≤ (f1(zi−1h)− f2(zi−1h))2 · 3000000α/C1.

It is easy to verify that

k∑
i=2

Vari−1[Yi − Ei−1[Yi]] ≤ (3000000α)2/C1.

By Freedman’s inequality (Lemma 1), we have that

Pr

{∣∣∣∣∣
k∑
i=2

(Yi − Ei−1[Yi])

∣∣∣∣∣ ≥ α/100

}

≤ 2 exp

{
− (α/100)2/2

(3000000α)2/C1 + α · 3000000α/3C1

}
≤ (δ/64T 2)/(N (F ,

√
δ/(64T 3)))2.

With a union bound, the above inequality implies that with probability at least 1 − δ/(64T 2), for any pair (f1, f2) ∈
C(F ,

√
δ/(64T 3))× C(F ,

√
δ/(64T 3)), the corresponding Yi’s satisfy∣∣∣∣∣

k∑
i=2

(Yi − Ei−1[Yi])

∣∣∣∣∣ ≤ α/100.

Now we condition on the above event and the event defined in Lemma 2 for the rest of the proof.

Part 1: (Bkh(α) ⊆ Bkh(α)) Consider any pair f1, f2 ∈ F with ‖f1 − f2‖2Zkh ≤ α/100. From the definition we know that

there exist (f̂1, f̂2) ∈ C(F ,
√
δ/(64T 3))× C(F ,

√
δ/(64T 3)) such that ‖f̂1 − f1‖∞, ‖f̂2 − f2‖∞ ≤

√
δ/(64T 3). Then

Online Sub-sampling for Reinforcement Learning with General Function Approximation

we have that

‖f̂1 − f̂2‖2Zkh ≤ (‖f1 − f2‖Zkh + ‖f1 − f̂1‖Zkh + ‖f̂2 − f2‖Zkh)2

≤ (‖f1 − f2‖Zkh + 2 ·
√
|Zkh | ·

√
δ/(64T 3))2

≤ α/50.

We consider the Yi’s which corrspond to f̂1 and f̂2. Because ‖f̂1− f̂2‖2Zkh ≤ α/50, we also have that ‖f̂1− f̂2‖2Zk−1
h

≤ α/50.

From Ek−1h we know that min{‖f̂1 − f̂2‖2Ẑk−1
h

, T (H + 1)2} ≤ 10000α. Then from the definition of Yi we have

‖f̂1 − f̂2‖2Zkh
=

k∑
i=2

Yi.

Then ‖f̂1 − f̂2‖2Zkh
can be bounded in the following manner:

‖f̂1 − f̂2‖2Zkh
=

k∑
i=2

Yi

≤
k∑
i=2

Ei−1[Yi] + α/100

= ‖f̂1 − f̂2‖2Zkh + α/100

≤ 3α/100.

As a result, ‖f1 − f2‖2Zkh
can also be bounded:

‖f1 − f2‖2Zkh
≤ (‖f̂1 − f̂2‖Zkh + ‖f1 − f̂1‖Zkh + ‖f̂2 − f2‖Zkh)2

≤ (‖f̂1 − f̂2‖Zkh + 2 ·
√
|Zkh| ·

√
δ/(64T 3))2

≤ α/25.

Finally we could bound ‖f1 − f2‖2Ẑkh
:

‖f1 − f2‖2Ẑkh ≤ (‖f1 − f2‖Zkh +
√

64T 3/δ/(8
√

64T 3/δ))2

≤ α.

We conclude that for any pair f1, f2 ∈ F with ‖f1 − f2‖2Zkh ≤ α/100, it holds that ‖f1 − f2‖2Ẑkh
≤ α. Thus we must have

Bkh(α) ⊆ Bkh(α).

Part 2: (Bkh(α) ⊆ Bkh(α)) Consider any pair f1, f2 ∈ F with ‖f1 − f2‖2Zkh > 100α. From the definition we know that

there exist (f̂1, f̂2) ∈ C(F ,
√
δ/(64T 3))× C(F ,

√
δ/(64T 3)) such that ‖f̂1 − f1‖∞, ‖f̂2 − f2‖∞ ≤

√
δ/(64T 3). Then

we have that

‖f̂1 − f̂2‖2Zkh ≥ (‖f1 − f2‖Zkh − ‖f1 − f̂1‖Zkh − ‖f̂2 − f2‖Zkh)2

≥ (‖f1 − f2‖Zkh − 2 ·
√
|Zkh | ·

√
δ/(64T 3))2

> 50α.

Thus we have ‖f̂1 − f̂2‖2Zkh > 50α. We consider the Yi’s which corrspond to f̂1 and f̂2. Here we want to prove that

‖f̂1 − f̂2‖2Ẑkh
> 40α. For the sake of contradicition we assume that ‖f̂1 − f̂2‖2Ẑkh

≤ 40α.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Case 1: ‖f̂1 − f̂2‖2Zkh ≤ 2000000α. From the definition of Yi we have that

‖f̂1 − f̂2‖2Zkh
=

k∑
i=2

Yi.

Combined with the former result, we conclude that

‖f̂1 − f̂2‖2Zkh
=

k∑
i=2

Yi ≥
k∑
i=2

Ei−1[Yi]− α/100 = ‖f̂1 − f̂2‖2Zkh − α/100 > 50α− α/100 = 49α.

Then we have

‖f̂1 − f̂2‖2Ẑkh ≥ (‖f̂1 − f̂2‖Zkh −
√

64T 3/δ/(8
√

64T 3/δ))2

> 40α.

This leads to a contradiction.

Case 2: ‖f̂1 − f̂2‖2Zk−1
h

> 1000000α. From Ek−1h we deduce that ‖f̂1 − f̂2‖2Ẑk−1
h

> 100α which directly leads to a
contradiction.

Case 3: ‖f̂1−f̂2‖2Zkh > 2000000α and ‖f̂1−f̂2‖2Zk−1
h

≤ 1000000α. It is clear that (f̂1(zk−1h)−f̂2(zk−1h))2 > 1000000α.

From the definition of sensitivity we know that zk−1h will be added intoZkh almost surely. This clearly leads to a contradiction.

We conclude that ‖f̂1 − f̂2‖2Ẑkh
> 40α.

Finally we could bound ‖f1 − f2‖2Ẑkh
:

‖f1 − f2‖2Ẑkh ≥ (‖f̂1 − f̂2‖Ẑkh − ‖f1 − f̂1‖Ẑkh − ‖f̂2 − f2‖Ẑkh)2

≥ (‖f̂1 − f̂2‖Ẑkh − 2 ·
√
|Ẑkh | ·

√
δ/(64T 3))2

> α.

We conclude that for any pair f1, f2 ∈ F with ‖f1 − f2‖2Zkh > 10000β, it holds that ‖f1 − f2‖2Ẑkh
> 100β. This implies

that Bkh(α) ⊆ Bkh(α).

Proof of Proposition 1. Note that for all (k, h) ∈ [K]× [H], we have

Pr(E1hE2h...Ek−1h)− Pr(E1hE2h...Ekh)

= Pr(E1hE2h...Ek−1h (Ekh)c)

= Pr

(
E1hE2h...Ek−1h

(∞⋂
n=0

Ekh(100nβ)

)c)

= Pr

(
E1hE2h...Ek−1h

∞⋃
n=0

(Ekh(100nβ))c

)

≤
∞∑
n=0

Pr
(
E1hE2h...Ek−1h (Ekh(100nβ))c

)
=

∑
n≥0,100nβ≤T (H+1)2

Pr
(
E1hE2h...Ek−1h (Ekh(100nβ))c

)
. (4)

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Combining Equation (4) and Lemma 4, we have that for all (k, h) ∈ [K]× [H],

Pr(E1hE2h...Ek−1h)− Pr(E1hE2h...Ekh) ≤ δ/(32T 2) · (log(T (H + 1)2/β) + 2) ≤ δ/32T.

Thus for all h ∈ [H] we have

Pr

(
K⋂
k=1

Ekh

)

= 1−
K∑
k=1

(Pr(E1hE2h...Ek−1h)− Pr(E1hE2h...Ekh))

≥ 1−K · (δ/32T)

= 1− δ/32H.

By applying a union bound for all h ∈ [H] we complete the proof.

F.4. Proof of Proposition 2

We start our proof by showing that the summation of online sensitivity scores can be upper bounded if Zkh , i.e, the dataset
without sub-sampling, is used.

Lemma 5. For all h ∈ [H], we have

K−1∑
k=1

sensitivityZkh ,F (zkh) ≤ C · dimE(F , 1/T) log((H + 1)2T) log T

for some absolute constant C > 0.

Proof. Note that |Zkh | ≤ T , thus we have that

sensitivityZkh ,F (zkh) = min

{
sup

f1,f2∈F

(f1(zkh)− f2(zkh))2

min{‖f1 − f2‖2Zkh , T (H + 1)2}+ β
, 1

}

≤ min

{
sup

f1,f2∈F

(f1(zkh)− f2(zkh))2

‖f1 − f2‖2Zkh + 1
, 1

}
.

For each k ∈ [K − 1], let f1, f2 ∈ F be an arbitrary pair of functions such that

(f1(zkh)− f2(zkh))2

‖f1 − f2‖2Zkh + 1

is maximized, and we define L(zkh) = (f1(zkh) − f2(zkh))2 for such f1 and f2. Note that 0 ≤ L(zkh) ≤ (H + 1)2. Let

ZKh =
⋃log((H+1)2T)−1
α=0 Zα ∪ Z∞ be a dyadic decomposition with respect to L(·) (we assume log((H + 1)2T) is an

integer for simplicity), where for each 0 ≤ α < log((H + 1)2T), define

Zα = {zkh ∈ ZKh | L(zkh) ∈ ((H + 1)2 · 2−α−1, (H + 1)2 · 2−α]}

and
Z∞ = {zkh ∈ ZKh | L(zkh) ≤ 1/T}.

Clearly, for any zkh ∈ Z∞, sensitivityZkh ,F (zkh) ≤ 1/T and thus∑
zkh∈Z∞

sensitivityZkh ,F (zkh) ≤ 1.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Now we bound
∑
zkh∈Zα

sensitivityZkh ,F (zkh) for each 0 ≤ α < log((H + 1)2T) separately. For each α, let

Nα = |Zα|/dimE(F , (H + 1)2 · 2−α−1)

and we decompose Zα into Nα + 1 disjoint subsets, i.e., Zα =
⋃Nα+1
j=1 Zαj , by using the following procedure. We initialize

Zαj = {} for all j and consider each zkh ∈ Zα sequentially. For each zkh ∈ Zα, we find the smallest 1 ≤ j ≤ Nα such
that zkh is (H + 1)2 · 2−α−1-independent of Zαj with respect to F . We set j = Nα + 1 if such j does not exist, and use
j(zkh) ∈ [Nα + 1] to denote the choice of j for zkh. We then add zkh into Zαj . For each zkh ∈ Zα, it is clear that zkh is
dependent on each of Zα1 ,Zα2 , . . . ,Zαj(zkh)−1.

Now we show that for each zkh ∈ Zα,

sensitivityZkh ,F (zkh) ≤ 4

j(zkh)
.

For any zkh ∈ Zα, we use f1, f2 ∈ F to denote the pair of functions in F such that

(f1(zkh)− f2(zkh))2

‖f1 − f2‖2Zkh + 1

is maximized. Since zkh ∈ Zα, we must have (f1(zkh)− f2(zkh))2 > (H + 1)2 · 2−α−1. Since zkh is dependent on each of
Zα1 ,Zα2 , . . . ,Zαj(zkh)−1, and for each 1 ≤ t < j(zkh), we have

‖f1 − f2‖Zαt ≥ (H + 1)2 · 2−α−1.

It is important to note that Zα1 ,Zα2 , . . . ,Zαj(zkh)−1 ⊆ Z
k
h due to the design of the partition procedure. Thus the online

sensitivity score can be bounded by:

sensitivityZkh ,F (zkh) ≤ (f1(zkh)− f2(zkh))2

‖f1 − f2‖2Zkh + 1
≤ (H + 1)2 · 2−α

‖f1 − f2‖2Zkh

≤ (H + 1)2 · 2−α∑j(zkh)−1
t=1 ‖f1 − f2‖Zαt

≤ 2/(j(zkh)− 1).

By the definition of online sensitivity score we have sensitivityZkh ,F (zkh) ≤ 1, thus we conclude that:

sensitivityZkh ,F (zkh) ≤ min{ 2

j(zkh)− 1
, 1} ≤ 4

j(zkh)
.

Moreover, by the definition of (H + 1)2 · 2−α−1-independent, we have |Zαj | ≤ dimE(F , (H + 1)2 · 2−α−1) for all
1 ≤ j ≤ Nα. Therefore,∑

zkh∈Zα
sensitivityZkh ,F (zkh) ≤

∑
1≤j≤Nα

|Zαj | · 4/j +
∑

z∈ZαNα+1

4/Nα

≤4dimE(F , (H + 1)2 · 2−α−1) ln(Nα) + |Zα| · 4dimE(F , (H + 1)2 · 2−α−1)

|Zα|
≤8dimE(F , (H + 1)2 · 2−α−1) log T.

By the monotonicity of eluder dimension, it follows that
K−1∑
k=1

sensitivityZkh ,F (zkh)

≤
log((H+1)2T)−1∑

α=0

∑
zkh∈Zα

sensitivityZkh ,F (zkh) +
∑

zkh∈Z∞
sensitivityZkh ,F (zkh)

≤8 log((H + 1)2T)dimE(F , 1/T) log T + 1

≤9 log((H + 1)2T)dimE(F , 1/T) log T

as desired.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

With Lemma 5, now we are ready to prove Proposition 2.

Proof of Proposition 2. Firstly, note that conditioned on Ekh , which means Ẑkh is a good approximation to Zkh , the online
sensitivity score computed with Ẑkh will be relatively accurate. Formally, this argument can be stated as

I{Ekh} · sensitivityẐkh ,F
(zkh) ≤ C · sensitivityZkh ,F (zkh)

for some absolute constant C > 0. This property can be easily derived from Lemma 3.

Note that in Algorithm 2,4

pz . sensitivityZ,F (z) · log(TN (F ,
√
δ/64T 3)/δ).

Thus from Lemma 5 we know that

K−1∑
k=1

I{Ekh} · pzkh .
K−1∑
k=1

I{Ekh} · sensitivityẐkh ,F
(zkh) · log(TN (F ,

√
δ/64T 3)/δ)

.
K−1∑
k=1

sensitivityZkh ,F (zkh) · log(TN (F ,
√
δ/64T 3)/δ)

. log(TN (F ,
√
δ/64T 3)/δ) dimE(F , 1/T) log2 T.

As we can adjust the constant C in Proposition 2, we assume that

K−1∑
k=1

I{Ekh} · pzkh ≤ Smax/3.

For 2 ≤ k ≤ K, let Xk
h be a random variable defined as:

Xk
h =

{
I{Ek−1h } ẑk−1h is added into Ẑkh
0 otherwise

.

Then Xk
h is adapted to the filtration Fk. We have that Ek−1[Xk

h] = pzk−1
h
· I{Ek−1h } and Ek−1[(Xk

h − Ei−1[Xk
h])2] =

I{Ek−1h } · pzk−1
h

(1− pzk−1
h

). Note that Xk
h − Ek−1[Xk

h] is a martingale difference sequence with respect to Fk and

K∑
k=2

Ek−1[(Xk
h − Ek−1[Xk

h])2] =

K∑
k=2

I{Ek−1h }pzk−1
h

(1− pzk−1
h

) ≤
K∑
k=2

I{Ek−1h } · pzk−1
h
≤ Smax/3,

K∑
k=2

Ek−1[Xk
h] =

K∑
k=2

pzk−1
h

I{Ek−1h } ≤ Smax/3.

By Freedman’s inequality (Lemma 1), we have that

Pr

{
K∑
k=2

Xk
h ≥ Smax

}

≤Pr

{∣∣∣∣∣
K∑
k=2

(Xk
h − Ek−1[Xk

h])

∣∣∣∣∣ ≥ 2Smax/3

}

≤2 exp

{
− (2Smax/3)2/2

Smax/3 + 2Smax/9

}
≤δ/(32T).

4We use f . g to donote that f ≤ Cg for some absolute constant C > 0.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

With a union bound we know that with probability at least 1− δ/32,

K∑
k=2

Xk
h < Smax ∀h ∈ [H].

We condition on the above event and
⋂H
h=1

⋂K
k=1 Ekh . In this case, it is clear that for all h ∈ [H], we add elements into Ẑkh

for at most Smax times. Combining the above result with Lemma 2 completes the proof.

G. Proof of Theorem 1
G.1. Analysis of the Optimistic Planning

Our next lemma bounds the complexity of the bonus function. This step is essential for showing optimism, as we need to
establish a uniform convergence argument to deal with the dependency in the data sequence.

Lemma 6. With probability at least 1− δ/8, for all (h, k) ∈ [H]× [K], bkh(·, ·) ∈M.

HereM is a prespecified function class with bounded size:

log |M|

≤C ′ · log(TN (F ,
√
δ/64T 3)/δ) · dimE(F , 1/T) · log2 T · log

(
C(S ×A, 1/(16

√
64T 3/δ)) · 64T 3/δ

)
≤C · log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log

(
C(S ×A, δ/T 2) · T/δ

)
for some absolute constant C ′, C > 0 if T is sufficiently large.

Proof. DefineM to be the set of all functions with the form:{
|f1(·, ·)− f2(·, ·)| | ‖f1 − f2‖2Z ≤ β

}
, Z ∈ Ω

where Ω contains all set with bounded size:

Ω := {Z ⊆ C(S ×A, 1/(16
√

64T 3/δ)) | |Z| ≤ 64T 3/δ, nd(Z) ≤ Smax}

where Smax is defined in Proposition 2.

Conditioned on the event defined in Proposition 2, Ẑkh ∈ Ω, and bkh(·, ·) ∈M for all (h, k) ∈ [H]× [K].

The next lemma estimates the error of the one-step bellman backup.

Lemma 7. Consider a fixed pair (k, h) ∈ [K]× [H]. For any V : S → [0, H], define

Dkh(V) := {(sτh, aτh, rτh + V (sτh+1))}τ∈[k−1]

and also
f̂V := argminf∈F ‖f‖2Dkh(V).

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least 1− δ, such that for any
V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′(·, ·)− rh(·, ·)−

∑
s′∈S

Ph(s′|·, ·)V ′(s′)

∥∥∥∥∥
Zkh

≤ C · (H
√

log(1/δ) + logN (F , 1/T)).

for some absolute constant C > 0.

Proof. The proof is almost identical to that of Lemma 5 in (Wang et al., 2020c). We provide a proof here for completeness.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

In our proof, we consider a fixed V : S → [0, H], and define

fV (·, ·) := rh(·, ·) +
∑
s′∈S

Ph(s′ | ·, ·)V (s′).

By Assumption 1, we have that fV (·, ·) ∈ F .

For any f ∈ F , we consider
∑k−1
τ=1 ξ

τ
h(f) where

ξτh(f) := 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h)) · (fV (sτh, a

τ
h)− rτh − V (sτh+1)).

Then ξτh(f) is adapted to the filtration Fτ and Eτ−1 [ξτh(f)] = 0. Moreover,

|ξτh(f)| ≤ 2(H + 1) |f(sτh, a
τ
h)− fV (sτh, a

τ
h)| .

By Azuma-Hoeffding inequality, we have

Pr

[∣∣∣∣∣
k−1∑
τ=1

ξτh(f)

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− ε2

8(H + 1)2‖f − fV ‖2Zkh

)
.

Let

ε =

(
8(H + 1)2 log

(
2N (F , 1/T)

δ

)
· ‖f − fV ‖2Zkh

)1/2

≤ 4(H + 1)‖f − fV ‖Zkh ·
√

log(2/δ) + logN (F , 1/T).

We have, with probability at least 1− δ, for all f ∈ C(F , 1/T),∣∣∣∣∣
k−1∑
τ=1

ξτh(f)

∣∣∣∣∣ ≤ 4(H + 1)‖f − fV ‖Zkh ·
√

log(2/δ) + logN (F , 1/T).

We define the above event to be EV,δ , and we condition on this event for the rest of the proof.

For all f ∈ F , there exists g ∈ C(F , 1/T), such that ‖f − g‖∞ ≤ 1/T , and we have∣∣∣∣∣
k−1∑
τ=1

ξτh(f)

∣∣∣∣∣ ≤
∣∣∣∣∣
k−1∑
τ=1

ξτh(g)

∣∣∣∣∣+ 2(H + 1)

≤ 4(H + 1)‖g − fV ‖Zkh ·
√

log(2/δ) + logN (F , 1/T) + 2(H + 1)

≤ 4(H + 1)(‖f − fV ‖Zkh + 1) ·
√

log(2/δ) + logN (F , 1/T) + 2(H + 1).

Consider V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T . We have

‖fV ′ − fV ‖∞ ≤ ‖V ′ − V ‖∞ ≤ 1/T.

For any f ∈ F ,

‖f‖2Dkh(V ′) − ‖fV ′‖
2
Dkh(V ′)

=‖f − fV ′‖2Zkh + 2

k−1∑
τ=1

(f(sτh, a
τ
h)− fV ′(sτh, aτh)) · (fV ′(sτh, aτh)− rτh − V ′(sτh+1)).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

For the second term, we have,

2

k−1∑
τ=1

(f(sτh, a
τ
h)− fV ′(sτh, aτh)) · (fV ′(sτh, aτh)− rτh − V ′(sτh+1))

≥2

k−1∑
τ=1

(f(sτh, a
τ
h)− fV (sτh, a

τ
h)) · (fV (sτh, a

τ
h)− rτh − V (sτh+1))− 4(H + 1) · ‖V ′ − V ‖∞ · k

=

k−1∑
τ=1

ξτh(f)− 4(H + 1) · ‖V ′ − V ‖∞ · k

≥− 4(H + 1)(‖f − fV ‖Zkh + 1) ·
√

log(2/δ) + logN (F , 1/T)− 2(H + 1)− 4(H + 1) · ‖V ′ − V ‖∞ · k

≥− 4(H + 1)(‖f − fV ′‖Zkh + 2) ·
√

log(2/δ) + logN (F , 1/T)− 6(H + 1).

Recall that f̂V ′ = arg minf∈F ‖f‖2Dkh(V ′). We have ‖f̂V ′‖2Dkh(V ′) − ‖fV ′‖
2
Dkh(V ′)

≤ 0, which implies,

0 ≥ ‖f̂V ′‖2Dkh(V ′) − ‖fV ′‖
2
Dkh(V ′)

= ‖f̂V ′ − fV ′‖2Zkh + 2

k−1∑
τ=1

(f̂V ′(s
τ
h, a

τ
h)− fV ′(sτh, aτh)) · (fV ′(sτh, aτh)− rτh − V ′(sτh+1))

≥ ‖f̂V ′ − fV ′‖2Zkh − 4(H + 1)(‖f̂V ′ − fV ′‖Zkh + 2) ·
√

log(2/δ) + logN (F , 1/T)− 6(H + 1).

Solving the above inequality, we have,

‖f̂V ′ − fV ′‖Zkh ≤ C ·
(
H ·

√
log(1/δ) + logN (F , 1/T)

)
for some absolute constant C > 0.

Our next lemma shows that fkh belongs to the desired confidence region.

Lemma 8. Let E2 denote the event that for all (k, h) ∈ [K]× [H],∥∥fkh − f̄kh∥∥Zkh ≤ β/100

where f̄kh (·, ·) =
∑
s∈S′ Ph(s′|·, ·)V kh+1(s′) + rh(·, ·).

Then Pr[E2] ≥ 1− δ/4 provided

β ≥ C ·H2 · (log(T/δ) + logN (F , 1/T) + log |M|)

for some absolute constant C > 0.

Proof. Note that for all (k, h) ∈ [K]× [H],

Qkh(·, ·) = min{fkh (·, ·) + bkh(·, ·), H}, and

V kh (·) = max
a∈A

Qkh(·, a).

We define
Q := {min{f(·, ·) +m(·, ·), H}|f ∈ C(F , 1/T),m ∈M} ∪ {0}, and

V := {max
a∈A

q(·, a)|q ∈ Q}.

Then log |V| ≤ log |M|+ logN (F , 1/T) + 1.

Conditioned on the event defined in Lemma 6, we have that bkh(·, ·) ∈ M for all (h, k) ∈ [H] × [K]. Thus for all
(k, h) ∈ [K]× [H], V is a (1/T)-cover of V kh (·).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

For each V ∈ V , let EV,δ/(8|V|T) be the event defined in Lemma 7. Note that EV,δ/(8|V|T) also relates to a fixed pair (k, h).

By applying Lemma 7 and a union bound, we have Pr
[⋂

(k,h)∈[K]×[H]

⋂
V ∈V EV,δ/(8|V|T)

]
≥ 1− δ/8. We also condition

on this event for the rest of the proof.

For (k, h) ∈ [K]×[H], recall that fkh is the solution to the regression problem in Algorithm 1, i.e., fkh = arg minf∈F ‖f‖2Dkh .

Let V ∈ V such that ‖V −V kh+1‖∞ ≤ 1/T . By the definition of EV,δ/(8|V|T) (the one relats to this (k, h) pair), we have that∥∥∥∥∥fkh (·, ·)− rh(·, ·)−
∑
s′∈S

Ph(s′|·, ·)V kh+1(s′)

∥∥∥∥∥
Zkh

.H
√

log(8|V|T/δ) + logN (F , 1/T)

.H
√

log(T/δ) + logN (F , 1/T) + log |M|.

as desired.

Finally, we use the above result to show optimism.

Lemma 9. Let E3 denote the event that for all (k, h) ∈ [K]× [H], and all (s, a) ∈ S ×A,

Q∗h(s, a) ≤ Qkh(s, a) ≤ f̄kh (s, a) + 2bkh(s, a)

where f̄kh (·, ·) =
∑
s∈S′ Ph(s′|·, ·)V kh+1(s′) + rh(·, ·).

Then Pr[E3] ≥ 1− δ/2.

Proof. We condition on the event defined in Proposition 1 and E2 defined in Lemma 8. Because
∥∥fkh − f̄kh∥∥Zkh ≤ β/100,

from the definition of bkh we have that
∣∣f̄kh (·, ·)− fkh (·, ·)

∣∣ ≤ bkh(·, ·). Moreover, by Proposition 1 we have bkh(·, ·) ≤ bkh(·, ·).

Thus for all (k, h) ∈ [K]× [H], (s, a) ∈ S ×A, we have

Qkh(s, a)

= min{fkh (s, a) + bkh(s, a), H}
≤min

{
f̄kh (s, a) + bkh(s, a) +

∣∣f̄kh (s, a)− fkh (s, a)
∣∣ , H}

≤min
{
f̄kh (s, a) + bkh(s, a) + bkh(s, a), H

}
≤min

{
f̄kh (s, a) + 2bkh(s, a), H

}
≤f̄kh (s, a) + 2bkh(s, a).

Next we use induction on h to prove Q∗h(·, ·) ≤ Qkh(·, ·). The inequality clearly holds when h = H + 1. Now we assume
Q∗h+1(·, ·) ≤ Qkh+1(·, ·) for some h ∈ [H]. Then obviously we have V ∗h+1(·) ≤ V kh+1(·). Therefore for all (s, a) ∈ S ×A,

Q∗h(s, a)

=rh(s, a) +
∑
s′∈S

Ph(s′|s, a)V ∗h+1(s′)

≤min

{
rh(s, a) +

∑
s′∈S

Ph(s′|s, a)V kh+1(s′), H

}
= min

{
f̄kh (s, a), H

}
≤min

{
fkh (s, a) + bkh(s, a), H

}
=Qkh(s, a).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

G.2. Regret decomposition

Now we are ready to bound the regret. For any k ∈ [K], we let k̃ represents the episode index we update the policy to the
one used in the k-th episode.

Lemma 10. With probability at least 1− 5δ/8, we have

Regret(K) ≤ 4H
√
KH · log(16/δ) + 2

K∑
k=1

H∑
h=1

bkh(skh, a
k
h).

Proof. ∀(k, h) ∈ [K]× [H − 1], define

ξkh =
∑
s′∈S

Ph(s′|skh, akh)(V k̃h+1(s′)− V πk̃h+1(s′))− (V k̃h+1(skh+1)− V πk̃h+1(skh+1)).

Note that {ξkh} is a martingale difference sequence and |ξkh| ≤ 2H . By Azuma-Hoeffding inequality, with probability at
least 1− δ/8,

K∑
k=1

H−1∑
h=1

ξkh ≤ 4H
√
KH · log(16/δ).

Conditioned on the above event and E3 defined in Lemma 9, we have

Regret(K)

=

K∑
k=1

(
V ∗1 (sk1)− V πk̃1 (sk1)

)
≤

K∑
k=1

(
V k̃1 (sk1)− V πk̃1 (sk1)

)
=

K∑
k=1

(
Qk̃1(sk1 , a

k
1)−Qπk̃1 (sk1 , a

k
1)
)

(note that we played πk̃ in epsiode k)

=

K∑
k=1

(∑
s′∈S

P1(s′|sk1 , ak1)(V k̃2 (s′)− V πk̃2 (s′)) + 2bk̃1(sk1 , a
k
1)

)

=

K∑
k=1

(
(V k̃2 (sk2)− V πk̃2 (sk2)) + ξk1 + 2bk̃1(sk1 , a

k
1)
)

≤...

≤
K∑
k=1

H−1∑
h=1

ξkh + 2

K∑
k=1

H∑
h=1

bk̃h(skh, a
k
h)

=

K∑
k=1

H−1∑
h=1

ξkh + 2

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) (note that bk̃h(·, ·) = bkh(·, ·))

≤4H
√
KH · log(16/δ) + 2

K∑
k=1

H∑
h=1

bkh(skh, a
k
h)

as desired.

The next lemma bounds the summation of the exploration bonus in terms of the eluder dimension.

Lemma 11. With probability at least 1− δ/32,

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) ≤ H +H(H + 1) dimE(F , 1/T) + C ·

√
dimE(F , 1/T) · TH · β

Online Sub-sampling for Reinforcement Learning with General Function Approximation

for some absolute constant C > 0.

Proof. We condition on the event defined in Proposition 1 in the proof. Then we have

bkh(skh, a
k
h) ≤ bkh(skh, a

k
h)

= sup
‖f1−f2‖2Zk

h

≤100β
|(f1(skh, a

k
h)− f2(skh, a

k
h)|.

In the rest of the proof, we bound
∑K
k=1 b

k
h(skh, a

k
h) for each h ∈ [H] separately.

For any given ε > 0 and h ∈ [H], let Lh = {(skh, akh)|k ∈ [K], bkh(skh, a
k
h) > ε} with |Lh| = Lh. We will show that there

exists zkh := (skh, a
k
h) ∈ Lh such that (skh, a

k
h) is ε-dependent on at least Lh/ dimE(F , ε) − 1 disjoint subsequences in

Zkh ∩ Lh. Denote N = Lh/dimE(F , ε)− 1.

We decompose Lh into N + 1 disjoint subsets, Lh = ∪N+1
j=1 L

j
h by the following procedure. We initialize Ljh = {} for all j

and consider each zkh ∈ Lh sequentially. For each zkh ∈ Lh, we find the smallest 1 ≤ j ≤ N such that zkh is ε-independent
on Ljh with respect to F . We set j = N + 1 if such j does not exist. We add zkh into Ljh afterwards. When the decomposition
of Lh is finished, LN+1

h must be nonempty as Ljh contains at most dimE(F , ε) elements for j ∈ [N]. For any zkh ∈ L
N+1
h ,

zkh is ε-dependent on at least Lh/ dimE(F , ε)− 1 disjoint subsequences in Zkh ∩ Lh.

On the other hand, there exist f1, f2 ∈ F such that |f1(skh, a
k
h) − f2(skh, a

k
h)| > ε and ‖f1 − f2‖2Zkh ≤ 100β. By the

definition of ε-dependent we have

(Lh/ dimE(F , ε)− 1)ε2 ≤ ‖f1 − f2‖2Zkh ≤ 100β

which implies

Lh ≤
(

100β

ε2
+ 1

)
dimE(F , ε).

Let b1 ≥ b2 ≥ ... ≥ bK be a permutation of {bkh(skh, a
k
h)}k∈[K]. For any bk ≥ 1/K, we have

k ≤
(

100β

b2k
+ 1

)
dimE(F , bk) ≤

(
100β

b2k
+ 1

)
dimE(F , 1/K)

which implies

bk ≤
(

t

dimE(F , 1/K)
− 1

)−1/2
·
√

100β.

Moreover, we have bk ≤ H + 1. Therefore,

K∑
k=1

bk ≤1 + (H + 1) dimE(F , 1/K) +
∑

dimE(F,1/K)<k≤K

(
k

dimE(F , 1/K)
− 1

)−1/2
·
√

100β

≤1 + (H + 1) dimE(F , 1/K) + C ·
√

dimE(F , 1/K) ·K · β.

Summing up for all h ∈ [H], we conclude that with probability at least 1− δ/8,

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) ≤ H +H(H + 1) dimE(F , 1/K) + CH ·

√
dimE(F , 1/K) ·K · β

= H +H(H + 1) dimE(F , 1/K) + C ·
√

dimE(F , 1/K) · TH · β

= H +H(H + 1) dimE(F , 1/T) + C ·
√

dimE(F , 1/T) · TH · β

as desired.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Proof of Theorem 1. By Lemma 10 and Lemma 11, with probability at least 1− 3δ/4, we have

Regret(K)

≤4H
√
KH · log(16/δ) + 2

K∑
k=1

H∑
h=1

bkh(skh, a
k
h)

=4H
√
KH · log(16/δ) + 2

(
H +H(H + 1) dimE(F , 1/T) + C ·

√
dimE(F , 1/T) · TH · β

)
.
√

dimE(F , 1/T) · T ·H3 · log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log (C(S ×A, δ/(T 2)) · T/δ)

.
√
T ·H3 · log(TN (F , δ/T 2)/δ) · dim2

E(F , 1/T) · log2 T · log (C(S ×A, δ/(T 2)) · T/δ).

We also condition on the event defined in Proposition 2, in which case the global switching cost is bounded by O(H · ι2).
At the same time, under the event defined in Proposition 2, the size of the sub-sampled dataset Ẑkh is at most Õ(poly(dH)).
Thus by the analysis in Section 3.4, the algorithm takes Õ(poly(dH) · |A|) time per round on average with an access to a
regression oracle.

H. Proof of Theorem 2
Firstly, note that the online sub-sampling procedure used in Algorithm 3 is exactly the same with Algorithm 1. Thus the
properties of online sub-sampling, i.e., Proposition 1 and Proposition 2 still hold. As a special case, Proposition 1 and
Proposition 2 also imply the corresponding results for bh and Ẑh used in Algorithm 4.

Lemma 12. With probability at least 1− δ/8, for all (h, k) ∈ [H]× [K], bkh(·, ·) ∈M.

HereM is a prespecified function class with bounded size:

log |M|

≤C ′ · log(TN (F ,
√
δ/64T 3)/δ) · dimE(F , 1/T) · log2 T · log

(
C(S ×A, 1/(16

√
64T 3/δ)) · 64T 3/δ

)
≤C · log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log

(
C(S ×A, δ/T 2) · T/δ

)
.

for some absolute constant C ′, C > 0 if T is sufficiently large.

As a special case, bh(·, ·) ∈M as well.

Proof. The proof is identical to Lemma 6.

The next lemma estimate the error of the one-step bellman backup.

Lemma 13. Consider a fixed pair (k, h) ∈ [K]× [H]. For any V : S → [0, H], define

Dkh(V) := {(sτh, aτh, V (sτh+1))}τ∈[k−1]

and also
f̂V := argminf∈F ‖f‖2Dkh(V).

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least 1− δ, such that for any
V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 2/T , we have∥∥∥∥∥f̂V ′(·, ·)−∑

s′∈S
Ph(s′|·, ·)V ′(s′)

∥∥∥∥∥
Zkh

≤ C · (H
√

log(1/δ) + logN (F , 1/T)).

for some absolute constant C > 0

Proof. A key observation is that
∑
s′∈S Ph(s′|·, ·)V ′(s′) ∈ F due to Assumption 3. The rest of the proof is identical to

Lemma 7.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

The next lemma verifies the confidence region.

Lemma 14. Let E2 denote the event that for all (k, h) ∈ [K]× [H],∥∥fkh − f̄kh∥∥Zkh ≤ β/100

where f̄kh (·, ·) =
∑
s∈S′ Ph(s′|·, ·)V kh+1(s′).

For the planning phase, for all h ∈ [H], all reward function r in the function classR∥∥fh − f̄h∥∥Zh ≤ β/100

where f̄h =
∑
s∈S′ Ph(s′|·, ·)Vh+1(s′).

Then we have Pr[E2] ≥ 1− δ/4 provided

β ≥ C ·H2 · (log(T/δ) + logN (F , 1/T) + logN (R, 1/T) + log |M|).

for some absolute constant C > 0.

Proof. We condition on the event defined in Lemma 12 in the whole proof.

Note that for all (k, h) ∈ [K]× [H],

Qkh(·, ·) = min{fkh (·, ·) + bkh(·, ·) + Π[0,1][b
k
h(·, ·)/H], H}, and

V kh (·) = max
a∈A

Qkh(·, a).

We define
Q := {min{f(·, ·) +m(·, ·) + Π[0,1][m(·, ·)/H], H}|f ∈ C(F , 1/T),m ∈M} ∪ {0}, and

V := {max
a∈A

q(·, a)|q ∈ Q}.

Then log |V| ≤ log |M|+ logN (F , 1/T) + 1.

Because bkh(·, ·) ∈ M, V is a (1/T)-cover of V kh (·) for all (k, h) ∈ [K]× [H + 1]. For each V ∈ V , let EV,δ/(16|V|T) be
the event defined in Lemma 13. Note that EV,δ/(16|V|T) relates to a fixed pair (k, h). By Lemma 13 and a union bound, we

have Pr
[⋂

(k,h)∈[K]×[H]

⋂
V ∈V EV,δ/(16|V|T)

]
≥ 1− δ/16. We also condition on this event.

For (k, h) ∈ [K]×[H], recall that fkh is the solution to the regression problem in Algorithm 3, i.e., fkh = arg minf∈F ‖f‖2Dkh .

Let V ∈ V such that ‖V − V kh+1‖∞ ≤ 1/T . By the definition of EV,δ/(16|V|T) (the one relates to this (k, h) pair), we have
that ∥∥∥∥∥fkh (·, ·)−

∑
s′∈S

Ph(s′|·, ·)V kh+1(s′)

∥∥∥∥∥
Zkh

.H
√

log(16|V|T/δ) + logN (F , 1/T)

.H
√

log(T/δ) + logN (F , 1/T) + log |M|.

For the planning phase, we define a new function class:

F∗ := {f(·, ·) + r(·, ·)|f ∈ F , r ∈ R}.

Then from the definition of covering number we have that:

C(F∗, 2/T) ≤ C(F , 1/T)C(R, 1/T).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Thus for all h ∈ [H],

Qh(·, ·) = min{fh(·, ·) + bh(·, ·) + rh(·, ·), H}
= min{f∗(·, ·) + bh(·, ·), H} (f∗ ∈ F∗), and

Vh(·) = max
a∈A

Qh(·, a).

We define
Q∗ := {min{f∗(·, ·) +m(·, ·), H}|f ∈ C(F∗, 2/T),m ∈M} ∪ {0}, and

V∗ := {max
a∈A

q(·, a)|q ∈ Q∗}.

Then we have

log |V∗| ≤ log |M|+ logN (F∗, 2/T) + 1

≤ log |M|+ logN (F , 1/T) + logN (R, 1/T) + 1.

Because bh(·, ·) ∈M, V∗ is a (2/T)-cover of Vh(·) for all h ∈ [H + 1]. Similarly, for each V ∈ V∗, let EV,δ/(16|V∗|T) be
the event defined in Lemma 13. Note that EV,δ/(16|V∗|T) relates to a fixed pair (k, h) ∈ [K]× [H]. We only consider those

with k = K. By Lemma 13 and a union bound, we have Pr
[⋂

h∈[H],k=K

⋂
V ∈V EV,δ/(16|V∗|T)

]
≥ 1− δ/16K ≥ 1− δ/16.

We also condition on this event.

For h ∈ [H], recall that fh is the solution to the regression problem in Algorithm 4, i.e., fh = arg minf∈F ‖f‖2Dh . Let
V ∈ V∗ such that ‖V − Vh+1‖∞ ≤ 1/T . By the definition of EV,δ/(16|V∗|T) (the one relates to this h and k = K, note that
ZKh = Zh), we have that ∥∥∥∥∥fh(·, ·)−

∑
s′∈S

Ph(s′|·, ·)Vh+1(s′)

∥∥∥∥∥
Zh

.H
√

log(16|V∗|T/δ) + logN (F , 1/T)

.H
√

log(T/δ) + logN (F , 1/T) + logN (R, 1/T) + log |M|.

Combining the above two parts we complete the proof.

Finally, we use the above result to show optimism, in both the exploration and planning phase.
Lemma 15. Let E3 denote the event that for all (k, h) ∈ [K]× [H], and all (s, a) ∈ S ×A,

Q∗h(s, a, rk) ≤ Qkh(s, a) ≤ f̄kh (s, a) + rkh(·, ·) + 2bkh(s, a)

where f̄kh (·, ·) =
∑
s∈S′ Ph(s′|·, ·)V kh+1(s′).

And for the planning phase, for all h ∈ [H], all (s, a) ∈ S ×A, and all reward function r in the function classR,

Q∗h(s, a, r) ≤ Qh(s, a) ≤ f̄h(s, a) + rh(·, ·) + 2bh(s, a)

where f̄h(·, ·) =
∑
s∈S′ Ph(s′|·, ·)Vh+1(s′).

Then Pr[E3] ≥ 1− 3δ/8.

Proof. We condition on the event defined in Proposition 1 and E2 defined in Lemma 14. Because
∥∥fkh − f̄kh∥∥Zkh ≤ β/100,

from the definition of bkh we have that
∣∣f̄kh (·, ·)− fkh (·, ·)

∣∣ ≤ bkh(·, ·). Moreover, by Proposition 1 we have bkh(·, ·) ≤ bkh(·, ·).
Thus for all (k, h) ∈ [K]× [H], (s, a) ∈ S ×A, we have

Qkh(s, a) = min{fkh (s, a) + rkh(s, a) + bkh(s, a), H}
≤ min

{
f̄kh (s, a) + rkh(s, a) + bkh(s, a) +

∣∣f̄kh (s, a)− fkh (s, a)
∣∣ , H}

≤ min
{
f̄kh (s, a) + rkh(s, a) + bkh(s, a) + bkh(s, a), H

}
≤ min

{
f̄kh (s, a) + rkh(s, a) + 2bkh(s, a), H

}
≤ f̄kh (s, a) + rkh(s, a) + 2bkh(s, a).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Next we use induction on h to prove Q∗h(·, ·, rk) ≤ Qkh(·, ·). The inequality clearly holds when h = H + 1. Now we
assume Q∗h+1(·, ·, rk) ≤ Qkh+1(·, ·) for some h ∈ [H]. Then obviously we have V ∗h+1(·, rk) ≤ V kh+1(·). Therefore for all
(s, a) ∈ S ×A,

Q∗h(s, a, rk) = rkh(s, a) +
∑
s′∈S

Ph(s′|s, a)V ∗h+1(s′, rk)

≤ min

{
rkh(s, a) +

∑
s′∈S

Ph(s′|s, a)V kh+1(s′), H

}
= min

{
rkh(s, a) + f̄kh (s, a), H

}
≤ min

{
rkh(s, a) + fkh (s, a) + bkh(s, a), H

}
= Qkh(s, a).

The proof of the second inequality is identical. One only need to discard the superscript k in the above argument.

Lemma 16. With probability at least 1− δ/32,

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) ≤ H +H(H + 1) dimE(F , 1/T) + C ·

√
dimE(F , 1/T) · TH · β

for some absolute constant C > 0.

Proof. The proof is identical to Lemma 11.

The next lemma bounds the summation of the optimistic value functions in the exploration phase. The techniques are similar
to the standard regret decomposition for optimistic algorithms.

Lemma 17. With probability at least 1− δ/2,

K∑
k=1

V k̃1 (s1) = O(
√
T ·H3 · ι1)

where

ι1 = log(N (R, 1/T)) · dimE(F , 1/T)

+ log(TN (F , δ/T 2)/δ) · dim2
E(F , 1/T) · log2 T · log

(
N (S ×A, δ/T 2) · T/δ

)
.

Proof. For all (k, h) ∈ [K]× [H − 1], denote

ξkh =
∑
s′∈S

Ph(s′|skh, akh)V k̃h+1(s′)− V k̃h+1(skh+1).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

If E3 defined in Lemma 15 happens, we have

K∑
k=1

V k̃1 (s1) =

K∑
k=1

V k̃1 (sk1)

=

K∑
k=1

Qk̃1(sk1 , a
k
1)

≤
K∑
k=1

(
rk̃1 (sk1 , a

k
1) +

∑
s′∈S

P1(s′|sk1 , ak1)V k̃2 (s′) + 2bk̃1(sk1 , a
k
1)

)

≤
K∑
k=1

(∑
s′∈S

P1(s′|sk1 , ak1)V k̃2 (s′) + (2 + 1/H)bk1(sk1 , a
k
1)

)

=

K∑
k=1

(
V k̃2 (sk2) + ξk1 + (2 + 1/H)bk1(sk1 , a

k
1)
)

≤ ...

≤
K∑
k=1

H−1∑
h=1

ξkh +

K∑
k=1

H∑
h=1

(2 + 1/H)bkh(skh, a
k
h).

Note that {ξkh}(k,h)∈[K]×[H] (arranged in lexicographical order) is a martingale difference sequence with |ξkh| ≤ H . By
Azuma-Hoeffding inequality, we have

Pr

{∣∣∣∣∣
K∑
k=1

H−1∑
h=1

ξkh

∣∣∣∣∣ ≤ C ′ ·√KH3 log(1/δ)

}
≥ 1− δ/16.

for some absolute constant C ′ > 0. Conditioned on the above event, the event defined in Lemma 16, and E3 defined in
Lemma 15 we conclude that with probability at least 1− δ/2,

K∑
k=1

V k̃1 (s1)

≤
K∑
k=1

H−1∑
h=1

ξkh +

K∑
k=1

H∑
h=1

(2 + 1/H)bkh(skh, a
k
h)

=C ′ ·
√
KH3 log(1/δ) + (2 + 1/H) ·

(
H +H(H + 1) dimE(F , 1/T) + C ·

√
dimE(F , 1/T) · TH · β

)
.
√
T ·H3 · ι1

as desired.

The next lemma bounds the error of the planning policy in terms of the expectation of the bonus functions.

Lemma 18. If E3 defined in Lemma 15 (optimism) happens, then for all reward function r in the function classR,

V ∗1 (s1, r)− V π1 (s1, r) ≤ 2HV ∗1 (s1,Π[0,1][b/H]).

Here b is the bonus function computed during the planning phase, and π is the output policy in the planning phase.

Proof. We generalize the lemma and use induction on h to prove that for any h ∈ [H + 1],

Vh(s)− V πh (s, r)− 2HV πh (s,Π[0,1][b/H]) ≤ 0 ∀s ∈ S.

The result is obvious for h = H + 1. Suppose for some h ∈ [H], it holds that

Vh+1(s)− V πh+1(s, r)− 2HV πh+1(s,Π[0,1][b/H]) ≤ 0 ∀s ∈ S.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

Then for all s ∈ S, we have

Vh(s)− V πh (s, r)− 2HV πh (s,Π[0,1][b/H])

=Qh(s, π(s))−Qπh(s, π(s), r)− 2HQπh(s, π(s),Π[0,1][b/H])

≤

(
rh(s, π(s)) +

∑
s′∈S

Ph(s′|s, π(s))Vh+1(s′) + 2Π[0,H][bh(s, π(s))]

)

−

(
rh(s, π(s)) +

∑
s′∈S

Ph(s′|s, π(s))V πh+1(s′, r)

)

−2H

(
Π[0,1][bh(s, π(s))/H] +

∑
s′∈S

Ph(s′|s, π(s))Vh+1(s′,Π[0,1][b/H])

)
=
∑
s′∈S

Ph(s′|s, π(s))
(
Vh+1(s′)− V πh+1(s′, r)− 2HV πh+1(s′,Π[0,1][b/H])

)
≤0.

as desired.

By taking h = 1 and s = s1 as a special case, we have that

V1(s1)− V π1 (s1, r)− 2HV π1 (s1,Π[0,1][b/H]) ≤ 0.

Then we conclude

V ∗1 (s1, r)− V π1 (s1, r) ≤ V1(s1, r)− V π1 (s1, r) ≤ 2HV π1 (s1,Π[0,1][b/H]) ≤ 2HV ∗1 (s1,Π[0,1][b/H]).

Lemma 19. With probability at least 1− 7δ/8, for all reward function r in the function classR,

V ∗1 (s1, r)− V π1 (s1, r) = O(H3 ·
√
ι1/K)

where

ι1 = log(N (R, 1/T)) · dimE(F , 1/T)

+ log(TN (F , δ/T 2)/δ) · dim2
E(F , 1/T) · log2 T · log

(
N (S ×A, δ/T 2) · T/δ

)
.

Proof. We condition on E3 defined in Lemma 15 and the event defined in Lemma 17. By Lemma 18, we have

V ∗1 (s1, r)− V π1 (s1, r) ≤ 2HV ∗1 (s1,Π[0,1][b/H]).

By the monotonicity of the bonus function, we have that

Π[0,1][bh(·, ·)/H] ≤ Π[0,1][b
k
h(·, ·)/H] = rkh(·, ·) ∀(k, h) ∈ [K]× [H].

Then the right hand side can be bounded in the following manner:

2HV ∗1 (s1,Π[0,1][b/H]) ≤ 2
H

K

K∑
k=1

V ∗1 (s1, r
k̃) ≤ 2

H

K

K∑
k=1

V k̃1 (s1).

Substituting the bound for
∑K
k=1 V

k̃
1 (s1) completes the proof.

Proof of Theorem 2. Simply combing Proposition 2 and Lemma 19 with a union bound completes the proof.

Online Sub-sampling for Reinforcement Learning with General Function Approximation

I. Model Misspecification
In this section we study the case when there is a misspecification error in our model. We show that our algorithms are robust
to the violation of the assumptions. Our result are similar to that in Wang et al. (2020c).The proofs are also essentially
identical to that in Wang et al. (2020c).

In the standard RL setting, Assumption 1 with a misspecification error is stated as:

Assumption 5. There exists a set of functions F ⊆ {f : S ×A → [0, H + 1]} and a real number ζ > 0, such that for any
V : S → [0, H] and all h ∈ [H], there exists fV ∈ F which satisfies

max
(s,a)∈S×A

∣∣∣∣∣fV (s, a)− rh(s, a)−
∑
s′∈S

Ph(s′ | s, a)V (s′)

∣∣∣∣∣ ≤ ζ.
We call ζ the misspecification error.

In the reward-free RL setting, Assumption 3 with a misspecification error is stated as:

Assumption 6. There exists a set of functions F ⊆ {f : S ×A → [0, H + 1]} and a real number ζ > 0, such that for any
V : S → [0, H] and all h ∈ [H], there exists fV ∈ F which satisfies

max
(s,a)∈S×A

∣∣∣∣∣fV (s, a)−
∑
s′∈S

Ph(s′ | s, a)V (s′)

∣∣∣∣∣ ≤ ζ.
We call ζ the misspecification error.

Our algorithms for the misspecification case are same with the original algorithms except for the change of the global
parameter β.

In the standard RL setting (Algorithm 1), we set β to be:

β = C · (H2 · log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
+ Tζ).

In the reward-free RL setting (Algorithm 4 and Algorithm 3), we set β to be:

β = C · (H2 · log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
+ Tζ)

+C ·H2 · log(N (R, 1/T)) · dimE(F , 1/T)

In Lemma 20 and Lemma 21, we bound the single-step optimization error in the misspecified case. The proofs are identical
to that of Lemma 11 in (Wang et al., 2020c).

Lemma 20. Suppose F satisfies Assumption 5. Consider a fixed pair (k, h) ∈ [K]× [H]. For any V : S → [0, H], define

Dkh(V) := {(sτh, aτh, rτh + V (sτh+1))}τ∈[k−1]

and also
f̂V := argminf∈F ‖f‖2Dkh(V).

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least 1− δ, such that for any
V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′(·, ·)− rh(·, ·)−

∑
s′∈S

Ph(s′|·, ·)V ′(s′)

∥∥∥∥∥
Zkh

≤ C · (
√
H2(log(1/δ) + logN (F , 1/T)) + Tζ).

Lemma 21. Suppose F satisfies Assumption 6. Consider a fixed pair (k, h) ∈ [K]× [H]. For any V : S → [0, H], define

Dkh(V) := {(sτh, aτh, V (sτh+1))}τ∈[k−1]

and also
f̂V := argminf∈F ‖f‖2Dkh(V).

Online Sub-sampling for Reinforcement Learning with General Function Approximation

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least 1− δ, such that for any
V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 2/T , we have∥∥∥∥∥f̂V ′(·, ·)−∑

s′∈S
Ph(s′|·, ·)V ′(s′)

∥∥∥∥∥
Zkh

≤ C · (
√
H2(log(1/δ) + logN (F , 1/T)) + Tζ).

Then similar to Lemma 8 and Lemma 14 we can verifies that the new value of β can derive the desired confidence region.

With the new value of β, the new regret bound in the regular RL setting can be easily derived. In the reward-free setting
the bound for V ∗1 (s1, r)− V π1 (s1, r) will have an additional O(

√
H5 · dimE(F , 1/T) · ζ) term. Therefore there will be an

irreducible error in the error bound.

Formally, our results in the misspecification case is stated in Theorem 4 and Theorem 5.

Theorem 4. Assume Assumption 5 holds, and T is sufficiently large.With probability at least 1− δ, the algorithm achieves
a regret bound,

Regret(K) = O(
√
ι1 ·H3 · T +

√
dimE(F , 1/T) ·H · ζ · T)

where
ι1 = log(TN (F , δ/T 2)/δ) · dim2

E(F , 1/T) · log2 T · log
(
N (S ×A, δ/T 2) · T/δ

)
and the global switching cost is upper bounded by

N gl
switch = O(ι2 ·H)

where
ι2 = log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T

Furthermore, with probability at least 1−δ the algorithm takes Õ(poly(dH) · |A|) time per round with access to a regression
oracle.

Theorem 5. Suppose Assumption 6 holds and T is sufficiently large. For any given δ ∈ (0, 1), after collectingK trajectories
during the exploration phase (by Algorithm 3), with probability at least 1 − δ, for any reward function r = {rh}Hh=1

satisfying Assumption 4, Algorithm 4 outputs an O(H3 ·
√
ι1/K + εi)-optimial policy for the MDP (S,A, P, r,H, s1).

Here,

ι1 = log(N (R, 1/T)) · dimE(F , 1/T)

+ log(TN (F , δ/T 2)/δ) · log2 T · dim2
E(F , 1/T) · log

(
N (S ×A, δ/T 2) · T/δ

)
and εi is the irreducible error:

εi =
√
H5 · dimE(F , 1/T) · ζ.

Moreover, the global switching cost of Algorithm 3 is upper bounded by

N gl
switch = O(H · ι2)

where
ι2 = log(TN (F , δ/T 2)/δ) · dimE(F , 1/T) · log2 T.

Furthermore, with probability at least 1−δ, Algorithm 3 takes Õ(poly(dH) · |A|) time per round with access to a regression
oracle.

