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Abstract
Importance Sampling (IS) is a widely used build-
ing block for a large variety of off-policy estima-
tion and learning algorithms. However, empirical
and theoretical studies have progressively shown
that vanilla IS leads to poor estimations when-
ever the behavioral and target policies are too dis-
similar. In this paper, we analyze the theoretical
properties of the IS estimator by deriving a proba-
bilistic deviation lower bound that formalizes the
intuition behind its undesired behavior. Then, we
propose a class of IS transformations, based on the
notion of power mean, that are able, under certain
circumstances, to achieve a subgaussian concen-
tration rate. Differently from existing methods,
like weight truncation, our estimator preserves the
differentiability in the target distribution.

1. Introduction
The availability of historically collected data is a common
scenario in many real-world decision-making problems, in-
cluding medical treatments (e.g., Hahn, 1998; Zhou et al.,
2017), recommendation systems (e.g., Li et al., 2011; Gilotte
et al., 2018), personalized advertising (e.g., Bottou et al.,
2013; Tang et al., 2013), finance (e.g., Moody & Saffell,
2001), and industrial robot control (e.g., Kober & Peters,
2014; Kilinc et al., 2019). Historical data can be leveraged
to address two classes of problems. First, given data col-
lected with a behavioral policy, we want to estimate the
performance of a different target policy. This problem is
known as off-policy evaluation (Off-PE, Horvitz & Thomp-
son, 1952). Second, we want to employ the available data
to improve the performance of a baseline policy. This sec-
ond problem is named off-policy learning (Off-PL Dudı́k
et al., 2011). Off-policy methods are studied by both the
reinforcement learning (RL, Sutton & Barto, 2018) and con-
textual multi-armed bandit (CMAB, Langford & Zhang,
2007) communities. Given its intrinsic simplicity compared
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to RL, off-policy methods are nowadays well understood
in the CMAB framework (e.g., Murphy et al., 2001; Bang
& Robins, 2005; Dudı́k et al., 2011; Wang et al., 2017).
Among them, the doubly robust estimator (DR, Dudı́k et al.,
2011) is one of the most promising off-policy methods for
CMABs. DR combines a direct method (DM), in which the
reward is estimated from historical data via regression, with
an importance sampling (IS, Owen, 2013) control variate.

More generally, IS plays a crucial role in the off-policy
methods and counterfactual reasoning. It is established
that IS tends to exhibit problematic behavior for general
distributions. This is formalized by its heavy-tailed proper-
ties (Metelli et al., 2018), which prevents the application of
exponential concentration bounds (Boucheron et al., 2003).
To cope with this issue, typically, corrections are performed
on the importance weight including truncation (Ionides,
2008) and self-normalization (Owen, 2013) among the most
popular. Significant results have recently been derived for
both techniques (Papini et al., 2019; Kuzborskij et al., 2020).
Nevertheless, we believe that the widespread use of IS calls
for a better theoretical understanding of its properties and
for the design of general principled weight corrections.

Defining the desirable properties of an off-policy estima-
tor is a non-trivial task. Some works employed the mean
squared error (MSE) as an index of the estimator quality (Li
et al., 2015; Wang et al., 2017). However, controlling the
MSE, while effectively capturing the bias-variance trade-
off, does not provide any guarantee on the concentration
properties of the estimator, which might still display a heavy-
tailed behavior (Lugosi & Mendelson, 2019). For this rea-
son, we believe that a more suitable approach is to require
that the estimator deviations concentrate at a subgaussian
rate (Devroye et al., 2016). Subgaussianity implicitly con-
trols the tail behavior and leads to exponential concentration
inequalities. Unlike MSE, the probabilistic requirements
are non-asymptotic (finite-sample), from which guarantees
on the MSE can be derived. While subgaussianity can be
considered a satisfactory requirement for Off-PE, additional
properties are advisable when switching to Off-PL. In partic-
ular, the differentiability w.r.t. the target policy parameters
is desirable whenever Off-PL is carried out via gradient
optimization. For instance, weight truncation, as presented
in (Papini et al., 2019; Metelli et al., 2021), allows achieving
subgaussianity but leads to a non-differentiable objective.
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Consequently, the optimization phase requires additional
care, which sometimes leads to computationally heavy dis-
cretizations (Papini et al., 2019). Thus, while truncation
remains a powerful theoretical tool, it struggles when trying
to scale to more realistic scenarios, including learning.

In this paper, we take a step towards a better understanding
of IS. We start by deriving a probabilistic deviation lower
bound for the mean estimation with vanilla IS. We show
that polynomial concentration (Chebychev’s inequality) is
tight in this setting (Section 3). This result formalizes the
intuition behind the undesired behavior of these estimators
for general distributions. Hence, we propose a class of im-
portance weight corrections, based on the notion of power
mean (Section 4). The rationale behind these corrections
is to “shrink” the weights towards the mean, with differ-
ent intensities. In this way, we mitigate the heavy-tailed
behavior and, in the meantime, we exert control over the in-
duced bias. Then, we derive bounds on the bias and variance
that allow obtaining an exponential concentration inequality
(Section 5). To the best of our knowledge, this is the first
IS correction that preserves the differentiablity in the target
policy and is proved to achieve a subgaussian concentration
rate. The proofs of all the results presented in the main
paper can be found in Appendix C.

2. Preliminaries
We denote with PpYq the set of probability measures over
a measurable space pY,FYq. Let P PPpYq, whenever
needed, we assume that P admits a probability density
function w.r.t. a reference measure, denoted with p. Let
P,QPPpYq if P !Q, i.e., P is absolutely continuous w.r.t.
Q, for any αPp1,2s, we introduce the integral:

IαpP }Qq“

ż

Y
ppyqαqpyq1´αdy. (1)

Note that if P “Q a.s. (almost surely) then IαpP }Qq“1.
IαpP }Qq is the basic block of several distributional diver-
gences. For instance, the Rényi divergence (Rényi, 1961)
can be expressed as pα´1q´1 logIαpP }Qq and the Tsallis
divergence (Tsallis, 1988) as pα´1q´1 pIαpP }Qq´1q.

Let P,QPPpYq and let f :YÑR be a measurable func-
tion. If P !Q, (vanilla) importance sampling (IS, Owen,
2013) allows estimating the expectation of f under the target
distribution P , i.e., µ“Ey„P rfpyqs, using i.i.d. samples
tyiuiPrns collected with the behavioral distribution Q:

pµ“
1

n

ÿ

iPrns

ωpyiqfpyiq,

where ωpyq“ppyq{qpyq is the importance weight. It is well-
known that pµ is unbiased, i.e., E

yi
iid
„Q
rpµs“µ (Owen, 2013).

If f is bounded, the variance of the estimator can be upper-

bounded as Var
yi

iid
„Q
rpµsď 1

n}f}
2
8I2pP }Qq (Metelli et al.,

2018). Notice that the integral IαpP }Qq in Equation (1)
represents the α-moment of the importance weight under
Q. A common approach to mitigate the variance of IS is to
resort to self-normalization (SN-IS, Owen, 2013):

rµ“

ř

iPrnsωpyiqfpyiq
ř

iPrnsωpyiq
.

The SN-IS estimator rµ has the desirable property of being
bounded by }f}8. However, it is no longer unbiased, while
preserving consistency (Owen, 2013).

3. Probabilistic Limits of Vanilla Importance
Sampling

In this section, we analyze the intrinsic limitations of the
vanilla IS by deriving a probabilistic lower bound of the
deviation of the estimator pµ from the true mean µ. We start
by introducing the result, then, we discuss its implications
and compare it with previous work.

Theorem 3.1. There exist two distributions P,QPPpYq
with P !Q and a bounded measurable function f :YÑ
R such that for every αPp1,2s and δPp0,e´1q if ně

δemax
!

1,pIαpP }Qq´1q
1

α´1

)

, with probability at least
δ it holds that:

|pµ´µ|ě}f}8

ˆ

IαpP }Qq´1

δnα´1

˙
1
α
ˆ

1´
eδ

n

˙

n´1
α

.

We note the polynomial dependence on the confidence level
δ, typical of Chebyshev’s inequalities (Boucheron et al.,
2003). The bound is vacuous when IαpP }Qq“1, i.e., when
P “Q a.s.. Indeed, in this case, we are in an on-policy
setting and, since the function f is bounded, exponential
concentration bounds (like Höeffding’s inequality) hold.
In particular, for α“2, n and I2pP }Qq sufficiently large,

the bound has order O
´

b

I2pP }Qq
δn

¯

. This form matches
the deviation upper bound previously presented in (Metelli
et al., 2018; 2020), proving that Chebyshev’s inequality is
actually tight for vanilla IS.1

Our result is of independent interest and applies for general
distributions. Previous works considered the MAB (Li et al.,
2015) and CMAB (Wang et al., 2017) settings proving devi-
ation minimax lower bounds in mean squared error (MSE)
E
y

iid
„Q
rppµ´µq2s. These results differ from ours for three

aspects. First, they focus on minimax optimality, while we
derive an anticoncentration bound for vanilla IS. Second,
they provide lower bounds to the MSE, while we focus on
the deviations in probability. From our probabilistic result,

1In (Metelli et al., 2018) the provided bound was based on
Cantelli’s inequality which approaches Chebyshev’s when δÑ0.
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s
´8 ´1 0 1

minimum harmonic geometric arithmetic

ωs,λpyq mintωpyq,1u ωpyq
1´λ`λωpyq

ωpyq1´λ p1´λqωpyq`λ

Table 1. Specific choices of s for the pλ,sq-corrected importance
weight of Definition 4.1.

it is immediate to derive an MSE guarantee (Corollary C.1
of Appendix C.1). Third, they assume that the second mo-
ment of the importance weight I2pP }Qq is finite, whereas
our result allows us to consider scenarios in which only
moments of order αă2 are finite.

4. Power-Mean Correction of Importance
Sampling

In this section, motivated by the negative result of Theo-
rem 3.1, we look for a transformation of the importance
weights able to achieve exponential concentration. Specifi-
cally, we introduce a class of corrections based on the notion
of power mean (Bullen, 2013) and we study its properties.
Let us start with the following definition.

Definition 4.1. Let P,QPPpYq be two probability dis-
tributions such that P !Q, for every sPr´8,8s and
λPr0,1s, let ωpyq“ppyq{qpyq, the pλ,sq-corrected impor-
tance weight is defined as:

ωλ,spyq“
´

p1´λqωpyqs`λ
¯

1
s

.

The correction can be seen as the weighted power mean with
exponent s between the vanilla importance weight ωpyq and
1 with weights 1´λ and λ respectively.2 We immediately
notice that, regardless of the value of s, for λ“0, we reduce
to the vanilla importance weight ω0,spyq“ωpyq and for
λ“1, we have identically ω1,spyq“1. Furthermore, the
correction is unbiased when P “Q a.s. regardless of the
values of s and λ. Thus, the rationale behind the correction
is to interpolate between the vanilla importance weight
ωpyq and its mean under Q, i.e., 1. Some specific choices
of s are reported in Table 1 and some examples are shown
in Figure 1. We note that the intensity of the correction
increases as λ moves towards 1 and s moves away from 1.

The following result provides a preliminary characterization
of the correction, which is independent of the properties of
the two distributions P and Q.

Lemma 4.1. Let P,QPPpYq be two probability distribu-
tions with P !Q, then for every λPr0,1s and yPY it holds
that:

(i) if sďs1 then ωλ,spyqďωλ,s1pyq;
(ii) if să0 then ωλ,spyqďλ

1
s , otherwise if są0 then

2For sPt´8,0,8u the power mean is defined as a limit.

ωλ,spyqěλ
1
s ;

(iii) if să1 then Ey„Qrωλ,spyqsď1, otherwise if są1
then Ey„Qrωλ,spyqsě1.

Thus, from point (ii) we observe that the corrected weight is
bounded from below when są0 and bounded from above
when să0. It is well-known that the inconvenient behav-
ior of importance sampling derives from the heavy-tailed
properties (Metelli et al., 2018). The arithmetic correction
(s“1) performs just a convex combination between the
vanilla weight and 1, having no effect on the tail proper-
ties. Any correction with są1 will increase the value of the
weight, making the tail even heavier. So, if we are looking
for subgaussianity, we should restrict our attention to să0,
which leads to lighter tails or even bounded weights.

5. Subgaussian Importance Sampling
In this section, we focus on the harmonic correction (s“
´1), which leads to a weight of the form:3

ωλ,´1pyq“
ωpyq

1´λ`λωpyq
.

We analyze the bias and variance (Section 5.1) of this class
of estimators and, finally, we provide an exponential and,
under certain circumstances, subgaussian concentration in-
equality (Section 5.2). To lighten the notation we neglect
the ´1 subscript, abbreviating µλ“µλ,´1.

5.1. Bias and Variance

We derive bounds for the bias and the variance induced by
the pλ,´1q-corrected importance weight. We start with the
following result concerning the bias.

Lemma 5.1. Let P,QPPpYq be two probability distribu-
tions with P !Q. For every λPr0,1s, the pλ,´1q-corrected
importance weight induces a bias that can be bounded for
every αPp1,2s as:

ˇ

ˇ

ˇ

ˇ

ˇ

E
y

iid
„Q

rpµλs´µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď}f}8λ
α´1IαpP }Qq.

As expected, the bias is zero for λ“0 and increases with
λ. Furthermore, the bias increases with the divergence term
IαpP }Qq. Indeed, we already observed that the bias is null
when P “Q a.s.. In particular, for α“2, the bound becomes
}f}8λI2pP }Qq. Let us now turn to the variance bound.

Lemma 5.2. Let P,QPPpYq two probability distributions
with P !Q. For every λPr0,1s, the pλ,´1q-corrected im-
portance weight induces a variance that can be bounded for

3The choice of s“´1 is mainly for analytical convenience and,
as we shall see, it already allows enforcing the desired properties.
We leave investigating the other values of s for future work.
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Figure 1. Examples of importance weight corrections of Defini-
tion 4.1 for fixed λ (left) and fixed s (right). Note that s“1 and
λ“0 lead to no correction.

every αPp1,2s as:

Var
yi

iid
„Q

rpµλsď
}f}28
nλ2´α

IαpP }Qq.

The variance bound decreases in λ and increases with the
distributional divergence IαpP }Qq. For α“2, we obtain
the bound 1

n}f}
2
8I2pP }Qq. Note that when P “Q a.s., we

recover 1
n}f}

2
8, which is the Popoviciu’s inequality for the

variance (Popoviciu, 1935). These results show that the pro-
posed weight correction allows controlling bias and variance
even when I2pP }Qq“8, i.e., when the vanilla IS estimator
might have infinite variance. Indeed, our transformed esti-
mator has finite variance provided that there exists αPp1,2q
so that IαpP }Qqă8. Tighter (but less intelligible) bounds
on bias and variance are reported in Appendix C.3.

5.2. Concentration Inequality

We now use the results presented in the previous section
to derive an exponential concentration inequality for the
corrected IS estimator and to show that if I2pP }Qq is finite
we also achieve a subgaussian concentration rate.

Theorem 5.1. Let P,QPPpYq be two probability distribu-
tions such that P !Q. Let tyiuiPrns sampled independently
from Q. For every αPp1,2s and δPp0,1q, let

λ˚α“

ˆ

2log 1
δ

3pα´1q2IαpP }Qqn

˙

1
α

then, with probability at least 1´δ it holds that:

pµλ˚α ´µď}f}8p2`
?

3q

˜

2IαpP }Qq
1

α´1 log 1
δ

3pα´1q2n

¸1´ 1
α

.

Let us notice that the concentration inequality has an ex-
ponential dependence on the confidence parameter δ, for
every αPp1,2s. However, we observe that the bound is
subgaussian only when α“2, requiring that I2pP }Qqă8.
Recalling that I2pP }Qq governs the variance of the estima-
tor, this result is in line with the general theory of estimators
for which the existence of the variance is an unavoidable

requirement to achieve subgaussian concentration (Devroye
et al., 2016). Specifically, for α“2 the optimal value of the

parameter is λ˚2 “
b

2log 1
δ

3I2pP }Qqn
and we obtain the bound:

pµλ˚2
´µď}f}8p2`

?
3q

d

2I2pP }Qq log 1
δ

3n
.

Note that the constant we obtain is p2`
?

3q
a

2{3»3.047,
while the optimal constant for subgaussian estimators is
known to be

?
2 (Devroye et al., 2016). A tighter bound is

derived in Lemma C.3 of Appendix C.3 and it is omitted
here for clarity of presentation and space reasons.

The computation of the optimal parameter λ˚2 requires the
knowledge of the divergence term I2pP }Qq, which, in turn,
requires access to the form of P and Q. To this end, in Ap-
pendix B, we introduce an approach to empirically estimate
the parameter preserving desirable concentration properties.

5.3. Differentability in the Target Distribution

In this section, we show that our estimator is differentiable in
the target distribution and that the magnitude of the resulting
gradient can be controlled via the hyperparameter λ. To this
end, we assume that the target distribution P belongs to a
parametric space of differentiable distributions PΘ“tPθ P

PpX q :θPΘĎRdu, where Θ is the parameter space. Let
us first focus on the importance weight gradient:

∇θωλpyq“
p1´λqωpyq

p1´λ`λωpyqq
2∇θ logpθpyq.

It can be proved that }∇θωλpyq}8ď
1

4λ }∇θ logpθpyq}8
(Proposition C.1 of Appendix C.3). Thus, if the score
∇θ logpθ is bounded, the gradient will be bounded when-
ever λą0. This property is not guaranteed, for example,
for vanilla IS (λ“0). Thus, we can also interpret λ as a
regularization parameter for the gradient magnitude.

6. Discussion and Conclusions
In this paper, we have deepened the study of the importance
sampling technique. We derived a lower bound of the de-
viation between the vanilla IS estimator and the true mean,
proving that it allows for polynomial concentration only.
Then, we introduced and analyzed a class of importance
weight corrections based on the intuition of shrinking the
weight towards 1. Assuming that the second moment of the
importance weight exists, we have introduced the first trans-
formation that both achieves subgaussian concentration rate
and maintains the differentiability of the estimator in the
target policy parameters. Future work includes studying the
properties of other importance weight transformations, as
well as applying these techniques to the contextual bandits
and RL settings.



Subgaussian Importance Sampling for Off-Policy Evaluation and Learning

References
Bang, H. and Robins, J. M. Doubly robust estimation in

missing data and causal inference models. Biometrics, 61
(4):962–973, 2005.

Bembom, O. and van der Laan, M. J. Data-adaptive se-
lection of the truncation level for inverse-probability-of-
treatment-weighted estimators. 2008.

Bottou, L., Peters, J., Candela, J. Q., Charles, D. X., Chicker-
ing, M., Portugaly, E., Ray, D., Simard, P. Y., and Snelson,
E. Counterfactual reasoning and learning systems: the
example of computational advertising. J. Mach. Learn.
Res., 14(1):3207–3260, 2013.

Boucheron, S., Lugosi, G., and Bousquet, O. Concentration
inequalities. In Summer School on Machine Learning, pp.
208–240. Springer, 2003.

Boucheron, S., Lugosi, G., Massart, P., et al. On concen-
tration of self-bounding functions. Electronic Journal of
Probability, 14:1884–1899, 2009.

Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. Bandits with
heavy tail. IEEE Trans. Inf. Theory, 59(11):7711–7717,
2013. doi: 10.1109/TIT.2013.2277869.

Bullen, P. S. Handbook of means and their inequalities,
volume 560. Springer Science & Business Media, 2013.

Catoni, O. Challenging the empirical mean and empirical
variance: a deviation study. In Annales de l’IHP Proba-
bilités et statistiques, volume 48, pp. 1148–1185, 2012.

Ciosek, K. A. and Whiteson, S. OFFER: off-environment
reinforcement learning. In Singh, S. P. and Markovitch,
S. (eds.), Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, pp. 1819–1825. AAAI Press,
2017.

Cochran, W. G. Sampling techniques. John Wiley & Sons,
2007.

Cole, S. R. and Hernán, M. A. Constructing inverse proba-
bility weights for marginal structural models. American
journal of epidemiology, 168(6):656–664, 2008.

Cortes, C., Mansour, Y., and Mohri, M. Learning bounds
for importance weighting. In Lafferty, J. D., Williams,
C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta,
A. (eds.), Advances in Neural Information Processing
Systems 23: 24th Annual Conference on Neural Informa-
tion Processing Systems 2010. Proceedings of a meeting
held 6-9 December 2010, Vancouver, British Columbia,
Canada, pp. 442–450. Curran Associates, Inc., 2010.

Devroye, L., Lerasle, M., Lugosi, G., Oliveira, R. I., et al.
Sub-gaussian mean estimators. The Annals of Statistics,
44(6):2695–2725, 2016.

Dudı́k, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. In Getoor, L. and Scheffer, T.
(eds.), Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Washington,
USA, June 28 - July 2, 2011, pp. 1097–1104. Omnipress,
2011.

Gil, M., Alajaji, F., and Linder, T. Rényi divergence mea-
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A. Related Works
Importance Sampling has a long history in Monte Carlo simulation as an effective technique for variance reduction in
presence of rare events and for what-if analysis (Kahn & Marshall, 1953; Siegmund, 1976; Hesterberg, 1988; Cochran,
2007; Ripley, 2009). With rare exceptions (e.g., Ciosek & Whiteson, 2017; Hanna et al., 2017), in the machine learning
community, IS is primarily employed for off-policy estimation and learning (e.g., Cortes et al., 2010; Mahmood et al., 2014;
Thomas et al., 2015).

In this setting, it is well-known that IS might display an inconvenient behavior, depending on the behavioral Q and target P
distributions (Yuan & Druzdzel, 2005; Metelli et al., 2018). In particular, IS has the effect of enlarging the range of the
estimator up to esssupy„Q

ppyq
qpyq . Although this term is finite for discrete distributions (if P !Q), it is likely unbounded for

continuous ones (Cortes et al., 2010). Furthermore, in the latter case, the vanilla IS estimator might have infinite variance
under certain circumstances and tends to exhibit a heavy-tailed behavior (Metelli et al., 2018; 2020). These properties
suggest that a way of addressing this phenomenon is to resort to robust statistics typically employed for mean estimation
under heavy-tailed distributions (Lugosi & Mendelson, 2019). Methods in this class include the trimmed mean (Tukey &
McLaughlin, 1963; Huber, 1992), the median of means (Nemirovskij & Yudin, 1983; Jerrum et al., 1986), and the Catoni’s
estimator (Catoni, 2012). For all of them, subgaussian guarantees were provided (Lugosi & Mendelson, 2019), but all of
them, expect for the Catoni’s estimator lead to non-differentiable estimators. These techniques have been also successfully
employed for regret minimization algorithms for both finite (Bubeck et al., 2013) and continuous arm spaces (Lu et al.,
2019). These methods could be employed as-is in combination with IS, but, being general-purpose, they might disregard the
peculiarities of the setting.

Several ad-hoc methods to cope with the problematic IS behavior have been developed. An example, devised by the
statistical community, is self-normalization (Owen, 2013). This approach has the advantage of controlling the range of the
estimator at the price of making all samples interdependent and generating a bias. Although the asymptotic consistency is
guaranteed (Hesterberg, 1995; Swaminathan & Joachims, 2015), its finite-sample analysis is more challenging. In (Metelli
et al., 2018) a polynomial concentration inequality was provided and, more recently, exponential bounds based on Efron-
Stein inequalities have been proposed (Kuzborskij & Szepesvári, 2019; Kuzborskij et al., 2020). Nevertheless, the resulting
inequality contains terms that are not easy to estimate (Kuzborskij et al., 2020). Another popular technique is the weight
truncation (or clipping) (Ionides, 2008; Bottou et al., 2013). Some works rely on empirical selections of the truncation
threshold (Lee et al., 2011; Cole & Hernán, 2008), while others focus on more theoretically principled approaches (Bembom
& van der Laan, 2008; Wang et al., 2017; Papini et al., 2019). In particular, in (Wang et al., 2017) an approach designed
for CMABs combines truncation with DR estimator, deriving theoretical guarantees in MSE. Instead, in (Papini et al.,
2019) a subgaussian deviation bound is derived by suitably adapting the truncation threshold as a function of the number of
samples n and the confidence parameter δ. Finally, a not so large part of the literature focuses on less crude transformations
than truncation, called smoothing (Vehtari et al., 2015). They typically take into explicit consideration the estimator
tails (Pickands III et al., 1975), also providing asymptotic guarantees. Very recently, shrinkage transformations of the weight
was proposed, based on the minimization of different bounds on the MSE, in the specific setting of CMABs (Su et al., 2020).

B. Data-driven Tuning of λ
The computation of the optimal parameter λ˚2 requires the knowledge of the divergence term I2pP }Qq, which, in turn,
requires access to the form of P and Q. Even when P and Q are known, it may be complex to compute the divergence,
in particular for continuous distributions, since it involves the evaluation of a complex integral.4 In principle, we could
estimate the divergence I2pP }Qq from samples, by computing the empirical second moment of the vanilla importance
weights 1

n

ř

iPrnsωpyiq
2, as done in previous works (Metelli et al., 2018). However, this approach would prevent any

subgaussian concentration property, as the behavior of the non-corrected ωpyq2 will be surely heavy-tailed whenever ωpyq
is. A general-purpose approach to circumvent this issue and avoid the divergence estimation is the Lepski’s adaptation
method (Lepski & Spokoiny, 1997), which only requires knowing an upper and a lower bound on the quantity to adapt to,
I2pP }Qq in our case. However, Lepski’s method is known to be typically computationally intensive.

In this section, we follow a different path inspired to the recent work by Zheng (2020). If a choice of the parameter λ
corrects the weight ωλ leading to an ideal estimator pµλ, for the mean µ, we may expect that the empirical second moment of
the corrected weights will provide a reasonable estimation of I2pP }Qq. Based on this, we propose to choose λ by solving

4For some known distributions, including Gaussians, the integral can be computed in closed form (Gil et al., 2013).
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the equation:

λ2 1

n

ÿ

iPrns

ωλn1{4pyiq
2

loooooooooomoooooooooon

empirical second moment

“
2log 1

δ

3n
. (2)

The intuition behind this approach can be stated as follows. If the empirical second moment is close to the divergence, i.e.,
1
n

ř

iPrnsωλn1{4pyiq
2»I2pP }Qq, the solution pλ of Equation (2) approaches the optimal parameter, i.e., pλ»

b

2log 1
δ

3I2pP }Qqn
“

λ˚2 . We formalize this reasoning in Appendix C.4, proving that Equation (2) admits a unique root pλPr0,1s (Lemma C.4)
and that when the number of samples n grows to infinity, pλ actually converges to λ˚2 (Lemma C.8).

The following result provides the concentration properties of the estimator pµλ when using pλ instead of λ˚2 , under slightly
more demanding requirements on the moments of the importance weights.

Theorem B.1. Let P,QPPpYq be two probability distributions such that P !Q. Let tyiuiPrns sampled independently
from Q. Let pλ be the solution of Equation (2), then, if I3pP }Qq is finite, for sufficiently large n, for every δPp0,1q, with
probability at least 1´2δ it holds that:

pµ
pλ´µď}f}8

5`2
?

3

2

d

2I2pP }Qq log 1
δ

3n
.

Compared to Theorem 5.1, this result is weakened in three aspects. First, the constant 5p2`
?

3q{
?

6»7.62 is larger.
Second, the inequality holds with a smaller probability 1´2δ. This is explained by the fact that two estimation processes
with the same samples are needed, i.e., the computation of pλ and the corrected estimator pµ

pλ. Third, and most important, the
result holds for sufficiently large n, whose value is reported in the proof and depends on I3pP }Qq, which must be finite.
We think this is not a too strong requirement considering that even the variance of a empirical estimate of I2pP }Qq would
depend on the fourth moment of the importance weight, i.e., I4pP }Qq. It is worth noting that we could, in principle, select a

value of λ that is independent of I2pP }Qq. In such a case, we are able to get a bound of order O
ˆ

I2pP }Qq

b

log 1
δ

n

˙

, with a

higher exponent for I2pP }Qq (Corollary C.2 of Appendix C.4).

C. Proofs and Derivations
In this section, we report the proofs of the results that are reported in the main paper.

C.1. Proofs of Section 3

Theorem 3.1. There exist two distributions P,QPPpYq with P !Q and a bounded measurable function f :YÑR such

that for every αPp1,2s and δPp0,e´1q if něδemax
!

1,pIαpP }Qq´1q
1

α´1

)

, with probability at least δ it holds that:

|pµ´µ|ě}f}8

ˆ

IαpP }Qq´1

δnα´1

˙
1
α
ˆ

1´
eδ

n

˙

n´1
α

.

Proof. The proof is inspired to that of Proposition 6.2 of (Catoni, 2012). We construct a function f and two probability measures P and
Q that fulfill the inequality. Let aą0, we consider Y“t´a,0,au and fpyq“y. First of all, we observe that a“}f}8. We now define
the probability distributions as follows, for p,qPr0,1s:

P pt´auq“P ptauq“
p

2
and P pt0uq“1´p,

Qpt´auq“Qptauq“
q

2
and Qpt0uq“1´q.

We immediately observe that Ey„P rfpyqs“Ey„Qrfpyqs“0. We select the values p and q as follows, for any αPp1,2s:

q“
´ a

nε

¯α

ξ,

p“
´ a

nε

¯α´1

ξ,
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where ξą0 will be specified later. First of all, we note that to make these probability valid, we need to enforce:

pď1ùñ ně
a

ε
ξ

1
α , (P.1)

qď1ùñ ně
a

ε
ξ

1
α´1 . (P.2)

This choice of p and q ensures that a p
q
“nε. Let us now compute the divergence:

IαpP }Qq“2
´p

2

¯α´ q

2

¯1´α

`p1´pqαp1´qq1´α

“pαq1´α`p1´pqαp1´qq1´α

“ξ`

ˆ

1´ξ
´ a

nε

¯α´1
˙α

´

1´ξ
´ a

nε

¯α¯1´α

ďξ`1,

where the last inequality is obtained by upper bounding the second addendum under the assumption that ně a
ε
ξ

1
α´1 :

ˆ

1´ξ
´ a

nε

¯α´1
˙α

´

1´ξ
´ a

nε

¯α¯1´α

ď

ˆ

1´ξ
´ a

nε

¯α´1
˙αˆ

1´ξ
´ a

nε

¯α´1
˙1´α

“1´ξ
´ a

nε

¯α´1

ď1.

Thus, we select ξ“IαpP }Qq´1. Let us now consider the vanilla IS estimator pµ, whose expectation is µ“0, and the following derivation:

P
yi

iid
„Q

p|pµ´µ|ąεq“ P
yi

iid
„Q

ptpµ´µă´εuYtpµ´µąεuq

“ P
yi

iid
„Q

ppµ´µă´εq` P
yi

iid
„Q

ppµ´µąεq (P.3)

“2 P
yi

iid
„Q

ppµ´µąεq , (P.4)

where line (P.3) is obtained by observing that the two events are disjoint and line (P.4) comes from the symmetry of the events. We now
lower bound the probability:

P
yi

iid
„Q

ppµ´µąεqě P
yi

iid
„Q

pamong the n samples, one is a and the remaining are 0q

“n
q

2
p1´qqn´1

“
1

2

´a

ε

¯α

n1´αξ
´

1´
´ a

nε

¯α

ξ
¯n´1

.

Now, we derive a value of εą0 such that the inequality holds with probability at least δ. We enforce the condition:

1

2

´a

ε

¯α

n1´αξ
´

1´
´ a

nε

¯α

ξ
¯n´1

ďδ ùñ εěa

ˆ

ξ

δnα´1

˙ 1
α ´

1´
´ a

nε

¯α

ξ
¯

n´1
α
. (P.5)

We claim that, for δPp0,e´1
q, any value of ε fulfilling condition (P.5) must be εďε‹:

ε‹“a

ˆ

ξ

δnα´1

˙ 1
α
ˆ

1´
eδ

n

˙
n´1
α

Indeed, we have:

a

ˆ

ξ

δnα´1

˙ 1
α ´

1´
´ a

nε‹

¯α

ξ
¯

n´1
α
“a

ˆ

ξ

δnα´1

˙ 1
α

¨

˝1´
´ a

n

¯α

˜

a

ˆ

ξ

δnα´1

˙ 1
α
ˆ

1´
eδ

n

˙
n´1
α

¸´α

ξ

˛

‚

n´1
α

“a

ˆ

ξ

δnα´1

˙ 1
α

˜

1´
δ

n

ˆ

1´
eδ

n

˙´pn´1q
¸
n´1
α

ěa

ˆ

ξ

δnα´1

˙ 1
α
ˆ

1´
δe

n

˙
n´1
α

“ε‹,

where the last inequality derives from observing that
`

1´ eδ
n

˘´pn´1q
ďe if δPp0,e´1

q. Finally, we rephrase conditions (P.1) and (P.2):

ně
a

ε‹
ξ

1
α ùñ něn1´ 1

α δ
1
α

ˆ

1´
eδ

n

˙´
n´1
α

ùñ něδe,
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ně
a

ε‹
ξ

1
α´1 ùñ něn1´ 1

α δ
1
α ξ

1
αpα´1q

ˆ

1´
eδ

n

˙´
n´1
α

ùñ něδeξ
1

α´1 ,

having observed, again, that
`

1´ eδ
n

˘´
n´1
α ďe

1
α . Thus, we enforce the condition něδemax

!

1, ξ
1

α´1

)

.

Corollary C.1. There exist two distributions P,QPPpYq with P !Q and a bounded measurable function f :YÑR such
that for every αPp1,2s it holds that:

E
yi

iid
„Q

r|pµ´µ|
α
sě}f}α8

IαpP }Qq´1

nα´1
.

Proof. Let us denote the bad event:

E“

#

|pµ´µ|ě}f}8

ˆ

IαpP }Qq´1

δnα´1

˙ 1
α
ˆ

1´
eδ

n

˙
n´1
α

+

From Theorem 3.1, we know that P
yi

iid
„Q
pEqěδ. Let us consider the expected absolute error with exponent αPp1,2s and apply the law of

total expectation:

E
yi

iid
„Q

r|pµ´µ|αs“ E
yi

iid
„Q

rppµ´µqα |Es P
yi

iid
„Q

pEq` E
yi

iid
„Q

rppµ´µqα |Ecs P
yi

iid
„Q

pEcq

ě}f}α8
IαpP }Qq´1

δnα´1

ˆ

1´
eδ

n

˙n´1

δ`0.

The result is obtained by setting δÑ0.

C.2. Proofs of Section 4

Lemma 4.1. Let P,QPPpYq be two probability distributions with P !Q, then for every λPr0,1s and yPY it holds that:

(i) if sďs1 then ωλ,spyqďωλ,s1pyq;
(ii) if să0 then ωλ,spyqďλ

1
s , otherwise if są0 then ωλ,spyqěλ

1
s ;

(iii) if să1 then Ey„Qrωλ,spyqsď1, otherwise if są1 then Ey„Qrωλ,spyqsě1.

Proof. Recall that ωs,λpyq is the power mean of exponent s between ωpyq and 1 and weights p1´λ,λq. Consequently, (i) follows from
the generalized mean inequality (Bullen, 2013). Let us move to (ii), if să0, we have:

ωλ,spyq“
´

p1´λqωpyqs`λ
¯ 1
s
“

1
´

1´λ
ωpyq´s

`λ
¯ 1
´s

ďλ
1
s .

Instead for są0, we have:

ωλ,spyq“
´

p1´λqωpyqs`λ
¯ 1
s
ěλ

1
s .

Concerning (iii), let us first observe that for every λPr0,1s and s“1, it holds that Ey„Qrω1,λpyqs“1. Following from (i). and from the
monotonicity of the expectation, we have that for să1:

ωs,λpyqďω1,λpyq ùñ E
y„Q

rωs,λpyqsď E
y„Q

rω1,λpyqs“1.

Symmetrically, for są1 we have:

ωs,λpyqěω1,λpyq ùñ E
y„Q

rωs,λpyqsě E
y„Q

rω1,λpyqs“1.

C.3. Proofs of Section 5

Before going to the proofs, we introduce the following integral:

JαpP }Qq“

ż

Y
qpyq

ˇ

ˇppyqαqpyq´α´1
ˇ

ˇdy.
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For α“1, J1pP }Qq reduces to the total variation divergence. For general values of α, JαpP }Qq represents the χα-
divergence (Liese & Vajda, 1987; Sason, 2018). JαpP }Qq can be also seen as the α-absolute central moment of the
importance weight ωpyq“ppyq{qpyq. Consequently, we immediacy conclude that JαpP }QqďIαpP }Qq. In particular, for
α“2, we have J2pP }Qq“I2pP }Qq´1.

Lemma C.1. Let P,QPPpYq two probability distributions with P !Q. For every λPr0,1s, the pλ,´1q-corrected impor-
tance weight induces a bias that can be bounded for every αPp1,2s as:

ˇ

ˇ

ˇ

ˇ

ˇ

E
yi

iid
„Q

rpµλs´µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď}f}8λ
α´1JαpP }Qq

1
α rp1´λqIαpP }Qq`λs

1´ 1
α .

Proof. Let us consider the following derivation:
ˇ

ˇ

ˇ

ˇ

ˇ

E
yi

iid
„Q

rpµλs´µ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

E
yi

iid
„Q

rpµλ´ pµs

ˇ

ˇ

ˇ

ˇ

ˇ

ď“ E
yi

iid
„Q

r|pµλ´ pµ|sď}f}8 E
y„Q

r|ωλpyq´ωpyq|s .

Thus, we have for αPp1,2s:

E
y„Q

r|ωλpyq´ωpyq|s“ E
y„Q

„ˇ

ˇ

ˇ

ˇ

ωpyq

1´λ`λωpyq
´ωpyq

ˇ

ˇ

ˇ

ˇ



“λ E
y„Q

«

|ωpyq´1|
1´λ
ωpyq

`λ

ff

“λ E
y„Q

«

|ωpyq´1|

˜

1
1´λ
ωpyq

`λ

¸α´1˜

1
1´λ
ωpyq
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¸2´αff

ďλsup
vě0

˜

1
1´λ
v
`λ

¸2´α

E
y„Q

«

|ωpyq´1|

˜

1
1´λ
ωpyq

`λ

¸α´1ff

.

Concerning the first term, we observe that the function 1
1´λ
v
`λ

is monotonically increasing in v and, consequently:

sup
vě0

˜

1
1´λ
v
`λ

¸2´α

“ lim
vÑ8

˜

1
1´λ
v
`λ

¸2´α

“
1

λ2´α
.

Concerning the second term, we proceed as follows:

E
y„Q

«

|ωpyq´1|

˜

1
1´λ
ωpyq

`λ

¸α´1ff

ď E
y„Q

r|ωpyq´1|αs
1
α E
y„Q

«˜

1
1´λ
ωpyq

`λ

¸αff1´ 1
α

(P.6)

ď E
y„Q

r|ωpyq´1|αs
1
α E
y„Q

rpp1´λqωpyq`λqαs1´
1
α (P.7)

ď E
y„Q

r|ωpyq´1|αs
1
α E
y„Q

rp1´λqωpyqα`λs1´
1
α (P.8)

“JαpP }Qq
1
α rp1´λqIαpP }Qq`λs

1´ 1
α ,

where line (P.6) derives from Hölder’s inequality with exponents α and α
α´1

, line (P.7) is obtained from the power mean inequality (Bullen,
2013) by bounding the harmonic mean with the arithmetic mean, line (P.8) follows from Jensen’s inequality having observed that the
function ¨α is a convex function.

Lemma 5.1. Let P,QPPpYq be two probability distributions with P !Q. For every λPr0,1s, the pλ,´1q-corrected
importance weight induces a bias that can be bounded for every αPp1,2s as:

ˇ

ˇ

ˇ

ˇ

ˇ

E
y

iid
„Q

rpµλs´µ

ˇ

ˇ

ˇ

ˇ

ˇ

ď}f}8λ
α´1IαpP }Qq.

Proof. The result follows immediately from Lemma C.1 by recalling that JαpP }QqďIαpP }Qq and observing that p1´λqIαpP }Qq`
λďIαpP }Qq as IαpP }Qqě1.
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Lemma C.2. Let P,QPPpYq two probability distributions with P !Q. For every λPr0,1s, the pλ,´1q-corrected impor-
tance weight induces a variance that can be bounded for every αPp1,2s as:

Var
yi

iid
„Q

rpµλsď
}f}28
nλ2´α

rp1´λqIαpP }Qq`λs .

Proof. Let us consider the following derivation:

Var
yi

iid
„Q

rpµλs“
1

n
Var
y„Q

rωλpyqfpyqsď
1

n
E
y„Q

“

ωλpyq
2fpyq2

‰

ď
1

n
}f}28 E

y„Q

“

ωλpyq
2
‰

.

Thus, we have for αPp1,2s:

E
y„Q

“

ωλpyq
2
‰

“ E
y„Q

«˜

1
1´λ
ωpyq

`λ

¸2ff

“ E
y„Q

«˜

1
1´λ
ωpyq

`λ

¸α˜

1
1´λ
ωpyq

`λ

¸2´αff

ďsup
vě0

˜

1
1´λ
v
`λ

¸2´α

E
y„Q

«˜

1
1´λ
ωpyq

`λ

¸αff

ď
1

λ2´α
rp1´λqIαpP }Qq`λs ,

where the last line is obtained by employing analogous derivations as in Lemma C.1.

Lemma 5.2. Let P,QPPpYq two probability distributions with P !Q. For every λPr0,1s, the pλ,´1q-corrected impor-
tance weight induces a variance that can be bounded for every αPp1,2s as:

Var
yi

iid
„Q

rpµλsď
}f}28
nλ2´α

IαpP }Qq.

Proof. The result is obtained from Lemma C.2 by observing that p1´λqIαpP }Qq`λďIαpP }Qq as IαpP }Qqě1.

Lemma C.3. Let P,QPPpYq two probability distributions such that P !Q. Let tyiuiPrns sampled independently from Q.
For every αPp1,2s and δPp0,1q then, for every λPr0,1s, with probability at least 1´δ it holds that:

pµλ´µď}f}8

d

2log 1
δ

nλ2´α
rp1´λqIαpP }Qq`λs`

2}f}8 log 1
δ

3λn
`}f}8λ

α´1JαpP }Qq
1
α rp1´λqIαpP }Qq`λs

1´ 1
α .

Proof. The proof is a straightforward application of Bernstein’s inequality together with Lemma C.1 and Lemma C.2. First of all, we
highlight the bias in the following decomposition:

pµλ´µ“ pµλ´ E
yi

iid
„Q

rpµλs

looooooomooooooon

concentration

` E
yi

iid
„Q

rpµλs´µ

loooooomoooooon

bias

.

The bias term is bounded by using Lemma C.1, while for the concentration term we apply Bernstein’s inequality. Let δPp0,1q, with
probability at least 1´δ it holds that:

pµλ´ E
yi

iid
„Q

rpµλsď

d

2 Var
yi

iid
„Q

rpµλs log
1

δ
`

2}µλ}8 log 1
δ

3n

ď}f}8

d

2log 1
δ

nλ2´α
rp1´λqIαpP }Qq`λs`

2}f}8 log 1
δ

3λn
,

where the last line is obtained by bounding the variance with Lemma C.2 and recalling that }µλ}8ď }f}8
λ

.

We discuss how to optimize this bound in λ in Appendix D. We now move to a simplified version of the bound.
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Theorem 5.1. Let P,QPPpYq be two probability distributions such that P !Q. Let tyiuiPrns sampled independently from
Q. For every αPp1,2s and δPp0,1q, let

λ˚α“

ˆ

2log 1
δ

3pα´1q2IαpP }Qqn

˙

1
α

then, with probability at least 1´δ it holds that:

pµλ˚α ´µď}f}8p2`
?

3q

˜

2IαpP }Qq
1

α´1 log 1
δ

3pα´1q2n

¸1´ 1
α

.

Proof. The derivation is analogous to that of Lemma C.3 using Bernstein’s inequality, Lemma 5.1, and Lemma 5.2, leading to the
inequality:

pµλ´µď}f}8

d

2log 1
δ

nλ2´α
IαpP }Qq`

2log 1
δ

3λn
}f}8`}f}8λ

α´1IαpP }Qq (P.9)

This is a convex function of λ that can be minimized by vanishing the derivative. The derivative is actually a quadratic function in λ
α
2 and

its positive solution has a quite complex expression:

λ#
α :“

˜

´3α`
?
3
a

pα`2qp3α´2q`6

6
?
2pα´1q

¸ 2
α ˆ

log 1
δ

IαpP }Qqn

˙

2
α

ď

ˆ

2

3pα´1q2

˙ 1
α
ˆ

log 1
δ

IαpP }Qqn

˙

1
α

“:λ˚α,

where the inequality holds with equality when α“2. By substituting this value of λ˚α we obtain the bound:

pµλ˚α ´µď}f}8
´

2´
?
3`αp´2`

?
3`αq

¯

˜

2IαpP }Qq
1

α´1 log 1
δ

3pα´1q2n

¸1´ 1
α

ď}f}8p2`
?
3q

˜

2IαpP }Qq
1

α´1 log 1
δ

3pα´1q2n

¸1´ 1
α

,

having observed that
`

2´
?
3`αp´2`

?
3`αq

˘

is a monotonically increasing function of α.

Remark C.1. In the proof of Theorem 5.1, we did not consider the possibility that λ˚αą1, that would lead to a non-valid
correction parameter. We claim that this circumstance occurs for very small values of n and δ only. Indeed:

λ˚αď1 ùñ ně
2log 1

δ

3pα´1q2IαpP }Qq
.

In any case, if it occurs that λ˚αą1, we conventionally clip it to 1.

Proposition C.1. Let λPr0,1s. For every px,aqPX ˆA, let ωpa|xq“ πθpa|xq
πbpa|xq

, for a target policy πθ differentiable in θ.
Then, it holds that:

}∇θωλpa|xq}8ď
1

4λ
}∇θ logπθpa|xq}8 .

Proof. Let us first compute the gradient explicitly:

∇θωλpa|xq“
Bωλ
Bω

pa|xq∇θωpa|xq“
1´λ

p1´λ`λωpa|xqq2
ωpa|xq∇θ logπθpa|xq

To get the result, we maximize the value of the following function:

gpvq“
p1´λqv

p1´λ`λvq2
.

First of all, we observe that for v“0 and vÑ8, the function has value 0. Thus, the maximum must lie in between. We vanish the
derivative to find it:

Bgpvq

Bv
“
p1´λqp1´λ´λvq

p1´λ`λvq3
“0 ùñ v˚“

1

λ
´1.

By substituting the found value, we obtain:

gpv˚q“
1

4λ
.

The result is obtained by applying the L8-norm.
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C.4. Proofs of Section B

For the sake of simplicity, we will denote with η“λn1{4. We introduce the following equation:

hpηq“η2 E
y„Q

“

ωηpyq
2
‰

“
2log 1

δ

3
?
n
,

and we denote with η: a solution of this equation. We introduce the corresponding empirical version, that is equivalent to
Equation (2):

phpηq“
η2

n

ÿ

iPrns

ωηpyiq
2“

2log 1
δ

3
?
n
,

having pη as solution. Clearly, we have E
yi

iid
„Q

”

phpηq
ı

“hpηq.

Lemma C.4. Let hpηq“η2Ey„Q
“

ωηpyq
2
‰

. The following properties hold:

(i) for every ηPr0,1s we have hpηqPr0,1s;
(ii) for every cPp0,1s, the equation hpηq“c admits at most one solution.

Proof. For (i) we immediately observe that hpηqě0. Moreover, we have ωηpyqďη´1, from which the result follows. For (ii) we show
that hpηq is monotonically increasing in η:

Bh

Bη
pηq“2η E

y„Q

„

ωpyq2

p1´η`ηωpyqq3



ą0.

Remark C.2. It might be the case that the equation phpηq“
2log 1

δ

3
?
n

admits no solution, for instance when 2log 1
δ

3
?
n
ą1 or when

supηPr0,1s
phpηqă1. In these cases, we conventionally set the solution η:“1. We stress that this circumstance occurs only

for small values of n, as in Remark C.1. Indeed, the right hand side 2log 1
δ

3
?
n
Ñ0 when nÑ8.

Lemma C.5. Let hpηq“η2Ey„Q
“

ωηpyq
2
‰

. Let η: Pr0,1s such that:

hpη:q“
2log 1

δ

3
?
n

and λ:“η:n´1{4

then it holds that:

λ˚2 ďλ
:ď
?

2λ˚2 ,

where the second inequality holds if ně
4096pI3pP }Qq´I2pP }Qqq

4plog 1
δ q

2

9I2pP }Qq6
, whenever I3pP }Qq is finite.

Proof. Let us first observe that:

E
y„Q

“

ωηpyq
2
‰

“ E
y„Q

»

—

–

1
´

1´η
ωpyq

`η
¯2

fi

ffi

fl

ď E
y„Q

“

pp1´ηqωpyq`ηq2
‰

“pI2pP }Qq´1qη2`1ďI2pP }Qq,

where the first inequality derives from the inequality between the harmonic and arithmetic mean. From the last inequality, we have:

hpηqďη2I2pP }Qq ùñ η:ě

d

2log 1
δ

3I2pP }Qq
?
n

ùñ λ:“

d

2log 1
δ

3I2pP }Qqn
“λ˚2 .

Concerning the lower bound, we proceed with a second order Taylor expansion centered in η“0:

1
´

1´η
ωpyq

`η
¯2 “ωpyq

2
´2ωpyq2pωpyq´1qη`3pωpyq´1q2ωpyq2η2ěωpyq2´2ωpyq2pωpyq´1qη,
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for some ηPr0,ηs. From which, we obtain:

E
y„Q

»

—

–

1
´

1´η
ωpyq

`η
¯2

fi

ffi

fl

ě E
y„Q

“

ωpyq2´2ωpyq2pωpyq´1qη
‰

“I2pP }Qq´2ηpI3pP }Qq´I2pP }Qqq.

By moving to function hpηq, and recalling the equation hpηq“ 2log 1
δ

3
?
n

, we have:

hpηq“η2 E
y„Q

“

ωηpyq
2
‰

ěη2I2pP }Qq´2η3pI3pP }Qq´I2pP }Qqq

ùñ η2I2pP }Qq´2η3pI3pP }Qq´I2pP }Qqqď
2log 1

δ

3
?
n
.

We prove that for sufficiently large n, all solutions η: of the previous inequality satisfy ηď

c

4log 1
δ

3I2pP }Qq
?
n

:

4log 1
δ

3I2pP }Qq
?
n
I2pP }Qq´2

ˆ

4log 1
δ

3I2pP }Qq
?
n

˙

3
2

pI3pP }Qq´I2pP }Qqqą
2log 1

δ

3I2pP }Qq
?
n

ùñ ně
4096pI3pP }Qq´I2pP }Qqq

4
`

log 1
δ

˘2

9I2pP }Qq6
.

This, implies that λ:ď

c

4log 1
δ

3I2pP }Qqn
“
?
2λ˚2 .

Lemma C.6. Let hpηq“η2Ey„Q
“

ωηpyq
2
‰

, then it holds that:

Bhpηq

Bη2
ěI2pP }Qq

´2.

Proof. Let us first observe that:

Bhpηq

Bη2
“
Bhpηq

Bη

Bη

Bη2
“
Bhpηq

Bη

1

2η
.

The first factor was already computed in the proof of Lemma C.4. We now lower bound it. Let us first prove the following auxiliary
inequality:

1“ E
y„Q

rωpyqs2“ E
y„Q

„

ωpyq

1´λ`λωpyq
p1´λ`λωpyqq

2

ď E
y„Q

„

ωpyq2

p1´λ`λωpyqq2



E
y„Q

“

p1´λ`λωpyqq2
‰

ď E
y„Q

„

ωpyq2

p1´λ`λωpyqq2



I2pP }Qq,

(P.10)

where the first inequality follows from Cauchy-Schwarz’s and the second one by recalling that Ey„Q
“

p1´λ`λωpyqq2
‰

ďI2pP }Qq.
Now, we proceed with Hölder’s inequality with p“ 3

2
and q“3:

E
y„Q

„

ωpyq2

p1´λ`λωpyqq2



ď E
y„Q

«

ωpyq
4
3

p1´λ`λωpyqq2
ωpyq

2
3

ff

ď E
y„Q

„

ωpyq2

p1´λ`λωpyqq3


2
3

E
y„Q

“

ωpyq2
‰

1
3

“ E
y„Q

„

ωpyq2

p1´λ`λωpyqq3


2
3

I2pP }Qq
1
3 .

(P.11)

Putting together Equation (P.10) and Equation (P.11), we have:

E
y„Q

„

ωpyq2

p1´λ`λωpyqq3



ě E
y„Q

„

ωpyq2

p1´λ`λωpyqq2


3
2

I2pP }Qq
´ 1

2 ěI2pP }Qq
´2.

Lemma C.7. Let hpηq“ηEy„Qrωηpyq2s and phpηq“ η2

n

ř

iPrnsωηpyiq
2. Then, nphpηq is a self-bounding function. Therefore,
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for every ηPr0,1s it holds that:

Pr
yi

iid
„Q

´

phpηq´hpηqěε
¯

ďexp

˜

´ε2n

2
`

hpηq` ε
3

˘

¸

with εą0, (3)

Pr
yi

iid
„Q

´

hpηq´phpηqěε
¯

ďexp

ˆ

´ε2n

2hpηq

˙

with 0ăεăhpηq. (4)

Proof. We consider the definition of self-bounding function provided in (Boucheron et al., 2009, Definition 1). We denote with nphk,zpηq
the function obtained from nphpηq by replacing ωpykq with zě0. We show that nphpηq satisfies both conditions:

nphpηq´nphk,zpηq“η2
`

ωηpykq
2
´z2

˘

ďη2ωηpykq
2
ď1,

ÿ

kPrns

´

nphpηq´nphk,zpηq
¯2

“
ÿ

kPrns

`

ωηpykq
2
´z2

˘2
ď

ÿ

kPrns

`

η2ωηpykq
2
˘2
ď

ÿ

kPrns

η2ωηpykq
2
“nphpηq.

having observed that ηωηpykqď1. By applying the concentration inequalities for the self-bounding functions (Boucheron et al., 2009),
we obtain that for every ηPr0,1s and εą0 it holds that:

Pr
yi

iid
„Q

´

phpηq´hpηqěε
¯

ďexp

˜

´ε2n

2
`

hpηq` ε
3

˘

¸

.

Similarly, for every ηPr0,1s and 0ăεăhpηq it holds that:

Pr
yi

iid
„Q

´

hpηq´phpηqěε
¯

ďexp

ˆ

´ε2n

2hpηq

˙

.

Lemma C.8. Let η: be the solution of hpη:q“ 2log 1
δ

3
?
n

and pη be the solution of phppηq“ 2log 1
δ

3
?
n

. Then, for any δPp0,1q, with
probability at least 1´δ it holds that:

1

2
ď

pη

η:
ď
?

2 and
1

2
ď

pλ

λ:
ď
?

2,

for němax

"

544I2pP }Qq
12
´

log 2
δ

log 1
δ

¯2

,
4096pI3pP }Qq´I2pP }Qqq

4plog 1
δ q

2

9I2pP }Qq6

*

.

Proof. Let εPr0,1s, consider the event
!
ˇ

ˇ

ˇ

pη

η:
´1

ˇ

ˇ

ˇ
ąε

)

. Under the sub-event tpηąp1`εqη:u recalling that function h and ph are increasing
in η we have:

phppηq´phpη:qěphpp1`εqη:q´phpη:q

“phpp1`εqη:q´phpη:q˘hpη:q˘hpp1`εqη:q

“phpp1`εqη:q´hpp1`εqη:q`hpη:q´phpη:q`hpp1`εqη:q´hpη:q

ěphpp1`εqη:q´hpp1`εqη:q`hpη:q´phpη:q`2I2pP }Qq
´2εpη:q2,

where the last inequality follows from Lemma C.6 having applied:

hpp1`εqη:q´hpη:qěI2pP }Qq
´2

`

p1`εq2´1
˘

pη:q2“I2pP }Qq
´2
p2`εqεpη:q2ě2I2pP }Qq

´2εpη:q2.

Recalling that phppηq“hpη:q, the condition can be further simplified into hpp1`εqη:q´phpp1`εqη:qě2I2pP }Qq
´2εpη:q2. Symmetri-

cally, under the sub-event tpηăp1´εqη:u we have:

phppηq´phpη:qďphpp1´εqη:q´phpη:q

“phpp1´εqη:q´phpη:q˘hpη:q˘hpp1´εqη:q

“phpp1´εqη:q´hpp1´εqη:q`hpη:q´phpη:q`hpp1´εqη:q´hpη:q

ďphpp1´εqη:q´hpp1´εqη:q`hpη:q´phpη:q´I2pP }Qq
´2

`

1´p1´εq2
˘

pη:q2,

that can be simplified, as before, into the condition phpp1´εqη:q´hpp1´εqη:qěI2pP }Qq
´2εpη:q2 since 1´p1´εq2“εp2´εqěε
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being εă1. Thus, we have:

Pr
y

iid
„Q

ˆˇ

ˇ

ˇ

ˇ

pη

η:
´1

ˇ

ˇ

ˇ

ˇ

ąε

˙

“ Pr
y

iid
„Q

´

pηąp1`εqη:
¯

` Pr
y

iid
„Q

´

pηăp1´εqη:
¯

ď Pr
y

iid
„Q

´

hpp1`εqη:q´phpp1`εqη:qě2I2pP }Qq
´2εpη:q2

¯

` Pr
y

iid
„Q

´

phpp1´εqη:q´hpp1´εqη:qěI2pP }Qq
´2εpη:q2

¯

.

First of all, we observe that hpp1`εqη:q“p1`εq2pη:q2Ey„Qrωp1`εqη:pyq2sď4pη:q2I2pP }Qq. Now, recalling that function h is
self-bounding as proved in Lemma C.7, we have by Equation (4):

Pr
´

hpp1`εqη:q´phpp1`εqη:qě2I2pP }Qq
´2εpη:q2

¯

ďexp

ˆ

´4I2pP }Qq
´4ε2pη:q4n

2hpp1`εqη:q

˙

ďexp

ˆ

´4I2pP }Qq
´4ε2pη:q4n

8pη:q2I2pP }Qq

˙

“exp

ˆ

´ε2pη:q2n

2I2pP }Qq5

˙

,

provided that 2I2pP }Qq
´2εpη:q2ďhpp1`εqη:q, that is fulfilled for every εPr0,1s. Indeed, recalling that hpp1`εqη:q“

p1`εq2pη:q2Ey„Qrωp1`εqη:pyq2sěp1`εq2pη:q2I2pP }Qq´2 (from Equation (P.10)), we have that 2I2pP }Qq
´2εpη:q2ďp1`

εq2pη:q2I2pP }Qq
´2 is fulfilled for every εPr0,1s. Similarly, by Equation (3) and recalling that hpp1´εqη:qďhpη:qďpη:q2I2pP }Qq,

we have:

Pr
´

phpp1´εqη:q´hpp1´εqη:qěI2pP }Qq
´2εpη:q2

¯

ďexp

˜

´I2pP }Qq
´4ε2pη:q4n

2
`

hpp1´εqη:q` 1
3
I2pP }Qq´2εpη:q2

˘

¸

ďexp

ˆ

´I2pP }Qq
´4ε2pη:q4n

2pη:q2I2pP }Qq`
2
3
I2pP }Qq´2εpη:q2

˙

exp

ˆ

´3ε2pη:q2n

8I2pP }Qq5

˙

,

having crudely bounded I2pP }Qq´2εďI2pP }Qq. Putting these inequalities together, we obtain:

Pr

ˆ
ˇ

ˇ

ˇ

ˇ

pη

η:
´1

ˇ

ˇ

ˇ

ˇ

ąε

˙

ďexp

ˆ

´ε2pη:q2n

2I2pP }Qq5

˙

`exp

ˆ

´3ε2pη:q2n

2I2pP }Qq5

˙

ď2exp

ˆ

´3ε2pη:q2n

8I2pP }Qq5

˙

,

leading to the inequality holding with probability at least 1´δ:
ˇ

ˇ

ˇ

ˇ

pη

η:
´1

ˇ

ˇ

ˇ

ˇ

ď

d

8I2pP }Qq5 log
2
δ

3npη:q2
.

Under Lemma C.5, we know that η:ě

c

2log 1
δ

3I2pP }Qq
?
n

. From which we have:

ˇ

ˇ

ˇ

ˇ

pη

η:
´1

ˇ

ˇ

ˇ

ˇ

ď

d

4I2pP }Qq6 log
2
δ?

n log 1
δ

.

Simple calculations allow to conclude that 1
2
ď

pη

η:
ď
?
2 for ně544I2pP }Qq

12
´

log 2
δ

log 1
δ

¯2

.

Theorem B.1. Let P,QPPpYq be two probability distributions such that P !Q. Let tyiuiPrns sampled independently
from Q. Let pλ be the solution of Equation (2), then, if I3pP }Qq is finite, for sufficiently large n, for every δPp0,1q, with
probability at least 1´2δ it holds that:

pµ
pλ´µď}f}8

5`2
?

3

2

d

2I2pP }Qq log 1
δ

3n
.

Proof. Let us start observing that if we substitute a value of λ that is proportional to λ˚2 into Equation (P.9), we are able to provide the
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following bound for βą0:

pµβλ˚2
´µď

1`
?
3β`β2

β

d

2I2pP }Qq log
1
δ

3n
.

Now, we provide sufficient conditions so that 1
2
λ˚2 ďpλď2λ˚2 . First of all, we know from Lemma C.5 that for sufficiently large n we have

1ď λ:

λ˚2
ď
?
2. Second, from Lemma C.7, we know that for sufficiently large n and with probability at least 1´δ, we have 1

2
ď

pλ
λ:
ď
?
2.

Thus, putting together these results we enforce 1
2
λ˚2 ďpλď2λ˚2 . Therefore, it holds with probability at least 1´2δ and sufficiently large n

that:

pµ
pλ´µď

}f}8
2
p5`2

?
3q

d

2I2pP }Qq log
1
δ

3n
.

Corollary C.2. Let P,QPPpYq two probability distributions such that P !Q. Let tyiuiPrns sampled independently from
Q. For every δPp0,1q, let

λ;“

d

log 1
δ

n

then, with probability at least 1´δ it holds that:

pµλ;´µď}f}8

d

log 1
δ

n

ˆ

2

3
`
a

2I2pP }Qq`I2pP }Qq

˙

.

Proof. The result is simply obtained by substituting λ; into Equation (P.9).

D. Bound Comparison and Optimization
In this appendix, we provide a comparison between the bounds of Lemma C.3 and Theorem 5.1 and show how to numerically
optimize the former. For the sake of simplicity, we restrict our attention to α“2 and we denote with B˚˚pλq the bound of
Lemma C.3, with λ˚˚ its global minimum, with B˚pλq the bound of Theorem 5.1, and with λ˚ its global mimimum.

B˚˚pλq displays a pretty intricate dependence on λ that is not easy to optimize. As we can notice from Figure 2, the bound
based on the values of its terms admits either one or two local minima. In any case λ“1 is a value of interest, leading to a
bound of the form:

pµ1´µď}f}8

d

2log 1
δ

n
`

2}f}8 log 1
δ

3n
`}f}8

a

J2pP }Qq.

In such a case, we are replacing the importance weight with the value of 1 and we are estimating the mean under the target
distribution with the mean of the behavioral distribution, paying the whole bias

a

J2pP }Qq“
a

I2pP }Qq´1. Clearly, this
circumstance is convenient only when n is sufficiently small.

The bound of Theorem 5.1 B˚ is looser compared with that of Lemma C.3 B˚˚. We can see in Figure 3 that bound of B˚ is
convex and yeilds an optimal value of λ˚ that is smaller compared to the optimal value λ˚˚ of B˚˚.

D.1. Numerical Optimization of the Bound of Lemma C.3

We now discuss how to find the global minimum of the bound presented in Lemma C.3 B˚˚pλq. First of all, we observe that
B˚˚pλq is continuously differentiable in λ:

BB˚˚pλq

Bλ
“
a

pI2pP }Qq´1qpp1´λqI2pP }Qq`λq´
2log 1

δ

3nλ2
´
pI2pP }Qq´1q

´
b

2log 1
δ `λ

a

pI2pP }Qq´1qn
¯

2
a

npp1´λqI2pP }Qq`λq
.
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Figure 2. The bound of Lemma C.3 for α“2, I2pP }Qq“5, δ“e´1, and nPt2,10,50u. The minima are highlighted with the star.
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Figure 3. Comparison between the bounds of Lemma C.3 and Theorem 5.1 for α“2, I2pP }Qq“5, δ“e´1, and n“10. The minima are
highlighted with the star.

We start proving that BB
˚˚
pλq

Bλ is a strictly concave function of λ:

B2

Bλ2

ˆ

BB˚˚pλq

Bλ

˙

“
B3B˚˚pλq

Bλ3
“´

4log 1
δ

nλ4
´

3pI2pP }Q´1q7{2λ

8pp1´λqI2pP }Qq`λq5{2

´
3pI2pP }Qq´1q5{2

4pp1´λqI2pP }Qq`λq3{2
´

3pI2pP }Qq´1q3
b

log 1
δ

4
?

2npp1´λqI2pP }Qq`λq5{2
ă0.

We now prove that BB
˚˚
pλq

Bλ admits at most two roots. By contradiction, suppose BB
˚˚
pλq

Bλ admits three roots λ1ăλ2ăλ3.

By Rolle’s theorem, there must exist λ1ăλ12ăλ2 and λ2ăλ23ăλ3 such that B
2B˚˚pλq
Bλ2 pλ12q“

B
2B˚˚pλq
Bλ2 pλ23q“0. Again,

by Rolle’s theorem, there must exist λ12ăλ1223ăλ23 such that B
3B˚˚pλq
Bλ3 pλ1223q“0, which is a contradiction being

BB˚˚pλq
Bλ concave. Thus we consider three cases:

• BB˚˚pλq
Bλ admits no roots. It follows that the global minimum of B˚˚ is on the border t0,1u. Since limλÑ0`B

˚˚pλq“
8, the minimum is in λ˚˚“1.

• BB˚˚pλq
Bλ admits one root. It is simple to prove that for sufficiently large λ (possibly larger than 1, but this does not

matter of the sake for the function study) we have BB
˚˚
pλq

Bλ ă0. Being also limλÑ0`
BB˚˚pλq
Bλ “´8, we conclude that

the root must be a saddle point and, consequently, λ˚˚“1.

• BB˚˚pλq
Bλ admits two roots λ1ăλ2. Thus, there must exist λ1ăλ12ăλ2 such that B

2B˚˚pλq
Bλ2 pλ12q“0. Since B

2B˚˚pλq
Bλ2

is non-increasing, being BB˚˚pλq
Bλ concave, it must be that B

2B˚˚pλq
Bλ2 pλ1qą0 and B

2B˚˚pλq
Bλ2 pλ2qă0. Thus, λ1 is a local

minimum and λ2 a local maximum. It follows that λ˚˚ PargminλPtλ1,1uB
˚˚pλq.

Thus, based on the function study, it suffices to find numerically the smallest root λ1 (whenever it exists) of BB
˚˚
pλq

Bλ and
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Algorithm 1 Root finding for bound B˚˚ of Lemma C.3

Compute the bound derivative BB
˚˚pλq
Bλ

Apply Newton’s method with λ˚ as initial guess obtaining λ1 as numerical root (if exists)
if Newton’s method failed to converge or B˚˚pλ1qăBp1q then

return 1
else

return λ1

end if

compare its bound value B˚˚pλ1q with B˚˚p1q. This task can be carried out using numerical root finding, e.g., Newton’s
method, using as initial guess 0 or λ˚, having observed that in the optimal correction parameter λ˚ of the simplified bound
B˚ the derivative BB

˚˚
pλq

Bλ is negative. The procedure is summarized in Algorithm 1

E. Bias2 ` Variance Minimization
In this appendix, we discuss the effect of employing the bounds on bias and variance we have derived when our goal consists
in minimizing the MSE (Bias2 ` Variance) instead of a high-probability deviation inequality. By using Lemma 5.1 and
Lemma 5.2, we have:

MSEď}f}28λ
2pα´1qIαpP }Qq

2`
}f}28
nλ2´α

IαpP }Qq. (5)

We find the unique stationary point in λ, by vanishing the derivative:

λ§α“

ˆ

2´α

2pα´1qIαpP }Qqn

˙
1
α

.

Since, in general, Equation (5) is non-convex in λ, it might be the case that the minimum lies in the extremes t0,1u. In
particular, for the relevant case α“2, only the bias term depend on λ, suggesting λ§2“0. This is explained by the fact
that the bound on the variance is independent from λ as it was meant to be employed in a high-probability concentration
inequality rather than in an MSE bound.


