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Abstract
State-of-the-art deep Q-learning methods update
Q-values using state transition tuples sampled
from the experience replay buffer. Often this
strategy is to randomly sample or prioritize data
sampling based on measures such as the temporal
difference (TD) error. Such sampling strategies
are agnostic to the structure of the Markov deci-
sion process (MDP) and can therefore be data
inefficient at propagating reward signals from
goal states to the initial state. To accelerate re-
ward propagation, we make use of the MDP struc-
ture by organizing the agent’s experience into a
graph. Each edge in the graph represents a transi-
tion between two connected states. We perform
value backups via a breadth-first search that ex-
pands vertices in the graph starting from the set
of terminal states successively moving backward.
We empirically show that our method is substan-
tially more data-efficient than several baselines
on sparse reward tasks.

1. Introduction
A significant challenge in reinforcement learning (RL) is to
overcome the need for large amounts of data. A typical RL
agent updates its policy using the interaction data it collects
to maximize the expected sum of rewards. On-policy RL
methods (Sutton & Barto, 2018; Schulman et al., 2017;
Mnih et al., 2016) discard past interaction data after every
policy update. In contrast, off-policy algorithms such as
Q-learning (Watkins & Dayan, 1992) leverage experience
replay (Lin, 1992) to achieve greater data efficiency by
making use of all the past interactions. This approach has
also been scaled to Q-learning from high-dimensional state
spaces using deep neural networks (Mnih et al., 2015). In
Q-learning, the Q-function is trained to predict the expected
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sum of the intermediate reward and the succeeding state’s
Q-value. This process of using Q-values of successor states
to update Q-values of preceding states is referred to as
bootstrapping.

Because bootstrapping is used to update the Q-values, the
ordering of states used for the updating theQ-value can have
a substantial influence on the convergence speed of Q-value.
A suboptimal update order can exacerbate issues such as the
overestimation bias that plaque Q-learning (Kumar et al.,
2020; Van Hasselt et al., 2016). As a motivating example,
consider the Markov decision process (MDP) shown in Fig-
ure 1. Let the agent receive a reward when it reaches the
goal state (labeled as G), but not at any other state. Starting
from state C, the agent can obtain the reward by visiting
states in the sequence C → D → G. Now if the Q-value
Q(D, a) of taking action a at state D is inaccurate, then
using it to bootstrap Q(C, a) will not reduce the error in the
estimate of Q(C, a). It is therefore natural to start at the
terminal state G and first bootstrap Q-values of preceding
states (D,E), and then for states (A,B,C). Backing up
Q-values in the reverse order (i.e., starting at a terminal state
and ending at an initial state) ensures that only meaningful
updates to the Q-value are made. In fact, it has been shown
that for acyclic MDPs such a reverse sweep is the optimal
order for performing backups (Bertsekas et al., 2000). Sev-
eral extensions for finding an optimal backup ordering in
cyclical MDPs have been proposed (Dai et al., 2011; 2009;
Dai & Hansen, 2007). However, these prior methods assume
access to the environment model for both cyclic and acyclic
MDPs.

State-of-the-art Q-learning methods (Mnih et al., 2015; Lil-
licrap et al., 2015; Haarnoja et al., 2018; Fujimoto et al.,
2018) sample data from the replay buffer using strategies
such as uniform random or prioritized sampling. While
these strategies are guaranteed to result in convergence of
the Q-function (Watkins & Dayan, 1992), they can be sub-
optimal in their speed of convergence. For instance, a popu-
lar prioritized sampling strategy orders states by the boot-
strapping error (also called as temporal difference or the
TD-error) (Schaul et al., 2015). Since during training the
TD-error depends on (possibly) erroneous estimate of the
Q-values, ordering states based on TD-error can lead to
suboptimal convergence speed. The speed of convergence
matters because in Q-learning, data collection is interleaved
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Figure 1. The ordering of states used for updating Q-values directly effects the convergence speed. (a) Consider the graphical representation
of the MDP with the goal state (G). Each node in the graph is a state. The arrows denote possible transitions (s, a, r, s′) and the numbers
on the arrows are the rewards r associated with the transition. (b) Random sampling wastes many backups at states with zero values
(gray) while each backup of TER propagates values (orange) one step back.

with Q-value updates. If the Q-values are incorrect, the cur-
rent policy may take actions that result in low rewards. Such
data may not even be useful for updating Q-values along
the optimal trajectory. Therefore, the slower convergence of
Q-values is directly linked to the data inefficiency. One way
to reduce dependence on data is to artificially increase the
speed of convergence by increasing the ratio between the
Q-learning update steps and the data collection steps. How-
ever, when function approximators are used to estimate the
Q-value, excessive updates on a fixed set of interaction data
can lead to over-fitting and overestimation of the Q-values,
resulting in worse overall performance.

Despite the knowledge that sampling based methods for
learning from a replay buffer are suboptimal, state-of-the-
art algorithms still employ them. The reason is that using
the optimal strategy of reverse sweep requires knowledge
of the environment model which is generally unknown in
high-dimensional state spaces. Several recent works have at-
tempted to tackle this challenge: Episodic Backward Update
(EBU) (Lee et al., 2019) replays state-action trajectories in
the reverse order of state visitations in every episode. How-
ever, such an order is not equivalent to the optimal backup
order as parts of states could be updated repeatedly in a loop.
On the other hand, DisCor (Kumar et al., 2020) re-weights
the error of state transitions to approximate the optimal
backup order. However, the conservative weighting scheme
of DisCor impedes policy improvement.

We propose a method that overcomes the limitations of
prior works and speeds up convergence of Q-values esti-
mated directly from high-dimensional states. The core of
our method is an algorithm for building a graph of state-
transitions directly from visual observations. Our method
works for episodic MDPs with a discrete action space. Each
state is a node in the graph and two states are connected with

an edge if the agent transitions between them during explo-
ration. Graph building and exploration proceed iteratively.
The state-transition graph aids efficient exploration by en-
abling fast convergence of Q-values. Exploration in turn
provides data to extend the graph. Q-values are updated by
performing a reverse sweep on the graph using the breadth-
first search (BFS) algorithm (Cormen et al., 2009). BFS is
initiated from a set of terminal states because no backups are
required to determine the correct Q-value for these states.
We call this Q-learning method Topological Experience Re-
play (TER) because the update order of Q-values is based
on the topology of the state space.

2. Preliminaries
We consider reinforcement learning (RL) (Sutton & Barto,
2018) in an episodic discrete-time Markov decision process
(MDP). The objective of RL is to find the optimal policy π∗

that maximizes expected return via interaction with the envi-
ronment. A MDP can be represented by (S,A,R,P, E , T )
where S denotes the state space, A the action space, R :
S × A × S 7→ R the reward function, P : S × A 7→ S
the state transition function, E : S 7→ [0, 1] defines the
termination condition of an episode, and T the maximum
length of each episode. Starting from t = 0 in an episode,
an agent takes an action at = π(st), at ∈ A, st ∈ S , transi-
tions to the next state st+1 = P(st, at), and receives a re-
ward rt = R(st, at, st+1). The episode terminal condition
E(st+1) = 1 when the task is complete, otherwise 0. Any s
satisfying E(s) = 1 is a terminal state. The optimal policy is
π∗ = argmaxπ E

[∑T−1
τ=t γ

τ−trτ |st = s
]
∀s ∈ S, where

γ is a discount factor (Sutton & Barto, 2018).

Q-learning is a popular algorithm for reward maximiza-
tion. Q-learning approximates the Q function Q(s, a) =
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E
[∑T−1

τ=t γ
τ−trτ |st = s, at = a

]
using iterative backup

operations: Q(s, a) ← R(s, a, s′) + γmaxa′ Q(s′, a′)
where s′ is the state reached after the agent executes action
a in the state s. The policy π(s) can be easily derived as:
π(s) := argmaxaQ(s, a). When S is high-dimensional,
the Q function is usually represented by a deep neural net-
work (i.e., deepQ-network (DQN) (Mnih et al., 2015)). The
interaction data collected by the agent is stored in an experi-
ence replay buffer (Mnih et al., 2015) in the form of state
transitions (st, at, rt, st+1). The Q function is updated us-
ing stochastic gradient descent on batches of data randomly
sampled from the replay buffer.

3. Method
Our method is motivated from the backward value iteration
(BVI) algorithm (Dai & Hansen, 2007). BVI exploits the
state topology to perform the value backups backward from
the goal states. Dai & Hansen (2007) show that BVI is more
efficient at value propagation than random sampling (Bert-
sekas et al., 2000) and prioritized value backup (Moore &
Atkeson, 1993) methods. However, BVI requires the knowl-
edge of state transition function P for recursively updating
the Q-values. P is hard to obtain in high-dimensional state
space such as images. Our proposed method, Topological
Experience Replay, overcomes these challenges and scales
to high-dimensional state spaces. In Section 3.1 we describe
the procedure for building the state transition graph from
high-dimensional states. Next, in Section 3.2 we describe
how the graph is used to determine the backup order for
Q-learning.

3.1. Topological Experience Replay

The replay buffer stores a collection of trajectories and can
be thought of as a partial non-parametric transition func-
tion (van Hasselt et al., 2019). We use the data from the
replay buffer to build an unweighted graph of state transi-
tions. Because the same state can appear in multiple trajec-
tories, constructing a graph involves connecting individual
trajectories at these common states. Let unweighted graph
be G = {V,E}, where V,E denote the set of vertices and
edges, respectively. Let v ∈ V, e ∈ E denote the individual
vertices and edges, respectively. A straightforward way to
build the graph of state transitions is to process trajectories
sequentially and compare each state with existing vertices
in the graph. If the state is already in the graph, then no
new vertices are created. Otherwise, a new vertex is added
and connected with the preceding vertices in the graph with
a directed edge. Each edge between vertices, v, v′, writ-
ten as e(v, v′) therefore corresponds to a state transition
{(s′, a, r, s′)}. We update the graph in an online fashion as
more data is added to the replay buffer.

In discrete and finite state spaces, each vertex corresponds

to an individual state of the MDP. However, when oper-
ating with high-dimensional observations the state space
grows rapidly and it is not possible to store raw observa-
tions due to memory limits. Secondly, the state comparison
required to add edges in the graph can become computation-
ally expensive. These issues can be overcome by computing
a low-dimensional representation of states that also pre-
serve the local topology of the state-space. To this end,
we make use of random projection (Bingham & Mannila,
2001) which approximately preserves the distance between
states in the transformed low-dimensional spaces according
to the Johnson-Lindenstrauss lemma (Dasgupta & Gupta,
1999). Prior work has empirically found that random pro-
jections form a useful low-dimensional representation of
visual observations (Burda et al., 2019). We implement
random projection as a function φ(s) := Ms where s ∈ S,
M is a matrix with elements randomly sampled from a
normal distribution Normal(0, 1/Z), where Z denotes the
dimensionality of projected vectors1. Note that random pro-
jections are only used for graph-building. The Q function
is learned directly from the original high-dimensional state
representation.

3.2. Topological Reverse Sweep

Once the graph has been constructed, the next step is to
determine the ordering of states for updating the Q-values.
For this we maintain a record of vertices that correspond to
terminal states and this set is denoted by VE . Each terminal
vertex acts as the root node. We perform reverse breadth-
first search (BFS) on the graph starting from every terminal
vertex separately and in parallel. Given a vertex v′, we first
enumerate all its predecessors v and use the state-transition
tuple (s, a, r, s′) for updating Q(s, a). BFS only expands
each vertex once, and thus infinite loop on cyclic (i.e., bi-
directional) edges will not happen. When there is no vertex
to expand, reverse BFS is restarted from the root vertices
again. We perform BFS iteratively and repeatedly until
Q-values have converged. Note that even though terminal
states might be states that the agent has to avoid entering,
starting value backups from these states do not impede Q-
learning. For instance, propagating values from a terminal
state that gives a negative reward can make the agent learn
to avoid entering this state again, though it may not help the
agent learn the optimal policy directly.

3.3. Batch Mixing

One potential drawback of starting the reverse search from
only terminal states is that the states that are unreachable
from the terminal states will not be updated. Consequently,
the Q-values of such states are not updated, which in turn

1If s is an image, we flatten s into an one dimensional vector
before transformation
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impedes the convergence of Q-learning. Prior work (Li &
Littman, 2008) has shown that interleaving value updates
at randomly sampled transitions and that at transitions se-
lected by any prioritization mechanism (e.g., BVI) ensure
the convergence. Thus, we mix experience from TER and
PER to form training batches using a mixing ratio η ∈ [0, 1].
For each batch, η fraction of the data is from PER, and 1−η
is from TER.

4. Experiments
4.1. Setup

Environment We evaluate TER on Sokoban (Schrader,
2018) where typical RL approaches, such as DQN,
struggle due to sparse rewards (Racanière et al., 2017).
The agent perceives a 84 × 84 RGB top-down view
image of the game map, as shown in Figure 2.

Figure 2. The illustration of
Sokoban environment.

The task is complete once all
the boxes (yellow) are pushed
into the target positions (red).
The agent can only push box
on the walk-able (black).

Baselines. We compare
TER with uniform experience
replay (UER) (Mnih et al.,
2015), prioritized experience
replay (PER) (Schaul et al.,
2016), episodic backward
update (EBU) (Lee et al.,
2019), and DisCor (Kumar
et al., 2020). UER uni-
formly samples state-transition tuples from the replay
buffer. PER prioritizes experience with high temporal
difference (TD) (Sutton & Barto, 2018) errors defined
as |rt + maxa′ Q(s′, a′) − Q(s, a)|. EBU uniformly
samples an episode from the replay buffer, and replays
state-action pairs in the reverse order of state visita-
tions in every episode. For example, given an episode
[s1, a1, . . . sT−1, aT−1, rT−1, sT ], EBU updates in a se-
quence [Q(sT−1, aT−1), Q(sT−2, aT−2), . . . , Q(s1, a1)].
DisCor re-weights each Q-function update inversely
proportional to the estimated bootstrapping error
|Q∗(s′, a′)−Q(s′, a′)| of a state-action pair (s, a), where
Q∗ denotes the optimal Q-function.

Implementation. We implement double deep Q-learning
(DQN) (Van Hasselt et al., 2016) with the same architecture
used by (Mnih et al., 2015). The Q function is updated
once per four environment steps unless specified otherwise.
We use ε-greedy method for exploration. For TER, we
set the the dimension of the projected states |Z| = 3 (see
Section 3.1).

Evaluation Metric. We ran each experiment with 5 differ-
ent random seeds and report the mean (solid or dashed line)
and 95%-confidence interval estimated by the bootstrapping
method (shaded part) (DiCiccio et al., 1996) on the learning
curves. The learning curves indicate the average normalized
return over 100 testing episodes in a varying number of
environment steps.

4.2. Results

We test TER on Sokoban environments with map sizes
and the number of boxes, where we denote a configu-
ration in this format Sokoban-<map width>x<map
height>-<num. boxes>. As shown in Figure 3,
TER learns significantly faster and achieves higher final
performance than all the baselines in all tasks. Such im-
provement is even more significant when the environment
map is bigger and there are more boxes. Surprisingly, we
can see from Figure 3 that EBU and DisCor perform worse
than UER. We find that the averageQ value of EBU is much
bigger than the maximum possible return in the environment,
suggesting that EBU suffers from the over-estimation prob-
lem (Hasselt, 2010) that hinders the Q learning. On the
other hand, we find that the exploding value error estimates
in DisCor impede the learning progress, where the updates
are down-weighted exceedingly due to huge value error
estimated values.

Figure 3. The plots are ordered by task difficulty from top to bot-
tom. The performance gain of TER increases with task difficulty,
which shows that TER better exploits the sparse rewards than the
baselines.
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