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Abstract
While much of bandit learning focuses on min-
imizing regret while learning an optimal policy,
it is often of interest to estimate the maximum
value achievable before learning the optimal pol-
icy, which can be of use as an input to down-
stream tasks like model selection. Prior work
in contextual bandits has considered this in the
Gaussian setting. Here, we study the problem
of approximating the optimal policy value in the
more general linear contextual bandit problem,
and we focus on whether it is possible to do so
with less data than what is needed to learn the
optimal policy. We consider two objectives: (1)
estimating upper bounds on the value and (2) esti-
mating the value directly. For the first, we present
an adaptive upper bound that is at most logarith-
mic factor larger than the value and tight when the
data is Gaussian and show that it is possible to es-
timate this upper bound in Õ(

√
d) samples where

d is the number of parameters. As a consequence
of this bound, we show improved regret bounds
for model selection. For the second objective, we
present a moment-based algorithm for estimating
the optimal policy value with sample complex-
ity Õ(

√
d) for sub-Gaussian context distributions

whose low order moments are known.

1. Introduction
Classic paradigms in multi-armed bandits (MAB), contex-
tual bandits (CB), and reinforcement learning (RL) con-
sider a plethora of objectives from best-policy identification
to regret minimization. The meta-objective is typically to
learn an explicit, near-optimal policy from samples. The
actual performance of an optimal policy, typically denoted
as optimal value V ∗ is often unknown ahead of time. This
quantity may depend in complex ways on the nature of
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the context space, as well as the function approximators
used to represent the policy class or value functions. In
many applications, many learner’s choices such as the rich-
ness of the policy class are often unclear a priori. In such
learning situations it would be useful if it was possible to
quickly estimate V ∗ and assess the target performance value
in order to decide whether to adjust the learner’s choices
before spending valuable resources solving the task. For
example, prior work that used online policy search to op-
timize educational activity selection has sometimes found
that some of the educational activities contribute little to
student success (Antonova et al., 2016). In such settings, if
the resulting performance is inadequate, knowing this early
could enable a system designer to halt and then explore
improvements, like to introduce new actions (Mandel et al.,
2017), refine the state representation to enable additional
customization (Keramati and Brunskill, 2019) or explore
alternate policy classes, in an effort to change the system in
order to more effectively support student learning. Indeed
a number of recent papers on on-the-fly automated online
model selection for bandit and reinforcement learning set-
tings (Agarwal et al., 2017; Foster et al., 2019; Chatterji
et al., 2020; Pacchiano et al., 2020; Lee et al., 2021) lever-
age a V ∗-estimation (or closely related gap estimation) sub-
routine. Lee et al. (2021) in particular provides a clean
characterization of the additional advantages afforded to
online model selection when V ∗ can be estimated faster
than the optimal policy.

Despite its importance, the amount of data needed to es-
timate V ∗ is poorly understood in real-world settings. A
naive and expensive way to do so would be to plug in the
estimate of the value of an approximately optimal policy
learned from samples; however, this necessitates fully de-
ploying an algorithm before knowing what it is capable of.
In this work, we pursue a more ambitious agenda, and ask if
it is possible to estimate the optimal value V ∗ faster than
learning an optimal policy. Prior work suggests that this is
possible but has only considered a quite restricted setting:
(Kong et al., 2020) show that in the setting of disjoint linear
contextual bandits with Gaussian contexts with known co-
variances it is possible to estimate V ∗ accurately with only
Oε,K(

√
d) samples, a quantity significantly smaller than the

Oε,K(d) samples required to learn a good policy. Here, d is
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the number of parameters and Oε,K hides dependence on
the target accuracy ε and number of actions K.

Our work shows that this fast rate is attainable under much
more general distributional assumptions on the contexts. We
provide a range of procedures to provably estimate V ∗ and
upper-bound surrogates on V ∗ at a faster rate than estimat-
ing the optimal policy itself. Our strongest guarantees are
on the surrogates on V ∗ that are sufficient for testing model
misspecification, thereby providing improved model selec-
tion guarantees. Our results show that strong estimation-
theoretic guarantees are possible even in large-action set-
tings.

1.1. Our contributions

We consider the problem of estimating the optimal value V ∗

in a d-dimensional stochastic linear contextual bandit prob-
lem where we provide several new estimators of V ∗ and
show that they achieve the fast rateOε,K(

√
d) in a variety of

settings beyond Gaussianity. In particular: (1) We provide
information-theoretic lower bounds on the rate of estimation
of V ∗. We show that if the action set is unrestricted, the
rate of estimation for the optimal value V ∗ scales linearly
with the input dimension d in the worst case. (2) When
the contexts are sufficiently well-conditioned and second
order moments are known, a related task of estimating an
informative upper bound on V ∗ can be done with sample
complexity that is sublinear in the problem dimension. Our
upper bound is especially useful for approximating gaps
between linear model classes and can be used to improve
model selsection. (3) When the distribution of the context
vectors is sub-Gaussian and moments are known up to an
arbitrary order (i.e., known mean, covariance, etc.), we ob-
tain estimates on V ∗ directly with a large dependence on K
and the accuracy ε−1 but with sublinear sample complexity
in the dimension d. This illustrates the surprising ability of
estimating V ∗ with Oε,K(

√
d) sample size to hold much

more generally than the Gaussian setting studied in (Kong
et al., 2020).

1.2. Related Work

One can show (see Proposition 1) that in the MAB setting,
because there is a lack of shared information between the
different arms, estimating the optimal arm’s value is no eas-
ier than solving the best arm identification problem (Bubeck
et al., 2009; Audibert et al., 2010; Gabillon et al., 2012;
Karnin et al., 2013; Jun et al., 2016) (equivalently, mini-
mizing the number of samples needed to identify the best
arm with high confidence (Even-Dar et al., 2006; Maron
and Moore, 1994; Mnih et al., 2008; Jamieson et al., 2014;
Katz-Samuels and Jamieson, 2020)). Similarly, best-arm
identification has been studied in the non-contextual linear
bandit problem (Hoffman et al., 2014; Soare et al., 2014;

Karnin, 2016; Tao et al., 2018; Xu et al., 2018; Fiez et al.,
2019; Jedra and Proutiere, 2020) where each arm is associ-
ated with a fixed feature across rounds.

In this linear CB setting, as well as in the non-disjoint set-
ting (Chu et al., 2011), there is significantly more shared
structure across actions. Surprisingly little work has been
spent on trying to directly address the problem of V ∗ esti-
mation even in this case of shared structure. This problem
was first proposed by Kong et al. (2020). In the Gaussian
context setting they develop a information theoretically op-
timal and efficient algorithm which can estimate V ∗ up to ε
error within Õ(

√
dK
ε2 ) in the disjoint contextual bandits set-

ting. In this work, we consider the standard non-disjoint lin-
ear contextual bandits setting and show that V ∗-estimation
is possible under significantly broader distribution models
for the contexts. A particularly critical application of V ∗-
estimation arises in online model selection in CB (Agarwal
et al., 2017; Foster et al., 2019; Chatterji et al., 2020; Pac-
chiano et al., 2020; Lee et al., 2021). We leverage our faster
estimators of V ∗ to improve the model selection results
of (Foster et al., 2019) in the linear CB setting.

2. Preliminaries
We consider the stochastic contextual bandit problem with a
set of contexts X and a finite set of actions A = [K] (with
K = |A|). At each timestep, a context-reward pair (Xt, Yt)
is sampled i.i.d from a fixed distribution D, where Xt ∈ X
and Yt ∈ RK is a reward vector indexable by actions from
A. Upon seeing the context Xt, the learner chooses an
action At and collects reward Yt(At).

Let f∗(x, a) = E[Y (a) | x] and let π∗ be the optimal policy
such that π∗(x) ∈ arg maxa∈A f

∗(x, a). The quantity of
interest throughout this paper is the average value of the
optimal policy, defined as

V ∗ := E Y (π∗(X)) = EX max
a∈A

f(X, a) (1)

For an arbitrary policy π : X → A, we define V π =
E Y (π(X)). In contextual bandits the learner’s goal is
typically to either propose a sequence of policies {πt}t∈[T ]

that minimizes cumulative regret

RegT (π1:T ) =
∑
t∈[T ]

V ∗ − V πt (2)

or to sample-efficiently find a policy π̂ such that V ∗−V π ≤
ε for some target ε > 0. We restrict our attention to the
linear contextual bandit. We assume that there is a known
feature map φ : X × A → Rd and a vector θ ∈ Rd such
that f(x, a) = 〈φ(x, a), θ〉 for all x ∈ X , a ∈ A.
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2.1. Distribution Assumptions

Throughout this work we make certain distributional as-
sumptions whose definitions we introduce in this sec-
tion. A random variable Z is sub-Gaussian if there
exists σ > 0 such that E [|Z|p]1/p ≤ σ

√
p for all

p ≥ 1 and we define ‖Z‖ψ as the smallest such σ:
‖Z‖ψ2

:= supp≥1 p
−1/2E [|Z|p]1/p. A random vector

Z is sub-Gaussian if there exists σ such that ‖Z‖ψ2
:=

supv∈Sd−1 ‖
〈
Z, v

〉
‖ψ2
≤ σ.

We assume that the mean reward for any fixed action is
zero. That is, Ef∗(X, a) = 0 for all a ∈ A and Y (a) −
E[Y (a)|X] ∼ subG(σ2) for all a ∈ A. Now, we state two
distributional assumptions on the context distributions that
will be common throughout the rest of the paper. Some
additional assumptions will be required later for certain
individual results.

Assumption 1. The covariance matrices Σa =
Σa := EX

[
φ(X, a)φ(X, a)>

]
and Σa,a′ =

EX
[
(φ(X, a)− φ(X, a′)) (φ(X, a)− φ(X, a′))

>
]

are
known. Furthermore, The average covariance matrix of all
actions a ∈ [K] is the identity: Σ := 1

K

∑
a∈[K] Σa = Id.

The identity requirement is essentially requiring that the
average covariance matrix Σ is well-conditioned as we can
simply apply a linear transformation Σ−1/2φ(X,A) where
A ∼ Unif[K] to whiten the data. That these covariance
matrices are known1 is realistic in settings when a large
amount of non-interaction data is available, i.e., unlabeled
data from D only containing the context X , in which case
Σa and Σa,a′ can be estimated with high accuracy. This
known covariance setting was also previously considered
by (Kong et al., 2020).

Assumption 2. Let (X,Y ) ∼ D be an independent context-
reward pair. There are constants σ, τ > 0 such that the
following is satisfied. For all a ∈ [K], (1) Eφ(X, a) = 0.
(2) the noise η(a) := Y (a) − f(X, a) is independent of
X and sub-Gaussian with ‖η‖ψ2

≤ σ. (3) φ(X, a) is sub-
Gaussian with ‖φ(X, a)‖ψ2

≤ τ .

The above is a major departure from (Kong et al., 2020) who
instead made the restrictive assumption that η and φ(X, ·)
be Gaussian. The weaker conditions of Assumption 2 allow
for far more general distributions. Finally, we note that
there is a careful balance between requiring that the average
covariance matrix be identity and requiring that the sub-

1In settings where the covariance matrix is unknown, we can
frequently plug in an estimate of the covariance matrix from a
larger number of unlabeled samples and obtain similar guarantees
as in the known-covariance case; this is particularly useful in
the model selection problem for contextual bandits (Foster et al.,
2019). In the absence of a plethora of unlabeled data, impossibility
results on estimating V ∗ are well-known even in the single-action
setting (Verzelen et al., 2018).

Gaussianity parameter τ be constant, which necessarily
precludes ill-conditioned distributions. In the next section,
we show that both known and well-conditioned covariance
matrix Σ is in fact critical to obtain the sublinear estimation
results of this work.
3. Hardness Results
We begin the discussion of V ∗ estimation with several nega-
tive results, showing that, in certain problem settings, it is
not possible to do significantly better than simply finding
the optimal policy. A natural starting point is the classical
K-armed bandit problem where f∗(x, a) is independent of
x (and for this part only we assume that the means are non-
zero), equivalently represented as a mean vector µ ∈ RK .
The feedback is the same: Y (a) = µa + η(a). In this case,
V ∗ is defined as V ∗ = maxa µa. The following proposi-
tion asserts that it is not possible to get significantly better
dependence on K or ε in estimating V ∗.

Proposition 1. There exists a class ofK-armed bandit prob-
lems satisfying ‖µ‖1 = O(1) such that any algorithm that
returns an ε-optimal estimate of V ∗ with probability at least
2/3 must use Ω(K/ε2) samples.

The lower bound for the multi-armed bandit problem can
be readily converted to a lower bound for certain linear
contextual bandits as well, showing that one can expect at
least linear dependence on d in the large action regime.

Proposition 2. There exists a class of linear contextual
bandit problems satisfying Assumption 2, with φ : X ×A →
Rd and K ≥ d, such that any algorithm that returns an ε-
optimal estimate of V ∗ with probability at least 2/3 must use
Ω(d/ε2) samples. Under the same assumption, there exists
a class of linear contextual bandit problem withK = 2, and
an absolute constant c, such that any algorithm that returns
an c-optimal estimate of V ∗ with probability at least 2/3
must use Ω(d) samples.

The first lower bound (for large action-settings) holds even
when the algorithm has full knowledge of the covariance
matrix Σ of all the actions. The second lower bound holds
even in the Gaussian setting, but only when the covariance
structure is unknown to the algorithm. Even with knowl-
edge of the covariance, certain non-Gaussian distributions
over covariates, such as the construction above, can force a
lack of sharing of information that prevents the desired fast
estimation even under the conditions of Assumption 2.

These lower bounds suggest that, in general, optimal pol-
icy value estimation is no easier than learning the optimal
policy itself. It is natural then to ask if fast estimation is
possible at all outside of the Gaussian case. In the following
sections, we answer this affirmatively and present several
positive results made possible by leveraging some additional
a structure. In particular a known and well-conditioned
covariance by virtue of Assumption 1 proves critical for
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such positive results. Note that one of the key aspects
of the lower bound construction in Proposition 2 is that
the covariate distribution has fairly small singular values:
Eφ(X, a)φ(X, a)> = 1

d Id.

4. Estimating Upper Bounds on V ∗

We now present several positive results made possible by
leveraging some additional structure. The first will concern
a variant of the V ∗ estimation problem: here, our goal
will be to instead approximate V ∗ with an upper bound
and then estimate this upper bound efficiently. Our main
insight is to upper-bound the stochastic process given by
{〈θ, φ(X, a)〉}a∈[K] with a Gaussian process matched in
covariance, and then estimate the covariance matrix of the
Gaussian process. For this to work, we make the following
sub-Gaussian process assumption.

Assumption 3. There exists an absolute constant L0 such
that, for all v ∈ Sd−1 and a, a′ ∈ [K],

‖ 〈φ(X, a), v〉 − 〈φ(X, a′), v〉 ‖ψ2
(3)

≤ L0‖ 〈φ(X, a), v〉 − 〈φ(X, a′), v〉 ‖L2 (4)

Under Assumption 3, we now provide an explicit upper
bound on V ∗ and estimate it at a fast rate.

Theorem 1. Under Assumptions 1, 2,and 3, there are
absolute constants C1, C2 > 0 and a Gaussian process
(Za)a∈[K] with U = Emaxa Za such that

V ∗ ≤ C1 · U ≤ C2 · V ∗
√

logK (5)

Furthermore, for δ ≤ 1/e, there exists an estimator Û such
that with probability at least 1− δ,

|U − Û | ≤ O

(√
‖θ‖ log(K/δ)

n1/4
+
d1/4 log3/2(dK/δ)√

n

)
(6)

When the process φ(X, ·) is Gaussian, we have V ∗ = U
and Û estimates V ∗ exactly.

Perhaps surprisingly, the result can viewed as a direct
combination of Talagrand’s comparison inequality (which
arises as a consequence of Talagrand’s fundamental “generic
chaining” approach in empirical process theory (Talagrand,
2006)), and similar techniques as those developed by (Kong
et al., 2020) for estimating V ∗ in the Gaussian case, but for
non-disjoint arms.

4.1. Application to Model Selection

Following a similar setup to that of (Foster et al., 2019),
we consider two nested linear function classes F1 and F2

where Fi = {(s, a) 7→ 〈φi, θ〉 : θ ∈ Rdi}. Here, φi maps

to Rdi where d1 < d2, and the first di components of φ1

are identical to φ2. In other words, the function classes are
nested, i.e. F1 ⊆ F2. The objective is to minimize regret,
as defined in Equation (2).

Throughout, we assume that F2 realizes f∗; however, if F1

also realizes f∗, we would ideally like the regret to scale
with d∗ := d1 instead of d2, as d1 � d2 potentially. If
F1 does not realize f∗, then we accept regret scaling with
d∗ = d2. The ultimate goal of online model selection is to
achieve a regret bound that is poly(d∗,K, T ). Our improved
estimators for V ∗ imply improved bounds on online model
selection, as stated below.

Theorem 2. There exists a model selection algorithm such
that, with probability at least 1− δ,

RegT = O
(
d

1/4
∗ T 2/3 log3/2(d∗TK/δ) log1/2(K)

)
(7)

+O
(√

d∗KT log(d∗) · log(TK/δ)
)

(8)

5. A Moment-Based Estimator of V ∗

Thus far, we have shown an upper bound for V ∗ and a
method of estimating it at a fast rate; however, the question
of whether it is possible achieve sublinear complexity for
estimating V ∗ itself in the general case remains open. In
this section, we present our main result, which is an esti-
mator that achieves this task in Õ(

√
d) samples. The full

algorithm is presented in Algorithm 3 in Appendix C along
with intuition for the estimator. The main idea is to first
consider a tth-orderK-variate polynomial approximation of
the K-variate max function. The problem of V ∗ estimation
is then reduced to the problem of estimating the multivariate
moments between the {〈θ, φ(X, a)〉}a∈A random variables.

Assumption 4. For all a ∈ A, the covariance ma-
trix is identity: Σa := EX

[
φ(X, a)φ(X, a)>

]
= Id

and there exists a constant L > 0 such that for any
v, u ∈ Rd, E

[
(φ(X, a)>v)2(φ(X, a)>u)2

]
≤ L ·

E
[
(φ(X, a)>v)2

]
E
[
(φ(X, a)>u)2

]
.

Assumption 5. For all a ∈ A, the expected reward condi-
tioned on X satisfies 〈φ(X, a), θ〉 ∈ [−1, 1].

We furthermore assume that all moments up to degree t of
〈φ(X, ·), v〉 for any v ∈ Sd−1 are known or can be com-
puted.

5.1. Main Result

Our main result, stated below, shows that it is indeed pos-
sible to estimate V ∗ to high accuracy with Oε,K(

√
d) sam-

ples under these assumptions using Algorithm 3 to esti-
mate the expected value of a particular degree t polynomial,
pt : [−1, 1]K → R.

Theorem 3. Let assumptions 1, 2, 4, and 5 hold. Let
Ŝn =

∑
α : |α|≤t cαŜn,α as defined in Algorithm 3 be
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the estimator of EXpt up to degree t. There is an abso-
lute constant C > 0 such that with probability at least
1− t(et/K + e)Kδ,

|V ∗ − Ŝn| ≤
CK
t

(9)

+ t (et/K + e)
K
cmax · Ct/2tt ·

t∑
s=1

(√
d

n
· log(1/δ)

)s/2
(10)

where CK is a constant that depends only on K.

The bound shows that it is indeed possible to estimate V ∗

with sublinear sample complexity in d beyond only the Gaus-
sian case. In particular, it is possible to estimate V ∗ even
when d� n, i.e. for high-dimensional problems. Note that
the degree of the polynomial pt controls the approximation
error. With an appropriate choice of t, we have the following
corollary, making this trade-off explicit.

Corollary 1. Under the same assumptions as Theorem 3,
estimator Ŝn generated by Algorithm 3 satisfies |V ∗−Ŝn| ≤
ε for ε < 1 with probability at least 1 − δ and sample
complexity

O

(
K

(
CK
ε

)K+CK/ε

·
√
d

ε2
· log

(
CK
εδ

))
(11)

where CK is a constant that depends only on K.

The above corollary explicitly exhibits the
√
d dependence

in the sample complexity of estimation task. However, the
major drawback of this estimator is exponential dependence
on both ε−1 and K, which arise as a result of exponentially
large variance for estimators of the moments. It remains an
open question whether a

√
d ·poly(K, ε−1) algorithm exists

for V ∗ estimation in this general setting.

6. Discussion
In this paper, we studied the problem of estimating the opti-
mal policy value in a linear contextual bandit problem before
learning the optimal policy itself. We considered this prob-
lem beyond the Gaussian case, and presented estimators for
both V ∗ and informative upper bounds on V ∗. In particular,
we showed that a fast Oε,K(

√
d) is possible for estimating

V ∗ directly, given that moments of the context distribution
are known up to an arbitrary degree. However, there are
several remaining open questions. While Theorem 3 shows
that a Oε,K(

√
d) sample complexity is possible, the algo-

rithm is not very practical as it requires a large polynomial
approximation and, as a result, has exponential dependence
on ε−1 andK. We ask whether there is a practical algorithm
with a similar guarantee or, even better, a practical algorithm
with only

√
d · poly(K, ε−1) sample complexity. It would

also be interesting to explore how the sample complexity

degrades if the higher moments of the context distribution
are not known exactly or must be estimated from the same
data that is collected.
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A. Proofs of Results in Section 3
A.1. Additional Notation

We use [n] = {1, . . . , n} for n ∈ N. For any vector v ∈ Rd,
‖v‖ = ‖v‖2. For any matrix M ∈ Rd×d, ‖M‖ denotes
the operator norm and ‖M‖F the Frobenius norm. For a
random variable Z, ‖Z‖L2 = (EZ2)1/2. We denote the
d-dimensional unit sphere Sd−1 = {v ∈ Rd : ‖v‖ = 1}.
We call

(
[n]
s

)
the set of s-combinations of [n] and use the

symbol Id to denote the d × d identity matrix. We use
C1, C2, . . . to refer to absolute constants independent of
problem parameters. Throughout, we use δ to represent a
desired failure probability and assume δ ≤ 1/e. The symbol
. means ≤ up to a constant.

A.2. Proposition 1

The proof of the lower bound for the K-armed bandit prob-
lem follows a standard argument via Le Cam’s method. Let
V̂n denote the output of a fixed algorithm A after n inter-
actions with the bandit that achieves |V̂n − V ∗| ≤ ε with
probability at least 2/3. We let ν and ν′ denote two separate
bandit instances, determined by their distributions.

For shorthand, Pν and Pν′ denote measures under these
instances for the fixed, arbitrary algorithm (and similarly
expectations Eν and Eν′ ). Na denotes the (random) number
of times the fixed algorithm sampled arm a.

We let ν be distributed as N (µa, 1) for all a where µ =
(ε, 0, . . . , 0). Then, define a′ ∈ arg mina 6=1 Eν [Ta] and
let ν′ be distributed as N (µ′a, 1) where µ′a = µa for all
a 6= a′ and µ′a′ = 4ε. We define the successful events
Eν = {V̂n ∈ [0, 2ε]} and Eν′ = {V̂n ∈ [3ε, 5ε]}.

By Le Cam’s lemma and Pinsker’s inequality,

Pν(Ecν) + Pν′(Eν) & 1−
√
DKL(Pν , Pν′) (12)

where DKL(Pν , Pν′) . Eν [Na′ ] ε
2 ≤ nε2

K−1 (Lattimore
and Szepesvári, 2018, Lemma 15.1). It then follows that the
probability of the successful event is bounded as

Pν(Eν) ≤ Pν′(Eν) + C

√
nε2

K − 1
(13)

≤ Pν′(Ecν′) + C

√
nε2

K − 1
(14)

≤ 1

3
+ C

√
nε2

K − 1
(15)

for some constant C > 0. Thus, in order for Pν(Eν) ≥ 2/3

it must be that n ≥ (K−1)
9C2ε2 . It follows that any algorithm

that achieves such a condition must incur sample complexity
Ω(K/ε2).

A.3. Proposition 2

Proof. Proof of the first lower bound. Fix algorithm A
for the linear contextual bandit problem. Then consider the
class of d2 -armed bandit problem with means vectors satisfy-
ing ‖µ‖ = O(1). From this class, we construct the follow-

ing class of linear contextual bandits. Let θ =

[
µ
−µ

]
∈ Rd.

The set of contexts is X = {1, 2} and the feature map is
defined as

φ(x, a) =

{
ea x = 1

−ea x = 2
(16)

where {e1, . . . , ed} ⊆ Rd denotes the set of standard ba-
sis vectors. Then, X = 1 and X = 2 each with prob-
ability 1

2 . This ensures that Eφ(X, a) = 0 for any fixed
action a. Furthermore, ‖Xa‖ψ2 = Θ(1). Note that
V ∗ = Emaxa 〈φ(X, a), θ〉 = maxa µa.

Now we construct the reduction by specifying an algorithm
B for the d

2 -armed bandit. At each round, B samples X ∼
Unif{1, 2} and queries A for an arm A. Upon observing
feedback Y (A) = µA + η(A), B feeds Y (A) back to A
if X = 1 and −Y (A) if X = 2. This process is repeated
for n rounds and A outputs an estimate V̂n, which B also
outputs. If A outputs V̂n such that |V̂n − V ∗| ≤ ε for any
given instance in the linear contextual bandit then V̂n is
also an ε-optimal estimate of maxa µa. Therefore, to satisfy
|V̂n − V ∗| ≤ ε, it follows that n = Ω(d/ε2).

Proof of the second lower bound. Here we prove the sec-
ond statement of the proposition that even for K = 2, it
takes Ω(d) samples to estimate V ∗ up to small constant
additive error c. The proof simply follows from the hard
instance for signal-noise-ratio (SNR) estimation problem in
Theorem 3 of (Kong and Valiant, 2018).

Let Qn(P) be the distribution of (x1, y1, . . . , xn, yn) such
that (θ, σ,Σ) ∼ P , xi ∼ N(0,Σ), yi = xi + ηi, ηi ∼
N(0, σ2). Let the “pure noise” distribution P0 satisfies
θ = 0,Σ = Id, σ2 = 1 almost surely. Theorem 3 of (Kong
and Valiant, 2018) relies on the fact that there exists a “pure
signal” distribution P1 over (θ, σ,Σ) which is constructed
by randomly rotating a d-dimensional isotropic Gaussian
distribution in the d+ 1 dimensional space. The covariance
Σ drawn from distribution P1 is bad conditioned and has
smallest eigenvalue being O(1/d) with large probability. In
addition, the distribution P1 satisfies P(‖θ‖ ≥ 1/2) ≥ 1/2,
and ‖Σ‖ ≤ 1, σ = 0 almost surely, and it holds that

dTV (Qn(P0),Qn(P1)) ≤ 1/3, (17)

with n = c · d for some constant c. The hard case for
the bandits problem follows immediately. We construct
the “pure signal” bandit instance using (θ, σ,Σ) ∼ P1, and
for each arm a ∈ [2], define φ(X, a) ∼ N(0,Σ), Y (a) =
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Algorithm 1 Estimator of Upper Bound on V ∗

1: Input: Number of interactions n, failure probability
δ ≤ 1/e.

2: Set m = n
2 .

3: Initialize empty dataset D
4: for i = 1, . . . , n do
5: Sample independently xi ∼ D and ai ∼ Unif[K].

Receive reward yi
6: Add tuple (xi, ai, yi) to D
7: end for
8: Split dataset D evenly into {xi, ai, yi}i∈[m] and
{x′i, a′i, y′i}i∈[m].

9: Compute estimators θ̂ = 1
m

∑
i∈[m] yiφ(xi, ai) and

θ̂′ = 1
m

∑
i∈[m] y

′
iφ(x′i, a

′
i)

10: for a, a′ ∈ [K] such that a 6= a′ do
11: Set β̂a,a′ := θ̂>Σa,a′ θ̂

′

12: end for
13: Λ̃ = arg minλ∈SK+ maxa 6=a′ |λa,a + λa′,a′ − 2λa,a′ −

β̂a,a′ |
14: Return Emaxa∈[K] Z̃ where Z̃ ∼ N (0, Λ̃)

θ>φ(X, a). It is easy to see that in this case, EV ∗ = Ω(1).
The other bandit instance is a simple “pure noise” example
where φ(X, a) ∼ N(0, Id), Y (a) ∼ N(0, 1), and clearly
EV ∗ = 0 since θ = 0. For any bandit algorithm for estimat-
ing V ∗, after cn/2 rounds, even if all the rewards (regard-
less of which arm gets pulled) are shown to the algorithm
the total variation distance is between the two example is
still bounded by 1/3 through Equation 17. Therefore, we
conclude any bandit algorithm must incur Ω(1) error for
estimating V ∗ with probability at least 2/3 when n = c · d.

B. Proofs of Results in Section 4
B.1. Proof of Theorem 1

The proof relies on Talagrand’s comparison inequality for
sub-Gaussian processes. Here, we state a version that ap-
pears in (Vershynin, 2018).

Lemma 1. Let (Wa)a∈[K] be a mean zero sub-Gaussian
process and (Za)a∈[K] a mean zero Gaussian process satis-
fying ‖Wa −Wa′‖ψ2 . ‖Za − Za′‖L2 . Then,

E max
a∈[K]

Wa . E max
a∈[K]

Za (18)

By Assumption 3, note that

‖ 〈φ(X, a)− φ(X, a′), θ〉 ‖2ψ2
≤ L2

0‖ 〈φ(X, a)− φ(X, a′), θ〉 ‖2L2

(19)

Thus, we can define a Gaussian process Z ∼ N (0,Λ) that
satisfies the condition in Talagrand’s inequality by choos-
ing its mean to be zero and its covariance matrix to match
the increment of the original sub-Gaussian process φ(X, ·).
Note that such a process trivially exists since we can let Λ
satisfy:

Λa,a′ = cov(Za, Za′) = E [〈φ(X, a), θ〉 〈φ(X, a′), θ〉]
(20)

Then, the first inequality in the theorem is satisfied with
U = Emaxa∈[K] Za. The proof of the second inequality is
deferred to Section B.1.1.

Since θ is unknown, our goal now is to estimate the incre-
ment ‖ 〈φ(X, a)− φ(X, a′), θ〉 ‖2L2 from samples. Specifi-
cally, we aim to estimate the following quantities:

• For all a, a′ ∈ [K] such that a 6= a′,
βa,a′ := E

[
〈φ(X, a)− φ(X, a′), θ〉2

]
=

θ>Σa,a′θ where Σa,a′ =
E
[
(φ(X, a)− φ(X, a′)(φ(X, a)− φ(X, a′))>

]
.

We can construct fast estimators for these quantities using
similar techniques as those developed in (Kong and Valiant,
2018). While a similar final result is obtained in that paper
by Chebyshev’s inequality and counting, here we present a
version that is carried out with a couple simple applications
of Bernstein’s inequality. Algorithm 1 specifies the form of
the estimator and the data collection procedure.

Lemma 2. Fix a, a′ ∈ [K] such that a 6= a′ and define
ξ2 = τ2(τ2‖θ‖2 + σ2). Let δ ≤ 1/e. Given the dataset
Dn = {xi, ai, yi}, with probability at least 1− 3δ,

|β̂a,a′ − βa,a′ | ≤

√
ξ2‖Σ‖2‖θ‖2

C1m
· log(2/δ) (21)

+

√
ξ4‖Σ‖2d
C2m2

· log2(2d/δ) (22)

for absolute constants C1, C2 > 0.

Proof. Consider an arbitrary pair a, a′ and covariance ma-
trix Σa,a′ . For convenience, we drop the subscript notation
and just write Σ. The argument will be the same for all
pairs, including when a = a′. The dataset Dn is split into
two independent datasets Dm and D′m of size m = n

2 . Let
φi := φ(xi, ai) as shorthand and the same for φ′i.

First, we verify that β̂a,a′ is indeed an unbiased estimator
of βa,a′ :

E
[
θ̂>Σθ̂′

]
= E

[
yiy
′
jφ
>
i Σφ′i

]
= θ>Σθ (23)
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which follows by independence of the datasets Dm and
D′m and the fact that the covariance matrix under the uni-
form data collection policy is the identity. By adding and
subtracting and then applying the triangle inequality, we
have

|θ̂>Σθ̂′ − θ>Σθ| = |θ>Σθ̂′ − θ>Σθ|︸ ︷︷ ︸
Term I

+ |θ̂>Σθ̂′ − θ>Σθ̂′|︸ ︷︷ ︸
Term II

(24)

and we focus on bounding each term individually. We
start with the first. Note that ‖θ>Σφ′i‖ψ2 ≤ ‖Σθ‖τ and
‖y′i‖ψ2

.
√
τ2‖θ‖2 + σ2. Therefore, we have that the

term φ′i,ky
′
i is sub-exponential with parameter ‖φ′i,ky′i‖ψ1 .

τ‖Σθ‖
√
τ2‖θ‖2 + σ2 = ξ‖Σθ‖, where recall that we have

defined ξ2 = τ2(τ2‖θ‖2 + σ2). Then, by Bernstein’s in-
equality,

P

 1

n

∑
i∈[n]

θ>Σφ′i,ky
′
i − θ>Σθ ≥ t

 (25)

≤ exp

(
−C min

{
nt2

‖Σθ‖2ξ2
,

nt

‖Σθ‖ξ

})
(26)

for some absolute constant C > 0, and the negative event
occurs with the same upper bound on the probability. This
implies

| 1
m

∑
i∈[m]

θ>Σφ′iy
′
i − θ>Σθ| ≤

√
ξ2‖Σθ‖2
Cm

· log(2/δ)

(27)

For the second term, we condition on the data in D′ and
then apply the same calculations. The difference is that
‖φiΣθ̂′‖ψ2

≤ τ‖Σθ̂′‖ and so the bound becomes

| 1
m

∑
i∈[m]

yiφ
>
i Σθ̂′ − θ>Σθ̂′| ≤

√
ξ2‖Σθ̂′‖2
Cm

· log(2/δ)

(28)

with probability at least 1− δ.

It suffices now to obtain a high probability bound on ‖θ̂′‖,
showing that it is close in value to ‖θ‖. Let φ′i,k and θk
denote the kth elements of φ′i and θk, respectively. Similar
to the previous proof, we have that

‖φ′i,ky′i‖ψ1 . ξ (29)

by multiplication of the sub-Gaussian random variables. By
Bernstein’s inequality, with probability 1−δ, for all k ∈ [d],

| 1
m

∑
i∈[m]

φ′i,ky
′
i − θk| ≤

√
ξ2

Cm
· log(2d/δ) (30)

for some constant C > 0. Under the same event,

‖θ̂′ − θ‖ ≤
√
dξ2

Cm
· log(2d/δ) (31)

by standard norm inequalities. The triangle inequality then
yields

‖θ̂′‖ ≤ ‖θ‖+

√
dξ2

Cm
· log(2d/δ) (32)

Finally, we are able to put these three events together:

|θ̂>Σθ̂′ − θ>Σθ| ≤
√
ξ2‖Σθ‖2
Cm

· log(2/δ) +

√
ξ2‖Σθ̂′‖2
Cm

· log(2/δ)

(33)

≤
√
ξ2‖Σθ‖2
Cm

· log(2/δ) +

√
2ξ2‖Σ‖2‖θ‖2

Cm
· log(2/δ)

(34)

+

√
2ξ4‖Σ‖2d
C1m2

· log2(2d/δ) (35)

≤

√
8ξ2‖Σ‖2‖θ‖2

C2m
· log(2/δ) (36)

+

√
2ξ4‖Σ‖2d
C2m2

· log2(2d/δ) (37)

with probability at least 1− 3δ by the union bound over the
three events.

Define β̃a,a′ = Λ̃a,a + Λ̃a′,a′ − 2Λ̃a,a′ , and Z̃ ∼ N(0, Λ̃)

where Λ̃ is the result of the projection onto SK+ using β̂
as defined in Line 13 of Algorithm 1. Since Λ is positive
semidefinite, the fact that

|βa,a′ − β̂a,a′ | ≤ O

(
‖θ‖ log(K/δ)√

n
+

√
d · log2(dK/δ)

n

)
,

(38)

and the optimality of Λ̃ in Algorithm 1, we have

|β̂a,a′ − β̃a,a′ | ≤ O

(
‖θ‖ log(K/δ)√

n
+

√
d · log2(dK/δ)

n

)
.

(39)

Triangle inequality then immediately implies the following
element-wise error bound on the increment

|βa,a′ − β̃a,a′ | ≤ O

(
‖θ‖ log(K/δ)√

n
+

√
d · log2(dK/δ)

n

)
(40)

with probability at least 1− δ.

Now we apply the following error bound due to (Chatterjee,
2005).
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Lemma 3 (Theorem 1.2, (Chatterjee, 2005)). Let W and
W̃ be two Gaussian random vectors with EWa = EW̃a for
all a ∈ [K]. Define γa,a′ = ‖Wa −Wa′‖2L2

and γ̃a,a′ =

‖W̃a − W̃a′‖2L2
and Γ = maxa,a′ |γ̃a,a′ − γa,a′ |. Then,

|E max
a∈[K]

Wa − E max
a∈[K]

W̃a| ≤
√

Γ logK (41)

Therefore, by the union bound over at most K2 terms βa,a′ ,
the final bound becomes

|U − E max
a∈[K]

Z̃a| ≤ O

(√
‖θ‖ log(K/δ)

n1/4
+
d1/4 log3/2(dK/δ)√

n

)
(42)

with probability at least 1− δ.

B.1.1. PROOF OF THE SECOND INEQUALITY

Here we prove the second inequality in the theorem state-
ment that

√
logK · V ∗ & U

Lemma 4. Let (Wa)a∈[K] be a mean zero sub-Gaussian
process such that ‖Wa −Wa′‖ψ2 . ‖Wa −Wa′‖L2 , then

E max
a∈[K]

Wa & max
a,a′∈[K]

‖Wa −Wa′‖L2 (43)

Proof. Let random variable Wb,Wb′ achieve the maximum
for maxa,a′∈[K] ‖Wa −Wa′‖L2 .

Emaxa∈[K]Wa ≥ Emax(Wb,Wb′) Define Z = Wb′ −
Wb, then

Emax(Wb,Wb′)

=E[Wb|Z ≤ 0]P[Z ≤ 0] + E[Wb + Z|Z > 0]P[Z > 0]

=E[Wb|Z ≤ 0]P[Z ≤ 0] + E[Wb|Z > 0]P[Z > 0] + E[Z|Z > 0]P[Z > 0]

=E[Wb] + E[Z|Z > 0]P[Z > 0]

=E[Z|Z > 0]P[Z > 0]

Since E[Z|Z > 0]P[Z > 0] + E[Z|Z < 0]P[Z < 0] = 0,
we have

E[Z|Z > 0]P[Z > 0] = E[|Z|]/2 (44)

Thus, we just need to lower bound E[|Z|]. Due to the sub-
Gaussian assumption on Z, it holds that for a constant K0,

P(|Z| > t) ≤ exp(− t2

K0‖Z‖2L2

)

Let C be a constant such that∫ ∞
C‖Z‖L2

t exp(− t2

K0‖Z‖2L2

)dt

=K0‖Z‖2L2 exp(−C
2

K0
)

=‖Z‖2L2/20.

Then,

‖Z‖2L2 = 2

∫ ∞
0

tP(|Z| > t)dt

= 2

∫ C‖Z‖L2

0

tP(|Z| > t)dt+ 2

∫ ∞
C‖Z‖L2

tP(|Z| > t)dt

le2

∫ C‖Z‖L2

0

tP(|Z| > t)dt+ 2

∫ ∞
C‖Z‖L2

t exp(− t2

K0‖Z‖2L2

)dt

≤ 2C‖Z‖L2

∫ C‖Z‖L2

0

P(|Z| > t)dt+ ‖Z‖2L2/10

≤ 2C‖Z‖L2E[|Z|] + ‖Z‖2L2/10.

This implies that E[|Z|] ≥ 9
20C ‖Z‖L2 . Combining with

Equation 44 yields

E max
a∈[K]

Wa & ‖Wb′ −Wb‖L2

Proposition 3. Let (Za)a∈[K] be a mean zero Gaussian
process, then

E max
a∈[K]

Za .
√

logK max
a,a′∈[K]

‖Za − Za′‖L2 (45)

Proof. This is a simple corollary of Sudakov-Fernique’s
inequality (see, e.g. Theorem 7.2.11 in (Vershynin,
2018)). Define mean zero Gaussian process Ya, a ∈
[K] such that each Ya is sampled independently from
N(0,maxa,a′∈[K] ‖Za − Za′‖2L2). By Sudakov-Fernique’s
inequality, it holds that

E max
a∈[K]

Za ≤ E max
a∈[K]

Ya.

We conclude the proof by combining with classical fact that

max
a∈[K]

Ya .
√

logK max
a,a′∈[K]

‖Za − Za′‖L2

Applying Lemma 4 on V ∗ yields

V ∗ & max
a,a′∈[K]

‖ 〈φ(X, a)− φ(X, a′), θ〉 ‖L2 .

By the definition of the Gaussian process Z, its increment
is bounded by maxa,a′∈[K] ‖ 〈φ(X, a)− φ(X, a′), θ〉 ‖L2 ,
therefore applying Proposition 3 for U yields

U .
√

logK max
a,a′∈[K]

‖ 〈φ(X, a)− φ(X, a′), θ〉 ‖L2 .

This concludes the proof.
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Algorithm 2 Model Selection with Gaussian Process Upper
Bound

1: Input: Rounds T , failure probability δ ≤ 1/e, con-
stants C0, C1

2: Set tmin = C0 log3/2(T log T/δ)

3: Set αt = C1 · d
1/4
2 log3/2(d2KT/δ)

t1/3

4: Initialize exploration dataset S0 = {}
5: Initialize algorithm Alg1 ← Exp4-IX(F1).
6: Sampler Bernoulli Zt ∼ ber(t−1/3) for all t ∈ [T ]
7: for t = 1, . . . , T do
8: Sample independently xt ∼ D and
9: if Zt = 1 then

10: Sample at ∼ Unif[K], observe yt
11: Add to dataset: St = (xt, at, yt) ∪ St−1

12: else
13: Sample at from Algt, observe yt
14: Update Algt with (xt, at, yt)
15: St = St−1

16: Algt+1 ← Algt
17: end if
18: Estimate Ût from St.
19: if t ≥ tmin and Ût > 2αt then
20: Set algorithm Algt+1 ← Exp4-IX(F2)
21: end if
22: end for

B.2. Proof of Theorem 2

The algorithm that achieves the regret bound in Theorem 2
is presented in Algorithm 2. The main idea is that the
algorithm starts with model class F1, the simpler one, and
runs an Exp4-like algorithm under F1. However, it will
randomly allocate some timesteps for exploratory actions
where the uniform random policy is applied. From the
exploration data, if it is detected that the gap is non-zero
with high confidence, then the algorithm switches to F2.
The critical component of the algorithm is in detecting the
non-zero gap and then bounding the worst-case performance
when the gap is non-zero but it has not been detected yet.

We require several intermediate results in order to prove
the regret bound. The first is a generic high probability
regret bound for a variant of Exp4-IX as given by Algorithm
4 of (Foster et al., 2019), which is a modification of the
algorithm proposed by (Neu, 2015). Let πθi be the argmax
policy induced by θi where θi is defined is defined as

θi = arg min
θ

1

K

∑
a∈[K]

E (〈φi(X, a), θ〉 − Y )
2 (46)

Note that the policy πθ1 may not be the same as the policy
that maximizes value.

Lemma 5 ((Foster et al., 2019), Lemma 23). With probabil-

ity at least 1− δ, for any t ∈ [T ], Exp4-IX for model class
Fi satisfies

t∑
s=1

V πθi − V πs ≤ O
(√

ditK log(di) · log(TK/δ)
)
(47)

The second result we require is high probability upper and
lower bounds on the number of exploration samples we
should expect to have at any time t ∈ [T ]. We appeal to
Lemma 2 of (Lee et al., 2021), as the exploration schedules
are identical.

Lemma 6 ((Lee et al., 2021), Lemma 2). There are con-
stants C1, C2 > 0 such that, with probability 1 − δ,
C1t

2/3 ≤ |St| ≤ C2t
2/3 for t ≥ C0 log3/2(T log T/δ).

The last intermediate result leverages the upper bound esti-
mator from Theorem 1. We will define a Gaussian process,
which we prove will act as an upper bound on the gap in
value between the model classes. Let Z ∼ N (0,Λ) where

Λa,a′ = E [〈φ(X, a), θdiff〉 〈φ(X, a′), θdiff〉] (48)

for all a, a′ ∈ [K] and θdiff = θ2 −
[
θ1

0

]
. The following

lemma establishes these upper bounds and shows that we
can estimate Emaxa∈[K] Za at a fast rate. The critical prop-
erty of this upper bound is that it is 0 when F1 satisfies
realizability.

A simple transformation of the feature vectors allows us
to apply the results from before. For datapoints (xi, ai, yi)
collected by the uniform random policy, the following is an

unbiased estimator of θ2 −
[
θ1

0

]
:

yi

(
φ2(xi, ai)−

[
φ1(xi, ai)

0

])
= yi

(
φ2(xi, ai)−

[
φ1(xi, ai)

0

])
(49)

= yi

[
0

φd1:d2(xi, ai)

]
(50)

where φd1:d2 denotes the bottom d2 − d1 coordinates of
the feature map φ. As shorthand, we define φ̃i(x, a) =[

0
φd1:d2(x, a)

]
. Note that ‖φ̃i‖ψ2

≤ τ and this feature

vector still satisfies the conditions of Assumption 3 as we
can simply zero the top coordinates. Furthermore, define

Σ̃a,a′ = E
(
φ̃(X, a)− φ̃(X, a′)

)(
φ̃(X, a)− φ̃(X, a′)

)>
for a 6= a′. The estimators for this transformed problem are
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then

θ̂ =
1

m

∑
i

yiφ̃i (51)

θ̂′ =
1

m

∑
i

y′iφ̃
′
i (52)

And, as before, the quadratic form estimators are analo-
gously

β̂a,a′ = θ̂>Σ̃a,a′ θ̂
′ (53)

Lemma 7. There is a constant C such that the Gaussian
process Z

V ∗ − V πθ1 ≤ 2C · E max
a∈[K]

Za (54)

and, with probability at least 1 − δ, for all n ∈ [T ], the
estimator Û defined in Algorithm 2 with n independent
samples satisfies

|E max
a∈[K]

Za − Û | (55)

≤ O

(√
‖θdiff‖ log(TK/δ)

n1/4
+
d

1/4
2 log3/2(d2KT/δ)√

n

)
(56)

Proof. It is immediate that

V ∗ − max
π∈Π1

V π ≤ V ∗ − V πθ1 (57)

since θ1 ∈ F1 by definition and πθ1 is an argmax policy.
This gap can then be bounded as

V ∗ − V πθ1 = V πθ2 − V πθ1 (58)
= E 〈φ2(X,πθ2(X)), θ2〉 − E 〈φ2(X,πθ1(X)), θ2〉

(59)

= E 〈φ2(X,πθ2(X)), θ2〉 − E 〈φ2(X,πθ1(X)), θ2〉
(60)

+ E 〈φ1(X,πθ1(X)), θ1〉 − E 〈φ1(X,πθ1(X)), θ1〉
(61)

≤ E
〈
φ2(X,πθ2(X)), θ2 −

[
θ1

0

]〉
(62)

+ E
〈
φ2(X,πθ1(X)),

[
θ1

0

]
− θ2

〉
(63)

≤ E max
a∈[K]

〈
φ2(X, a), θ2 −

[
θ1

0

]〉
(64)

+ E max
a∈[K]

〈
φ2(X, a),

[
θ1

0

]
− θ2

〉
(65)

The Gaussian process Z ∼ N (0,Λ) satisfies the conditions
of Lemma 1, which implies the Gaussian process upper
bound on both of the above terms and, thus, the first claim.

Now we prove the estimation error bound. We apply Algo-
rithm 1 with the constructed fast estimators for quadratic
forms θ>diffΣ̃a,a′θdiff for all a, a′ ∈ [K]. Let Z̃ ∼ N(0, Λ̃).
We can apply Theorem 1 and get

|E max
a∈[K]

Za − E max
a∈[K]

Z̃a| ≤ O

(√
‖θ‖ log(K/δ)

n1/4
+
d1/4 log3/2(dK/δ)√

n

)
(66)

Setting Û = Emaxa∈[K] Z̃a gives the result.

Lemma 8. Let Û be the estimate of Emaxa∈[K] Za from
Lemma 7 using the same method. Then, with probability
1− δ,

Emax
a

Za ≤ CÛ log1/2(K) (67)

+O

(
(‖θdiff‖1/2 + d1/4) log(d2K/δ) log1/2(K)√

n

)
(68)

for some constant C > 0.

Proof. Here we let C represent an absolute constant, which
may change from line to line. For this, we require a multi-
plicative error bound, which is stated formally in Theorem 5.
It is similar to the additive one developed in the proof of
Theorem 1. From Theorem 5, and applying the union bound
over all pairs of actions in [K], we have with probability at
least 1−K2δ, for all a′ 6= a,

|βa,a′ − β̂a,a′ | ≤
βa,a′

2c
+O

(
c(‖Σ1/2

a,a′θ‖+
√
d) log2(d/δ)

n

)
(69)

where we simply prepend Σ1/2 to θ and the estimators and
c ≥ 1 is to be chosen later.

With this concentration, we now show that if Û =
Emaxa∈[K] Z̃a is small, then this must mean that
maxa,a′ βa,a′ is also small.

(
Û
)2

≥
(
E max
a∈[K]

Z̃a

)2

(70)

≥ C max
a,a′∈[K] : a6=a′

‖Z̃a − Z̃a′‖2L2 (71)

= O

(
max
a,a′

βa,a′ −
βa,a′

2c
− c(‖θdiff‖+

√
d) log2(d/δ)

n

)
(72)

for an absolute constant C. The second line uses Lemma 4.
The third line uses the concentration above. Choosing c
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large enough (dependent only on absolute constants), we
get

max
a6=a′

βa,a′ ≤ 2Û2 +O

(
(‖θdiff‖+

√
d) log2(d/δ)

n

)
(73)

Then, from Proposition 3, we get the statement:

U ≤ C
√

logK ·
√

max
a 6=a′

βa,a′ (74)

≤ CÛ
√

logK (75)

+O

(
(‖θdiff‖1/2 + d1/4) log(d/δ) log1/2(K)√

n

)
(76)

Changing the variable δ′ = δ/K2 gives the result.

Armed with these facts, we can prove the regret bound. Let
E = E1∩E2∩E3∩E4 denote the good event that satisfies
the conditions laid out in the intermediate results where

1. E1 is the event that
∑
s∈I V

πθi − V πs ≤
O
(√

di|I|K log(di) · log(TK/δ)
)

for any interval
of times up to |I| ≤ T .

2. E2 is the event that C1t
2/3 ≤ |St| ≤ C2t

2/3 for t ≥
tmin

3. E3 is the event that the following inequality is satisfied
for all tmin ≤ t ≤ T :

|E max
a∈[K]

Za − Ût| (77)

≤ O

(√
‖θdiff‖ log(TK/δ)

t1/6
+
d

1/4
2 log3/2(d2KT/δ)

t1/3

)
(78)

4. E4 is the event that the following is satisfied for all
tmin ≤ t ≤ T :

V ∗ − V π1 ≤ CÛt log1/2(K) (79)

+O

(
(‖θdiff‖1/2 + d1/4) log(d2KT/δ) log1/2(K)

t1/3

)
(80)

Proof of Theorem 2. First note that event E holds with
probability at least 1 − 4δ via an application of the union
bound (over T ) and the intermediate results. We now work
under the assumption that E holds. The proof is divided
into cases when F1 does and does not satisfy realizability.

First, we bound the instantaneous regret incurred during
the exploration rounds. Note that the average value of the
uniform policy is zero and V ∗ ≤ O

(
‖θ‖
√

logK
)

by stan-
dard maximal inequalities. This establishes the bound on
the instantaneous regret for these rounds.

1. WhenF1 satisfies realizability, the algorithm is already
running Exp4-IX with model class F1 from the begin-
ning, so we are left with verifying that a switch to F2

never occurs in this setting. This can be shown by re-
alizing that Emaxa∈[K] Za = 0 whenever F1 satisfies
realizability. Therefore θdiff = 0 and, under the good
event, we have that

Ût ≤ C
d

1/4
2 log3/2(d2KT/δ)

t1/3
(81)

for a some constant C > 0. Therefore, for C1 chosen
large enough, Ût ≤ 2αt for all t ≥ tmin and thus a
switch never occurs. In this case, the regret incurred is

RegT ≤ Õ
(
T 2/3 · log1/2(K)

)
(82)

+ Õ
(√

d1TK log(d1) · log(TK/δ) + tmin

)
(83)

where the first term is due to the upper bound on the
number of exploration rounds in E2 and the second
term is due to the regret bound for Exp4-IX under
model F1.

2. In the second case when F1 does not satisfy realizabil-
ity we must bound the regret when the algorithm is still
using F1. The regret may therefore be decomposed as

RegT ≤ (V ∗ − V πθ1 ) · t∗ +
∑
t∈[t∗]

V πθ1 − V πt +

T∑
t=t∗+1

V ∗ − V πt

(84)

where t∗ is the timestep that the switch is detected.
From t∗ onward, the algorithm runs Exp4-IX with F2,
so this last term is simply bounded by Õ(

√
d2KT )

under event E. The same is true for the middle term.

Note that before the switch occurs it must be that
Ût∗−1 ≤ αt∗−1. Therefore, from event E,

V ∗ − V πθ1 (85)

≤ CÛt log1/2(K) (86)

+O

(
(‖θdiff‖1/2 + d

1/4
2 ) log(d2KT/δ) log1/2(K)

t1/3

)
(87)

≤ O

(
d

1/4
2 log3/2(d2KT/δ) · log1/2(K)

t1/3

)
(88)
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The final regret bound for this case is then

RegT ≤ O
(
d

1/4
2 T 2/3 · log3/2(d2KT/δ) · log1/2(K)

)
(89)

+O
(√

d1TK log(d1) · log(TK/δ)
)

(90)

+O
(√

d2TK log(d2) · log(TK/δ) + tmin

)
(91)

B.3. A bandit instance that satisfies Assumption 2 but
not Assumption 3

Given a constant C, let us define a bandit instance with
K = 2 as follows:

φ(X, 1) ∼ N(0, 1) (92)

φ(X, 2) =

{
φ(X, 1) if |φ(X, 1)| ≤ C;
−φ(X, 1) if |φ(X, 1)| > C.

(93)

Since the marginal distribution of φ(X, 1) and φ(X, 2) are
both N(0, 1), it is easy to see that Assumption 2 is satisfied.
To see how Assumption 3 fails to hold, we compute the sub-
Gaussian norm and L2 norm of Z := φ(X, 1) − φ(X, 2).
Notice that Z has Gaussian tail when |Z| > 2C, and thus
‖Z‖ψ2 = Θ(1). For the L2 norm, note that ‖Z‖L2 =
O(
∫∞
C
t2 exp(−t2)dt) = O(C2 exp(−C2)) which can be

made arbitrarily small by choosing large C. Therefor for
any constant L, there exist a bandit instance such that As-
sumption 2 holds but Assumption 3 does not.

C. Moment-Based Estimator Details
We now describe the construction of the estimator in Algo-
rithm 3 in more detail. As mentioned, the estimator that
achieves this sublinear in d rate relies on approximating
the max function with a degree-t multivariate polynomial
approximation pt : [−1, 1]K → R of the form

pt(z1, . . . , zK) =
∑
|α|≤t

cα
∏
a∈[K]

zαaa . (95)

Here, z ∈ [−1, 1]K , α is a multiset given by α =
{α1, . . . , αK} for αa ∈ N, and we denote |α| =∑
a∈[K] αa. The task then becomes estimating the associ-

ated moments up to degree t. The following lemma bounds
the approximation error in terms of the degree.

Lemma 9. Let f : [−1, 1]K → R be defined as
f(z) = maxa za. There exists a degree-t polynomial
pt : [−1, 1]K → R of the form (95) such that

sup
z∈[0,1]K

|f(z1, . . . , zK)− pt(z1, . . . , zK)| ≤ CK
t

(96)

Algorithm 3 Moment-Based Estimator

1: Input: Number of samples n, degree t, failure proba-
bility δ, coefficients {cα}|α|≤t.

2: Define q = 48 log(1/δ), m = n
q .

3: Initialize empty datasets D1, . . . , Dq

4: for k = 1, . . . , q do
5: for i = 1, . . . ,m do
6: Sample independently xki ∼ D and aki ∼ Unif[K].

Receive reward yki .
7: Set φki = φ(xki , a

k
i )

8: Add tuple (φki , y
k
i ) to Dk

9: end for
10: end for
11: for α such that s := |α| ≤ t do
12: Compute independent moment estimators:

Ŝkm,α :=
1(
m
s

) ∑
`∈([m]

s )

EX
∏
j∈[s]

〈
yk`jφ

k
`j , φ(X, a(j))

〉
∀k = 1, . . . , q

(94)

13: Set Ŝn,α ← median{Ŝkm,α}
q
k=1

14: end for
15: Return Ŝn :=

∑
α : |α|≤t cαŜn,α

for some constant CK . Furthermore, |cα| ≤ (2et)2K+12t

KK =:
cmax for all α such that |α| ≤ t.

Naturally, the approximation error can be decreased by in-
creasing the degree of the polynomial. Then, we turn our
attention obtaining a good estimate of

EX [pt (〈φ(X, 1), θ〉 , . . . , 〈φ(X,K), θ〉)] (97)

=
∑
|α|≤t

cαEX
∏
a∈[K]

〈φ(X, a), θ〉αa . (98)

We achieve this by estimating the individual moments
EX

∏
a∈[K] 〈φ(X, a), θ〉αa for all α up to degree t using

the estimators Ŝkm,α specified in (94). Note that in (94),
for the multiset α of size s := |α| and j ∈ [s], we use
the notation a(j) to mean the action a(j) = max{a′ :∑
b<a′ αb ≤ j}. That is to say, if we considered the tuple

(φ(X, 1), . . . , φ(X, 1), φ(X, 2), . . . , φ(X, 2), . . . , φ(X,K))
where φ(X, a) is repeated αa times, φ(X, a(j)) refers to
the jth element of this tuple.

The algorithm proceeds as follows. As before, the input
specifies the number of samples n ∈ N and target confi-
dence δ > 0. For ease of calculations, we assume that
q := 48 log(1/δ) is in N and that n is evenly divisible
by q for reasons that will become clear momentarily. The
algorithm then collects data from the environment by sam-
pling actions from A uniformly at random resulting in a
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total of p datasets D1
m, . . . , D

q
m each of size m = n

p where
Dk
m = {xki , aki , yki }i∈[m]. Note that the datasets are inde-

pendent. For each k ∈ [q] and i ∈ [m], xki and aki are i.i.d
copies from the distributionD and Unif A, respectively, and
yki =

〈
φ(xki , a

k
i ), θ

〉
+ ηki (aki ) as defined by the environ-

ment.

To estimate a particular moment
EX

∏
a∈[K] 〈φ(X, a), θ〉αa , the algorithm constructs

q independent estimators Ŝ1
m,α, . . . , Ŝ

q
m,α of the form of

(94). The intuition is that there are
(
m
s

)
ways to construct a

product of unbiased estimators of θ. Then the median is
taken across the results of all q datasets Ŝn,α. Finally, to
estimate EXpt, it simply constructs the weighted sum of
these according to the coefficients of the polynomial and the
returns the result, Ŝn. Our main result, Theorem 3, states
an error bound on the estimate Ŝn, combining both the
approximation error of the polynomial pt and the estimation
error of Ŝn.

D. Proofs of Results in Section 5
D.1. Proof of Lemma 9

Lemma 9. Let f : [−1, 1]K → R be defined as
f(z) = maxa za. There exists a degree-t polynomial
pt : [−1, 1]K → R of the form (95) such that

sup
z∈[0,1]K

|f(z1, . . . , zK)− pt(z1, . . . , zK)| ≤ CK
t

(96)

for some constant CK . Furthermore, |cα| ≤ (2et)2K+12t

KK =:
cmax for all α such that |α| ≤ t.

Proof. It follows from Lemma 2 of (Tian et al., 2017)
that, for any 1-Lipschitz g supported on [0, 1]K , a poly-
nomial q(ẑ) =

∑
α : |α|≤t ĉα

∏
u∈α ẑ

u exists satisfying
(96) with |cα| ≤ (2t)K2t := ĉmax and constant CK2 . The
max function g is 1-Lipschitz and thus satisfies this con-
dition. Let g(ẑ) = maxa ẑa and ẑa = za+1

2 . Note that
ẑ ∈ [0, 1]K by this definition and f(z) = 2g(ẑ) − 1.
Furthermore p(z) = 2q(ẑ) − 1 degree t polynomial such
that p(z) =

∑
|α|≤t cα

∏
u∈α z

u. Therefore, for any z,
|f(z)− p(z)| ≤ CK/t.

The coefficients cα are different from ĉα as a re-
sult of the change of variables. Note that there are∑t
s=0 s+K − 1K − 1 ≤ (t + 1)(et/K + e)K ≤

2t(2et/K)K terms. Therefore |cα| ≤ (2et)2K+12t

KK .

D.2. Proof of Theorem 3

First, we verify that Ŝkm,α for k = 1, . . . , d48 log(1/δ)e are
unbiased estimators of the moments of interest.

Lemma 10. Given Ŝkm,α defined in (94), it holds that

EDk
[
Ŝkm,α

]
= EX

∏
a∈[K] 〈θ,Xa〉αa .

Proof. We drop the superscript k notation denoting which
of the datasets is being used as the argument is identical.
Fix ` ∈

(
[m]
s

)
as an s-combination of the indices [n]. Since

the data in D is i.i.d, we have that

EDEX
∏
j∈[s]

〈
y`jx`j , φ(X, a(j))

〉
= EX

∏
j∈[s]

〈
ED
[
y`jx`j

]
, φ(X, a(j))

〉
(99)

= EX
∏
j∈[s]

〈
θ, φ(X, a(j))

〉
(100)

= EX
∏
a∈[K]

〈θ, φ(X, a)〉αa (101)

where the second equality uses the fact that EDxix>i = Id.
for all i ∈ [m].

Next, we establish a bound on the variance in preparation to
apply Chebyshev’s inequality.

Lemma 11. There exists a constant C such that

var(Ŝkm,α) = Css2s ·
s∑

u=1

(√
d

m

)u
(102)

where s = |α|.

Proof. As before, we will drop the superscript k notation
as the argument is identical for each independent estimator.
Let s = |α|.

By definition, the variance is given by

var
D

(
Ŝm,α

)
= ED

[
Ŝ2
m,α

]
− ED

[
Ŝm,α

]2
(103)

where

Ŝ2
m,α =

1(
m
s

)2 ∑
`,`′

EX,X′
∏
i∈[s]

〈
y`ix`i , φ(X, a(j))

〉
(104)

·
∏
i∈[s]

〈
y`′ix`′i , φ(X ′, a(i))

〉
(105)

ED
[
Ŝn,α

]2
= EX,X′

∏
a

〈θ, φ(X, a)〉αa ·
∏
a

〈θ, φ(X ′, a)〉αa

(106)

where again ` and `′ are s-combinations [n]. Similar to
(Kong and Valiant, 2018), we can analyze the variance as
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individual terms in the sum over ` and `′:

EDEX,X′
∏
i∈[s]

〈
y`ix`i , φ(X, a(i))

〉
·
∏
j∈[s]

〈
y`′ix`′i , φ(X ′, a(i))

〉
(107)

− EX,X′
∏
a

〈θ, φ(X, a)〉αa ·
∏
a

〈θ, φ(X ′, a)〉αa

(108)

There are two important cases to consider: (1) when ` and
`′ do not share any indices and (2) when there is partial or
complete overlap of indices.

1. No intersection of ` and `′ In this case, we may see
that there is no contribution to the variance for this
term due to independence:

EDEX,X′
∏
i∈[s]

〈
y`ix`i , φ(X, a(i)

〉
·
∏
i∈[s]

〈
y`′ix`′i , φ(X ′, a(i))

〉
(109)

= EX,X′
∏
i∈[s]

〈
θ, φ(X, a(i))

〉
·
∏
i∈[s]

〈
θ, φ(X ′, a(i))

〉
(110)

= EX,X′
∏
a

〈θ, φ(X, a)〉αa ·
∏
a

〈θ, φ(X ′, a)〉αa

(111)

This term simply cancels with −E
[
Ŝm,α

]2
.

2. Partial or complete intersection of ` and `′

In this case, there are some samples that appear twice.
Let β = {(i, j) : `i = `′j} be the set of indices that
refer to the same sample in D. Also define γ, γ′ ⊆ [s]
as the subsets of indices of ` and `′ respectively that
are not shared.

The left-hand side of this term can be then be written
as

EDEX,X′
∏
i∈[s]

〈
y`iφ`i , φ(X, a(j))

〉
·
∏
j∈[s]

〈
y`′jφ`′i , φ(X ′, a(i))

〉
(112)

= EX,X′
∏

(i,i′)∈β

EDn
[
y2
`i

〈
φ`i , φ(X, a(i))

〉 〈
φ`i , φ(X ′, a(i′))

〉]
(113)

×
∏
i∈γ

〈
θ,X(i)

〉 ∏
i′∈γ′

〈
θ,X ′(i′)

〉
(114)

To proceed, we require the following lemma which
bounds separate moments in the factors that come from
shared indices. The proof given in Section E.

Lemma 12. Let p ≥ 1 be an integer and define M =
EDn

[
y2
`i
φ`iφ

>
`i

]
. There is a constant C such that(

EX,X′ |φ(X, a(i))
>Mφ(X ′, a(i))|p

)1/p
(115)

≤ C · pτ2(σ2 + L‖θ‖2)
√
d (116)

Through standard sub-Gaussian arguments, we also
have that, for p ≥ 1,

(
E|
〈
θ, φ(X, a(i))

〉
|p
)1/p ≤

Cτ‖θ‖√p for some constant C > 0. And the same
holds for the X ′ factors.

For convenience, let ζ = (σ2 + L‖θ‖2) and let m =
|β| ≤ s be the size of the overlap. By the generalized
Holder inequality, the term in (113) is upper bounded
by ∏

(i,i′)∈β

EX,X′ |φ(X, a(i))
>Mφ(X ′, a(i))|2s

∏
i∈γ

EX,X′ |
〈
θ, φ(X, a(i))

〉
|2s


(117)

×

∏
i′∈γ′

EX,X′ |
〈
θ, φ(X ′, a(i′))

〉
|2s
1/2s

(118)

≤ (C0 · (2s)τ2ζ
√
d)m ·

(
C1 · τ‖θ‖

√
2s
)2s−2m

(119)

≤ C2s
2 · τ2sζm‖θ‖2s−2m · ss · dm/2 (120)

where C0, C1, C2 > 0 are problem-independent con-
stants.

In summary, we have shown that there is no contribution
to the variance when no indices are shared between ` and
`′ and the contribution to the variance when m indices are
shared is bounded by O(dm/2). It suffices now to count the
terms to see the total contribution for each u = 1, . . . , s.

It can be checked that the number of terms where the size
of the intersection |β| = u is(
m

k

)(
k

u

)(
m− k
k − u

)
≤
(me
s

)s (se
u

)u( (m− s)e
s− u

)s−u
(121)

≤ m2s−ue2s

ssuu(s− u)s−u
(122)

since there are s elements `, u of which may have an
intersection, and a remaining s − u elements to be cho-
sen for `′ that are not shared with `. Similarly, we have(
m
s

)2 ≥ (
m
s

)2s
which implies that the variance can be
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bounded as

var
D

(
Ŝm,α

)
≤ 1(

m
s

)2 s∑
u=1

m2s−ue2s

ssuu(s− u)s−u
· C2s

0 (123)

· τ2sζu‖θ‖2s−2u · ss · du/2 (124)

≤
s∑

u=1

C2s
1 ·

(√
d

m

)u
· s2sτ2sζu‖θ‖2s−2u

(125)

for absolute constants C0, C1, C2 > 0. Since it was as-
sumed that τ , σ2, L and ‖θ‖ are O(1), the final claim fol-
lows.

The error bound result on the median of the estimators
follows almost immediately.

Theorem 4. There exists a constant C = O(1) for all k
such that, with probability at least 2/3,

|Ŝkm,α − EŜkm,α| ≤ ε(m, d, s) (126)

where

ε(m, d, s) := Cs/2ss
s∑

u=1

(√
d

m

)u/2
(127)

Furthermore, defining Ŝn,α = median{Ŝkm,α}
q
k=1, with

probability 1− δ,

|Ŝn,α − EŜkn,α| ≤ ε(m, d, s) (128)

Proof. The first statement follows immediately from Cheby-
shev’s inequality and the second applies the median of
means trick for the independent estimators {Ŝkm,α}

q
k=1

given the choice of q (Kong et al., 2020, Fact 11).

D.2.1. FINAL BOUND

We now combine the estimation and approximation error
bounds to derive the final result, which is reproduced here.

Theorem 3. Let assumptions 1, 2, 4, and 5 hold. Let
Ŝn =

∑
α : |α|≤t cαŜn,α as defined in Algorithm 3 be

the estimator of EXpt up to degree t. There is an abso-
lute constant C > 0 such that with probability at least
1− t(et/K + e)Kδ,

|V ∗ − Ŝn| ≤
CK
t

(9)

+ t (et/K + e)
K
cmax · Ct/2tt ·

t∑
s=1

(√
d

n
· log(1/δ)

)s/2
(10)

where CK is a constant that depends only on K.

Proof. We first start by bounding the full estimation error
|EXp(X)− Ŝn|. The degree 0 and degree 1 moments are
already known exactly; thus we may consider 2 ≤ s ≤ t. By
the union bound and triangle inequality combined with the
result of Theorem 4, with probability at least 1− t(et/K +
e)Kδ,

|EXp(X)− Ŝn| ≤
∑
s∈[2,t]

α : |α|≤t

cα|Ŝn,α − EŜkn,α| (129)

≤
∑
s∈[2,t]

α : |α|≤t

cmaxε(n, d, s) (130)

For each s, there are
(
s+K−1
K−1

)
≤ (es/K + e)

K monomials
for possible choices of α. Therefore, the good event implies
that

|EXp(X)− Ŝn| ≤ t (et/K + e)
K
cmax · ε(n, d, t) (131)

Next, we may apply the approximation error. By the triangle
inequality

|Emax
a
〈θ,Xa〉 − Ŝn| ≤

CK
t

+ (es/K + e)
K
cmax · ε(n, d, t)

(132)

Corollary 1. Under the same assumptions as Theorem 3,
estimator Ŝn generated by Algorithm 3 satisfies |V ∗−Ŝn| ≤
ε for ε < 1 with probability at least 1 − δ and sample
complexity

O

(
K

(
CK
ε

)K+CK/ε

·
√
d

ε2
· log

(
CK
εδ

))
(11)

where CK is a constant that depends only on K.

Proof. To ensure that each term in the sum is at most εt , it
suffices to take

n = c2maxC
t · t2t+4 (et/K + e)

2K ·
√
dε−2 · log(1/δ)

(133)

Then, choose t = 2CK/ε. Therefore, by the definition of
cmax,

n = O

((
C · CK
ε

+ 1

)K+CK/ε

·
√
d

ε2

)
, (134)

for some constant C ≥ 1. Since we require 48 log(1/δ)
estimators to ensure the good event occurs with probability
at least , the total sample complexity is

O

((
C · CK
ε

+ 1

)K+CK/ε

·
√
d

ε2
· log

(
CK (CK/ε+ 1)

K

εδ′

))
(135)
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with probability 1− δ′ where δ′ = δ
t(et/K+e)K

E. Supporting Lemmas
The following is a restatement of the moment bound in
Lemma 13.

Lemma 13. Let p ≥ 1 be an integer and define M =
EDn

[
y2
`i
φ`iφ

>
`i

]
. There is a constant C such that(

EX,X′ |φ(X, a(i))
>Mφ(X ′, a(i))|p

)1/p
(136)

≤ C · pτ2(σ2 + L‖θ‖2)
√
d (137)

Proof. For convenience, define X(i) = φ(X, a(i)) and

the same for X ′(i). Define A =

[
0d M
0d 0d

]
and Z =[

X(i)

X ′(i)

]
. Note that Z>AZ = X>(i)MX ′(i) and A>A =[

M>M 0d
0d 0d

]
. By Lemma 16, Z ∼ subG(C0τ

2). Fur-

thermore, EZ = 0 and EZZ> = Id. The remaining proof
utilizes a variation of the Hanson-Wright inequality due to
(Zajkowski, 2020), stated in Lemma 142. By this inequality,
there exists a constant C > 0 such that

P
(
|Z>AZ − E

[
Z>AZ

]
| ≥ ξ

)
(138)

≤ exp

(
−C min

{
ξ2

τ4‖A‖2F
,

ξ

τ2‖A‖F

})
(139)

By direct calculation, we have that E
[
Z>AZ

]
=

trE
[
ZZ>A

]
= 0 and by Lemma 15, ‖A‖F ≤

√
d(σ2 +

L‖θ‖2). To bound the moment, we use the tail-sum-
expectation for non-negative random variables. For con-
venience, define σ1 = τ2‖A‖F .

E|Z>AZ|p =

∫ ∞
0

P
(
|Z>AZ|p ≥ u

)
du (140)

=

∫ ∞
0

pvp−1P
(
|Z>AZ| ≥ v

)
dv (141)

≤
∫ ∞

0

pvp−1 max

{
e
Cv2

σ21 , e
Cv
σ1

}
dv (142)

≤
∫ ∞

0

pvp−1e
Cv2

σ21 dv +

∫ ∞
0

pvp−1e
Cv
σ1 dv

(143)

2Critically, Lemma 14 applies to quadratic forms of sub-
Gaussian, dependent random variables, rather than requiring the
coordinates of Z to be independent as in the traditional Hanson-
Wright inequality (Rudelson et al., 2013; Hanson and Wright,
1971). As a consequence, the second term in the minimum of the
above tail bound depends on ‖A‖F as opposed to the operator
norm ‖A‖. Further discussion may be found in (Zajkowski, 2020).

The first inequality used Lemma 14. Consider the second
term first. Let r = Cv/σ1. Then, by a change of variables,∫ ∞

0

pvp−1e
Cv
σ1 dv = p(σ1/C)p

∫ ∞
0

rp−1e−rdr ≤ 3p(σ1/C)p · pp

(144)

where we have used the Gamma function inequality∫∞
0
rp−1e−rdr ≤ 3pp (Vershynin, 2018). Consider the

first term. Let r = Cv2/σ2
1 . Like the previous part, we may

apply a change of variables.∫ ∞
0

pvp−1e−Cv
2/σ2

1dv =
1

2

∫ ∞
0

p

(
σ2

1r

C

) p−1
2

e−r ·
√
σ2

1

rC
· dr

(145)

=
p

2

(
σ2

1

C

) p
2
∫ ∞

0

r
p
2−1e−rdr

(146)

≤ 3p

2

(
σ2

1

C

) p
2

· (p/2)(p/2).

(147)

Taking these two together,

(
E|Z>AZ|p

)1/p ≤ (3p(σ1/C)p · pp +
3p

2

(
σ2

1

C

) p
2

· (p/2)(p/2)

)1/p

(148)

≤ C ′ · σ1(p+
√
p), (149)

for some other constant C ′ > 0 since p1/p is bounded
by a constant. Since we only consider p ≥ 1, the claim
follows.

Lemma 14 (Restatement of Corollary 2.8 of (Zajkowski,
2020)). Let X ∼ subG(τ2) be a centered random vector
in Rd and A ∈ Rd×d. Then, there exists a constant C > 0
such that

P
(
|X>AX − E

[
X>AX

]
|
)
≤ exp

(
−C min

{
ξ2

τ4‖A‖2F
,

ξ

τ2‖A‖F

})
(150)

where ‖ · ‖F is the Frobenius norm.

Lemma 15. Let (φ, y) be generated under the uniform-
random policy. Define M = E

[
y2φφ>

]
and A =[

0d M
0d 0d

]
. Under Assumption 4, ‖A‖ ≤ L‖θ‖2 + σ2 and

‖A‖F ≤
√
d(L‖θ‖2 + σ2).

Proof. By definition ‖A‖2 = supv : ‖v‖=1 v
>A>Av =

supv : ‖v‖=1 v
>
1 M

>Mv1 = ‖M‖2 where v1 denotes the
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first d coordinates of v. The first equality follows since

A>A =

[
M>M 0d
0d 0d

]
. Since M is positive semi-definite,

‖M‖ = sup
v∈Rd : ‖v‖=1

v>Mv (151)

= sup
v∈Rd : ‖v‖=1

E
[
y2(φ>v)2

]
(152)

= sup
v∈Rd : ‖v‖=1

{
E
[
(φ>v)2(φ>θ)2

]
+ E

[
(φ>v)2η2

]}
(153)

(154)

The second term is simply Eη2 = σ2 since Eφφ> = Id and
φ and η are independent. The first term may be bounded as
E
[
(φ>v)2(φ>θ)2

]
≤ L·E

[
(φ>v)2

]
E
[
(φ>θ)2

]
= L‖θ‖2

by Assumption 4. This concludes the first claim. For the
second, we note that ‖A‖2F = trA>A = trM>M ≤
d‖M‖2 and the second claim follows by applying the first.

Lemma 16. Let X,Y subG(τ2) be two independent sub-

Gaussian vectors in Rd. Then, Z =

[
X
Y

]
∼ subG(C0τ

2)

for some constant C0 > 0.

Proof. Let v =

[
v1

v2

]
∈ R2d where v1, v2 ∈ Rd and

‖v‖2 = 1. Then, v>Z = v>1 X+v>2 Y is the sum of indepen-
dent sub-Gaussian variables where v>1 X ∼ subG(‖v1‖22τ2)
and v>2 Y ∼ subG(‖v2‖22τ2) where both ‖v1‖2 ≤ 1 and
‖v2‖2 ≤ 1. Therefore v>Z ∼ subG(C0τ

2) for a constant
C0 > 0. Since v was arbitrary, the statement follows.

E.1. Multiplicative Error Bound for Estimating Norms

In this section, we prove a multiplicative error bound for
estimating ‖θ‖2, which can potentially be faster. The key
is an application of the AM-GM inequality, similar to the
work of (Foster et al., 2019). As before, we will consider
a dataset of n samples split evenly into D = {φi, yi} and
D′ = {φ′i, y′i} each of size m = n

2 . Define

θ̂ =
1

m

∑
i∈[m]

φiyi (155)

θ̂′ =
1

m

∑
i∈[m]

φ′iy
′
i (156)

Then, we estimate θ>θ with θ̂>θ̂′.

Theorem 5. Let δ ≤ 1/e and let c > 1 be a constant. With
θ̂ and θ̂′ defined above with n total samples, the following

error bound holds with probability at least 1− δ:

|θ̂>θ̂′ − θ>θ| ≤ θ>θ

2c
+O

(
c(‖θ‖+

√
d) max{ξ2, ξ} log2(d/δ)

n

)
(157)

Proof. Similar to the proof of Theorem 1, we apply the
triangle inequality use Bernstein’s inequality to bound two
terms individually with high probability.

The decomposition becomes

|θ̂>θ̂′ − θ>θ| ≤ |θ̂>θ − θ>θ|+ |θ̂>θ′ − θ̂>θ| (158)

We start with the first term. By Bernstein’s inequality there
is a constant C > 0 such that

P
(
|θ̂>θ − θ>θ| ≥ ε

)
≤ exp

(
−C min

{
mε2

‖θ‖2ξ2
,
mε

‖θ‖ξ

})
(159)

since yiθ>xi is sub-exponential with ‖yiθ>xi‖ψ1 ≤ ξ‖θ‖,
as before. Rearranng, we have that with probability at least
1− δ,

|θ̂>θ − θ>θ| ≤
√
‖θ‖2ξ2 log(1/δ)

Cm
+
‖θ‖ξ log(1/δ)

Cm
(160)

≤ ‖θ‖
2

4c
+
cξ2 log(1/δ)

Cm
+
c‖θ‖ξ log(1/δ)

Cm
(161)

where the second line follows from the AM-GM inequality.
Similarly, conditioned on the dataset D, the second term in
the triangle inequality may be bounded as

|θ̂>θ′ − θ̂>θ| ≤

√
‖θ̂‖2ξ2 log(1/δ)

Cm
+
‖θ̂‖ξ log(1/δ)

Cm

(162)

≤ ‖θ̂‖ ·

(√
ξ2 log(1/δ)

Cm
+
ξ log(1/δ)

Cm

)
(163)

with probability at least 1− δ. Finally the proof Theorem 1
shows that, with probability 1− δ,

‖θ̂‖ ≤ ‖θ‖+

√
dξ2

Cm
· log(2d/δ) (164)
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Under both of these events, we have

|θ̂>θ′ − θ̂>θ| ≤
√
‖θ‖2ξ2 log(1/δ)

Cm
+
‖θ‖ξ log(1/δ)

Cm
(165)

+

√
dξ2 log3/2(2d/δ)

Cm
+

√
dξ2 log2(2d/δ)

(Cm)3/2

(166)

≤ ‖θ‖
2

4c
+
cξ2 log(1/δ)

Cm
+
‖θ‖ξ log(1/δ)

Cm
(167)

+

√
dξ2 log3/2(2d/δ)

Cm
+

√
dξ2 log2(2d/δ)

(Cm)3/2

(168)

where the second line again uses the AM-GM inequality.
Putting all three events together and applying the union
bound, we have with probability 1− 3δ,

|θ̂>θ̂′ − θ>θ| ≤ ‖θ‖
2

2c
+O

(
c‖θ‖max{ξ2, ξ} log(1/δ)

m
+
c
√
dξ2 log2(2d/δ)

m

)
(169)

Simplifying the error term gives the result.


