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Abstract
Eluder dimension and information gain are two
widely used methods of complexity measures in
bandit and reinforcement learning. Eluder dimen-
sion was originally proposed as a general com-
plexity measure of function classes, but the com-
mon examples of where it is known to be small are
function spaces (vector spaces). In these cases,
the primary tool to upper bound the eluder di-
mension is the elliptic potential lemma. Inter-
estingly, the elliptic potential lemma also fea-
tures prominently in the analysis of linear ban-
dits/reinforcement learning and their nonparamet-
ric generalization, the information gain. We show
that this is not a coincidence – eluder dimension
and information gain are equivalent in a precise
sense for reproducing kernel Hilbert spaces.

1. Introduction
Eluder dimension is first proposed by Russo & Van Roy
(2013) to analyze the regret upper bounds of upper confi-
dence bound (UCB) algorithms and Thompson sampling
(TS) algorithms. This notion captures the worst-case sam-
ple complexity that is required to infer the values of unob-
served points using the observed samples, which measures
the degree of dependence among a function class. The re-
gret of UCB algorithms and TS algorithms can be upper
bounded by Õ(

√
dimE · logN · T ), where dimE and N

are the eluder dimension and the covering number of F ,
respectively. Eluder dimensions are also used to establish
regret bounds for learning contextual bandits and MDPs
with function approximation (See reference therein (Osband
& Van Roy, 2014; Du et al., 2020; Wang et al., 2020; Foster
et al., 2020)).

Prior literature further investigated some necessary condi-
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tions for a small or finite eluder dimension. In the original
work, Russo & Van Roy (2013); Osband & Van Roy (2014)
provided upper bounds of the eluder dimension for (general-
ized) linear models with bounded norm and finite dimension
and for function classes with bounded domain size. Specif-
ically, all these results have an explicit dependence on the
dimension d of the input space or size of the domain. For
other function classes, the understanding of the eluder di-
mension is limited, and thus bounded eluder dimension is
considered as a strong assumption (Foster & Rakhlin, 2020).
Recently, Li et al. (2021) analyzed the eluder dimension
through the lens of generalized-rank, and calculated the
eluder dimension of several interesting function classes in-
cluding ReLU networks.

In these cases, the primary tool to upper bound the eluder
dimension is the elliptic potential lemma (e.g. (Russo &
Van Roy, 2013; Dani et al., 2008; Du et al., 2021)). Interest-
ingly, the elliptic potential lemma also features prominently
in the analysis of linear bandits/reinforcement learning and
their nonparametric generalization, the information gain,
which guided another line of studies on the complexity mea-
sure for bandit or RL (Russo & Van Roy, 2016; Srinivas
et al., 2009):

Information gain is defined as the mutual information be-
tween the prior distribution and the noisy observations,
which characterizes the reduction of the uncertainty of the
underlying function after observing noisy measurements.
It has an analytic formula when the prior and the noise
distributions are Gaussian. Srinivas et al. (2009) analyzed
the GP-UCB algorithm, a Bayesian variant of UCB algo-
rithms for Gaussian Process (GP) bandits, and provided a
dimension-free regret bounds in terms of maximum infor-
mation gain. Specifically, they established the regret bounds
of Õ(

√
T (B
√
γT + γT )), where γT is the maximum infor-

mation gain for T samples and B is the upper bound of the
RKHS norm of the ground-truth reward function. After-
wards, several studies improved the dependency on γT for
the regret bounds for GP-UCB algorithms (Chowdhury &
Gopalan, 2017) and extended to GP-TS algorithms (Russo
& Van Roy, 2016). Du et al. (2021) provided regret bounds
for learning bilinear MDPs in terms of critical information
gain.

To achieve sublinear regrets, one requires the maximum
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information gain to grow mildly in the number of samples.
For finite-dimensional domains, the maximum information
gain only grows logarithmically (Srinivas et al., 2009; Du
et al., 2021). For infinite-dimensional RKHSs, the growth of
the maximum information gain depends on the eigendecay
of the reproducing kernels, and specific rates for different
kernels can be established (Srinivas et al., 2009; Vakili et al.,
2021).

With the existing two lines of work, some natural questions
arise:

Is one complexity measure strictly tighter than the other?
Or namely, what is the relationship between using the two

complexity measures?

Contribution. Therefore in this work, we study the rela-
tionship between eluder dimension and information gain,
aiming at bridging the two series of work. Our work shows
that when the function class is a ball of an RKHS, the critial
information gain and the eluder dimension of an action set
are equivalent. (Jin et al., 2021) showed concurrently one
direction of the equivalence that low critical information
gain implies low eluder dimension.

2. Preliminaries
Notation. Throughout the paper, we will use the following
notation:

• X : the action set.

• F ⊆ RX : the function class.

• H: the reproducing kernel Hilbert space (RKHS).
Its formal definition is deferred in the next paragraph.

• K : X ×X → R: the corresponding kernel function 1.

• B(S): the ball of radius S inH, i.e.,

B(S) = {f | f(x) = 〈θf , x〉, ‖θf‖ ≤ S}.

For an x ∈ X , we use x> to represent the adjoint (transpose)
of K(·, x) ∈ H. Therefore, xx> is a self-adjoint linear
operator from H to itself. We now formally introduce the
key concepts used in this paper.

Reproducing Kernel Hilbert Space.

Definition 2.1 (Reproducing Kernel Hilbert Space). For
any set X , H ⊆ RX is said to be a reproducing kernel
Hilbert space (RKHS) with respect to the kernel function
K : X ×X → R, ifH is a Hilbert space equipped with the

1We do not distinguish between x ∈ X and K(·, x) ∈ H.

inner product 〈·, ·〉. Furthermore, for any x ∈ X we have
K(·, x) ∈ H and

f(x) = 〈f,K(·, x)〉, for all f ∈ H.

Recent years have seen a tremendous studies on nonlin-
ear reinforcement learning via eluder dimension and kernel
methods, due to their potential for expressive function ap-
proximation. We are interested in analyzing the connection
between eluder dimension and information gain when the
function class falls into some RKHS. We then introduce the
formal definition of eluder dimension and information gain
respectively.

Eluder Dimension.
Definition 2.2 (ε-Dependence). An element x ∈ X is ε-
dependent on a subset S = {x1, . . . xn} ⊆ X with respect
to the function class F , if any pair of functions f, f̃ ∈
F satisfying

∑n
i=1(f(xi) − f̃(xi))

2 ≤ ε2 also satisfies
f(x) − f̃(x) ≤ ε. We say x is ε-independent of S with
respect to F , if x is not ε-dependent on S.

The definition of ε-dependence generalizes linear depen-
dence (which corresponds to ε = 0). In particular, if x ∈ X
is ε-dependent on the dataset S, then knowing the values
of f ∈ F on S allows for a good estimate of f(x) up to
ε-accuracy.

Definition 2.3 (Eluder Dimension). The ε-eluder dimension
dimE(F ,X , ε) is the length d of the longest sequence of
elements in X such that, for some ε′ ≥ ε, every element
xi is ε′-independent of its predecessors (x1, . . . , xi−1) with
respect to to F .

Notice that the eluder dimension is defined in a sequential
manner. The eluder dimension of a set X with respect to
a function class F corresponds to the number of samples
needed to adaptively infer information of F among X in the
worst case.

Information Gain.
Definition 2.4 (Information Gain). Assume that X is as-
sociated with a kernel K and a corresponding RKHS H.
For any λ > 0, the information gain after observing
x1, . . . , xT ∈ X is defined as

γ(λ;x1, . . . , xT ) = log det
(
I +

1

λ

T∑
i=1

xix
>
i

)
.

Remark 2.1. One can show that the information gain can
be equivalently written as

γ(λ;x1, . . . , xT ) = log det
(
I +

1

λ
KT

)
,

where (KT )i,j = 〈xi, xj〉 = K(xi, xj) is the Gram matrix.
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Definition 2.5 (Maximum Information Gain). For any λ >
0, T ≥ 1, the maximum information gain for T observations
is defined as

γT (λ;X ) = max
xi∈X ,1≤i≤T

γ(λ;x1, . . . , xT ).

The maximum information gain is analogous to the log of
the maximum volume of the ellipsoid generated by T points
in X , which captures the geometric structure of X .

Definition 2.6 (Critical Information Gain). For a fixed con-
stant c > 0, the critical information gain is defined as:

γ̃(λ, c;X ) = min{k | γk(λ;X ) ≤ ck}.

The critical information gain is the minimal T that γT (λ;X )
fails to grow linearly, which can be viewed as the effective
dimension of X (Du et al., 2021).

3. Main Results
With the formal definition of information gain as well as
eluder dimension, we now present our main result on con-
necting them.

Suppose the function class F is in the RKHS H over the
action set X . We prove that under some mild assumptions,
the critical information gain and eluder dimension are equiv-
alent up to constant factors. We drop the dependence on
X and use dimE(F , ε) and γ̃(λ, c) to represent the eluder
dimension and the critical information gain, respectively.

Theorem 3.1. Assume that F ⊆ B(S). Set λ =
(
ε

2S

)2
, we

have

dimE(F , ε) < γ̃
(
λ, log

3

2

)
.

Theorem 3.2. Assume that ‖x‖2 ≤ B for all x ∈ X and
F ⊇ B(S). Then for any c > log 2, ε < 2BS, by setting
λ =

(
ε

2S

)2
, we have

dimE(F , ε) > (γ̃(λ, c)− 1) · c− log 2

log(1 + B2

λ )− log 2
.

Together we have that, when F is the ball of radius S in the
RKHS H over the action set X , its eluder dimension and
critical information gain with proper λ are equivalent (up to
constant multiplicative factors).

We defer the complete proof to the appendix and provide
the proof sketch as follows.

3.1. Proof sketchs

First, we introduce the notion of increment of information
gain and show that it is closely related to ε-dependence.

Definition 3.3 (Increment of Information Gain). For any
λ > 0, the increment of information gain of x ∈ X on
S = {x1, . . . , xn} ⊆ X is defined as

∆γ(λ;x|S) = γ(λ;x, x1, . . . , xn)− γ(λ;x1, . . . , xn).

The next two lemmas characterize the relationships between
large increment of information gain and ε-independence.
Intuitively, if x is ε-independent of S , then the increment of
information gain of x on S will be large and vice versa.
Lemma 3.4. Assume thatF ⊆ B(S). If x is ε′-independent
of S with respect to F for some ε′ ≥ ε, then

∆γ((ε/2S)2;x|S) > log
3

2
.

Lemma 3.5. Assume that F ⊇ B(S). If

∆γ((ε/2S)2;x|S) > log 2.

then x is ε-independent of S with respect to F .

By Lemma 3.4, a sequence whose elements are ε-
independent of their predecessors implies a sequence with
large increments of information gain. Therefore we can
lower bound the critical information gain by eluder dimen-
sion. Next we provide the proof of Theorem 3.1.

proof of Theorem 3.1. Assume that dimE(F , ε) = d and
{x1, . . . , xd} is the longest sequence such that there exists
an ε′ ≥ ε, for each i, xi is ε′-independent of {x1, . . . , xi−1}.
Then by Lemma 3.4, we have for λ = (ε/2S)2,

∆γ(λ;xi|{x1, . . . , xi−1}) > log
3

2
.

This means for k = 1, . . . , d,

γk(λ;X ) ≥ γ(λ;x1, . . . , xk) > k log
3

2
.

Therefore dimE(F , ε) < γ̃(λ, log 3
2 ;X ), which is min{k |

k log 3
2 ≥ γk(λ;X )}.

Next lemma shows that the increment of information gain
can be arranged to be monotonically decreasing, which
stems from the submodularity of the log-determinant func-
tion.
Lemma 3.6. For any {x1, . . . , xT } and any λ > 0, we
can arrange the order of the T points, such that for i =
1, . . . , T − 1,

∆γ(λ, xi|x1, . . . , xi−1) ≥ ∆γ(λ, xi+1|x1, . . . , xi).

By Lemma 3.6, the first few elements of the maximiz-
ers of γT (λ;X ) will have large increments of information
gain, which, by Lemma 3.5, means that each element is
ε-independent of its predecessors. Therefore we can lower
bound the eluder dimension by critical information gain.
Next we provide the proof of Theorem 3.2.
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proof of Theorem 3.2. Let d = γ̃(λ, c) − 1. Then
γd(λ) > cd. Then we can find {x1, . . . , xd} ⊆
X such that γ(λ;x1, . . . , xd) > cd. Denote ∆i =
∆γ(λ;xi|x1, . . . , xi−1). By Lemma 3.6, we can arrange
those xi’s such that ∆i’s are monotonically non-increasing.
Let k = max{i | ∆i > log 2}, then by Lemma 3.5, we
know that {x1, . . . , xk} statisfies the definition in the eluder
dimension, so dimE(F , ε) ≥ k.

Since ‖xi‖ ≤ B for all i, we have

γk(λ) ≤ k log(1 +
B2

λ
).

Therefore we get

cd < γ(λ;x1, . . . , xd)

=

k∑
i=1

∆i +

d∑
i=k+1

∆i

≤ γk(λ) + (d− k) log 2

≤ k log(1 +
B2

λ
) + (d− k) log 2.

By the assumption that ε < 2BS, we have B2/λ =
(2BS)2/ε2 > 1, then we have

k > d · c− log 2

log(1 + B2

λ )− log 2
.

This finishes the proof.

4. Case Study: Comparison of Two Regret
Bounds

In this section, we briefly discuss two existing results on
learning episodic MDPs under the completeness assumption
with respect to an RKHS (Yang et al., 2020; Wang et al.,
2020). These results base on different techniques and pro-
vide the regret guarantees in terms of maximum information
gain and eluder dimension, respectively. Using our result
on the equivalence of the eluder dimension and the critical
information gain, we characterize how the eluder dimension
grows in T when the function class is an RKHS-norm ball,
and provide a comparison of the two regret bounds in this
setting.

Setting. We consider learning an episodic MDP
(S,A, P,H, r, µ) with function approximation. In RL with
function approximation, the input domain of the function
class F is X = S × A, containing all the state-action
pairs x = (s, a). We assume that there exists a kernel
K : X ×X → R and a corresponding RKHSH. Therefore,
every x = (s, a) can be viewed as an element in H. We
assume that the function class F = B(RQH) is the RKHS

norm ball with radius RQH . We also assume that ‖x‖ ≤ 1
for all x = (s, a) ∈ S × A. We make the following
completeness assumption on the function class F as in
(Yang et al., 2020; Wang et al., 2020).

Assumption 4.1 (Completeness). For any h ∈ [H] and any
Q function Q : S × A → [0, H], we have Th(Q) ∈ F ,
where Th is the Bellman operator at level h, defined as

Th(Q)(s, a) = rh(s, a) +
∑
s′∈S

Ph(s′|s, a) max
a′∈A

Q(s′, a′)

∀ (s, a) ∈ S ×A.

First we state the two results from (Yang et al., 2020; Wang
et al., 2020). Specifically, Theorem 4.1 provides the regret
bound for KOVI algorithm in terms of the maximum infor-
mation gain, while Theorem 4.2 provides the regret bound
for F-LSVI algorithm in terms of the eluder dimension.

Theorem 4.1 (Yang et al. (2020)). Under Assumption 4.1,
for KOVI, after interacting with the environment for T
episodes (E = TH steps), with probability 1− E−2,

Regret(T ) = Õ
(
H2 ·

[
γT (λ;X )+

max
h∈[H]

√
γT (λ;X ) · logN

(ucb)
∞ (ε∗, h,BT )

]
·
√
T
)
,

where λ = 1 + 1
T , ε∗ = H/T .

Theorem 4.2 (Wang et al. (2020)). Under Assumption 4.1,
after interacting with the environment for E = TH steps,
with probability 1− δ, F -LSVI achieves a a regret bound of

Regret(T ) ≤
√
ιH2E,

where

ι ≤C · log2(E/δ) · dimE
2
(
F , δ/E3

)
· log

(
N∞

(
F , δ/E2

)
/δ
)
· log(N∞(S ×A, δ/E) · E/δ),

for some constant C > 0.

By our Theorems 3.1 and 3.2, the regret bound in Theo-
rem 4.2 can be equivalently stated in terms of the critical
information gain. In particular, if we set δ = E−2 and
notice that F = B(RQH), then we have

Ω̃
(
γ̃((4T 10H12R2

Q)−1, c)
)
≤ dimE(F , δ/E3)

≤ γ̃
(

(4T 10H12R2
Q)−1, log

3

2

)
,

where Ω̃ hides the constant factors and the log factors.
Therefore we have the following corollary.

Corollary 4.3 (Wang et al. (2020)). Under Assumption 4.1,
after interacting with the environment for E = TH steps,
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with probability 1−E−2, F -LSVI achieves a a regret bound
of

Regret(T ) ≤
√
ιH2E,

where

ι ≤ C · log2(E3) · γ̃2
(

(4T 10H12R2
Q)−1, log

3

2

)
· log

(
N∞

(
F , 1/E4

)
E2
)
· log(N∞(S ×A, 1/E3) · E3),

for some constant C > 0.

Next we focus on the dependency of these regret bounds
on T , ignoring all the log factors as well as all the other
problem-specific constants, such as H and RQ. Both Corol-
lary 4.3 and Theorem 4.1 have an explicit

√
T factor and

a term characterizing how the information gain grows. To
continue our comparison, we make the additional assump-
tion on the eigenvalues of the kernel operator as in (Srinivas
et al., 2009; Yang et al., 2020).

Assumption 4.2 (Polynomial decay). Assume that the state-
action set X = S × A is a compact subset of Rd. Fur-
thermore, assume that the kernel function K admits the
following orthonormal decomposition

K(x, x′) =

∞∑
i=1

λiφi(x)φi(x
′),

with ‖φi(x)‖∞ ≤ Cφ and the eigenvalues λi’s of LK
satisfying β-polynomial decay: λi ≤ Cpi

−β , for some
β > 2 + 1/d.

Under Assumption 4.2, the regret bound of Theorem 4.1
can be reduced to the following when d ≥ Ω(1), β ≥ Ω(1);
see (Yang et al., 2020) for more details.

Regret(T ) ≤ Õ(T
d+1
d+β+1/2). (1)

Next we calculate the dependency on T of Corollary 4.3.
We introduce the following lemma from the appendix of
(Yang et al., 2020) (Lemmas D.2 and D.6).

Lemma 4.4 ((Yang et al., 2020)). Under Assumption 4.2,
the maximum information gain can be bounded as

γλ(T ) ≤ Õ(λ−1/βT (d+1)/(β+d)).

Therefore, the critical information gain satisfies

γ̃(λ, c) = Õ((1/λ)(β+d)/[β(β−1)]).

Furthermore, the log of the L∞ covering number of the
RKHS ball of radius S can be bounded as

logN∞ (B(S), 1/ε) ≤ Õ((S/ε)2/(β−1)).

By Lemma 4.4, the regret bound in Corollary 4.3 (Wang
et al., 2020) is

Regret(T ) ≤ Õ(T
10(β+d)+7β
β(β−1)

+1/2). (2)

By comparing Equation (1) and Equation (2), we conclude
that when the kernelK satisfies polynomial decay (Assump-
tion 4.2), Equation (1) is better than Equation (2) as long as
β � d.

5. Conclusion
In this note, we clarified the relationship between two com-
plexity measures used in bandits and reinforcement learn-
ing, the eluder dimension and information gain in RKHS
function spaces. Eluder dimension is a general complexity
measure defined for any function class; however, informa-
tion gain as defined in (Srinivas et al., 2009) is only defined
for RKHS. It is straightforward to extend the information
gain in the Bayesian setting when there is a prior over the
function class/prior. We conjecture that for function classes
that have a natural vector space structure (i.e. convex subset
with non-empty interior of a vector space), that the eluder di-
mension does not yield sublinear regret, unless information
gain is sublinear in the sample size n. To our knowledge, all
commonly encountered function classes with vector space
structure do not have bounded eluder dimension, unless they
are subsets of an RKHS. We leave to future work to identify
complexity measures for sequential decision making that
are more structure adaptive, such as sparsity, low-rank, or
other measures of low-dimensionality, than eluder dimen-
sion and information gain which essentially only capture
the extrinsic vector space dimensionality.
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A. Missing proofs of the lemmas
Additional notation. For any positive definite matrix A, we define ‖x‖2A = x>Ax.

We first introduce the next lemma.

Lemma A.1. Assume that x ∈ X and S = {x1, . . . , xn} ⊆ X . For any λ > 0, denote V = λI +
∑n
i=1 xix

>
i , then we

have the following holds
∆γ(λ;x|S) = log(1 + ‖x‖2V −1).

Proof. By definition we have

∆γ(λ;x|S) = γ(λ;x, x1, . . . , xn)− γ(λ;x1, . . . , xn) = log det
( 1

λ
(V + xx>)

)
− log det

( 1

λ
V
)
.

By the Matrix determinant lemma, we have

det
( 1

λ
(V + xx>)

)
= det

[ 1

λ
V · (I + V −1xx>)

]
= det

( 1

λ
V
)
· det(I + V −1xx>)]

= det
( 1

λ
V
)
· det(I + x>V −1x)]

= det
( 1

λ
V
)
· (1 + ‖x‖2V −1).

Proofs of the Lemmas

proof of Lemma 3.4. Let S = {x1, . . . , xn}, λ = (ε/2S)2, and V = λI+
∑n
i=1 xix

>
i . By definition, if x is ε′-independent

of x1, . . . , xn for some ε′ ≥ ε, then there exist θ1 ∈ H and θ2 ∈ H such that fi(x) := 〈θi, x〉 ∈ F statisfies

〈θ1, x〉 − 〈θ2, x〉 > ε′, (3)

and

‖θ1‖ ≤ S, ‖θ2‖ ≤ S,
n∑
i=1

(〈θ1, xi〉 − 〈θ2, xi〉)2 ≤ (ε′)2. (4)

Then we have

‖θ1 − θ2‖2V =(θ1 − θ2)>
(
λI +

n∑
i=1

xix
>
i

)
(θ1 − θ2)

=(θ1 − θ2)>
( ε2

(2S)2
I +

n∑
i=1

xix
>
i

)
(θ1 − θ2)

=
ε2

(2S)2
‖θ1 − θ2‖2 +

n∑
i=1

(θ1 − θ2)>xix
>
i (θ1 − θ2)

≤ε2 + (ε′)2,

where the last inequality follows from Equation (4).

By Equation (3), we have

ε′ <〈θ1 − θ2, x〉
≤‖θ1 − θ2‖V · ‖x‖V −1 (Cauchy Inequality)

≤
√
ε2 + (ε′)2 · ‖x‖V −1 .
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Therefore,

‖x‖2V −1 >
(ε′)2

ε2 + (ε′)2
≥ 1

2
.

Finally, by Lemma A.1, we have

∆γ((ε/2S)2;x|S) = log(1 + ‖x‖2V −1) > log
3

2
.

proof of Lemma 3.5. Let S = {x1, . . . , xn}, λ = (ε/2S)2, and V = λI +
∑n
i=1 xix

>
i . By Lemma A.1, we know that

∆γ((ε/2S)2;x|S) > log 2 implies ‖x‖V −1 > 1.

Define

θ1 =
ε

2
· V −1x√

x>V −1x
and θ2 = −θ1. In this case, we have

‖θ1‖2 =
ε2

4
· (V −1/2x)>V −1(V −1/2x)

x>V −1x

=
ε2

4
·

(V −1/2x)>
(
λI +

∑n
i=1 xix

>
i

)−1

(V −1/2x)

x>V −1x

≤ ε2

4
·

(V −1/2x)>
(
λI
)−1

(V −1/2x)

x>V −1x

=
ε2

4
· (2S)2

ε2
· (V −1/2x)>(V −1/2x)

x>V −1x

= S2.

Similarly we have ‖θ2‖2 ≤ S2. Therefore fi(x) := 〈θi, x〉 ∈ F for i = 1, 2.

Next, we have

n∑
i=1

(〈θ1 − θ2, xi〉)2 =ε2 ·
(V −1x)>

(∑n
i=1 xix

>
i

)
(V −1x)

x>V −1x

≤ε2 · (V −1x)> · V · (V −1x)

x>V −1x

=ε2,

and
〈θ1 − θ2, x〉 = ε‖x‖V −1 > ε.

Then we conclude that x is ε-independent of S = {x1, . . . , xn}.

proof of Lemma 3.6. Denote Σk =
∑k
i=1 xix

>
i . The re-arrangement is done by sequentially choosing xi to be

x1 = arg max
xj :1≤j≤T

log det(I +
1

λ
(xjx

>
j )),

x2 = arg max
xj :2≤j≤T

log det(I +
1

λ
(Σ1 + xjx

>
j )),

· · ·

xi = arg max
xj :i≤j≤T

log det(I +
1

λ
(Σi−1 + xjx

>
j )),

· · ·
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where ties are broken arbitrarily. By our procedure of choosing xi, we have

log det(I +
1

λ
(Σi−1 + xix

>
i )) ≥ log det(I +

1

λ
(Σi−1 + xi+1x

>
i+1)). (5)

Since Σi − Σi−1 is positive semidefinite, we have

log det(I +
1

λ
(Σi−1 + xi+1x

>
i+1))− log det(I +

1

λ
Σi−1)

= log(1 + ‖xi+1‖2(λI+Σi−1)−1)

≥ log(1 + ‖xi+1‖2(λI+Σi)−1)

= log det(I +
1

λ
Σi+1)− log det(I +

1

λ
Σi). (6)

Then by Equations (5) and (6), for i = 1, . . . , T − 1

log det(I +
1

λ
Σi)− log det(I +

1

λ
Σi−1)

= log det(I +
1

λ
(Σi−1 + xix

>
i ))− log det(I +

1

λ
Σi−1)

≥ log det(I +
1

λ
(Σi−1 + xi+1x

>
i+1))− log det(I +

1

λ
Σi−1)

≥ log det(I +
1

λ
Σi+1)− log det(I +

1

λ
Σi).

This means
∆γ(λ, xi|x1, . . . , xi−1) ≥ ∆γ(λ, xi+1|x1, . . . , xi).


