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1. Introduction
Modern Reinforcement Learning (RL) has solved chal-
lenges in diverse fields such as finance, healthcare, and
robotics (Deng et al., 2016; Yu et al., 2019; Kober et al.,
2013). Nonetheless, the theory behind these methods re-
mains poorly understood, with convergence and optimality
results being limited to narrow classes of problems. Clas-
sical approaches to RL theory focus on tabular problems
where discrete techniques can be applied (see (Agarwal
et al., 2020b; Sidford et al., 2018)). However, most practical
problems exist in continuous, high-dimensional domains
(Doya, 2000), and may even be infinite-dimensional.

Theoretical results in continuous domains do not effectively
characterize practical algorithms. Recently, some papers
have proposed the linear class of Markov Decision Processes
(MDPs), where the transition kernel and reward function
take the form of inner products of arbitrary feature trans-
forms. In particular, value-based estimators have obtained
strong results in this context, both in on- and off-line settings
(Cai et al., 2019; Yang & Wang, 2019). In contrast to value-
based methods, direct policy estimators possess numerous
advantages, in that they are (theoretically) insensitive to per-
turbations in the problem parameters, and are smoother to
estimate. Nonetheless, bounds for direct parameterizations
of the policy have been less successful. They either restrict
the cardinality or size of the space (Agarwal et al., 2020b),
or apply strong assumptions on the policy and MDP (Liu
et al., 2019; Xu et al., 2020). This conflicts with practical re-
sults, where convergence often occurs without boundedness
or smoothness preconditions on the function approximator.
Consequently, in this paper, we analyse two key questions:
(i) how can we relax existing conditions on MDPs while
retaining guarantees for fast convergence, (ii) how can opti-
mality of the value function be obtained in these contexts.
Arguably, the convergence of gradient algorithms needs to
rely on some constraints of the function class. Prior work
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has relied on assumptions of (a) MDP ergodicity, (b) policy
smoothness and (c) absolute boundedness of the gradient.
However, these conditions are overly restrictive and exclude
many useful function approximators.

Summary of Contributions. We relax all three of these
assumptions significantly: (a) ergodicity is proved by rely-
ing on near-linearity of the problem dynamics; (b) strong
smoothness is relaxed to weak smoothness (Hölder condi-
tions) of the policy and its gradient; (c) absolute bounded-
ness is relaxed to L2 integrability under regular measures.
While this is an important theoretical development, it also
expands the scope of practical convergence results. We in-
clude many practical examples of MDPs and policies that
satisfy our criteria, with applications to exploration and
safety in reinforcement learning. In addition, our conditions
are significantly easier to verify through numerical simula-
tion as they are direct constraints on either the policy or the
MDP. To the best of our knowledge, ours is the first study to
consider this setting, and to show explicit ergodicity results
for continuous-state MDPs.

1.1. Policy Class

Let (S,A, P,R, γ) denote an MDP, where P is linear in
the sense that P (·|s, a) = 〈φ(s, a),µ(·))〉 for some fea-
ture transformation φ : S × A → Rd. In this work, we
limit our discussion to exponential policy classes which are
continuously differentiable. In particular, we denote the
distribution of an exponential policy, parameterized by a
function ν : S × A → R, as: πν(a|s) = exp(ν(s,a))∫

A exp(ν(s,a))
.

We require that ν is differentiably parameterized by a vari-
able θ ∈ Θ (where Θ ⊆ RN ).The gradient can be written
as∇J(θ) = E(s,a)∼dρπ [Qπθ (s, a)ψθ(s, a)] due to the value
function having an expectation of zero. Let us denote the
score function as ψθ(s, a) = ∇θ log πθ(a|s). In this work,
we consider all softmax functions that satisfy the following
smoothness properties:

Assumption 1 (Smoothness of Policy Class) Consider poli-
cies πθ = 1

C exp(νθ). We require that π obeys the following
two smoothness conditions:∫
A
πθ(a|s) log

πθ(a|s)
πθ+η(a|s)

da ≤ Cν,1 ‖η‖β1 , (1)
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Algorithm 1 Policy Gradient for Hölder Smooth Objectives
1: Initial parameter θ0

2: for Step t = 1, . . . , T − 1 do
3: for i = 1, . . . B do
4: Sample st,i, at,i ∼ dρ0πt , rt,i ∼ R(·|st,i, at,i)
5: end for
6: Choose ht according to a specified rule.
7: θt ← θt−1 + 1

B

∑B
n=1 htrt,iψ(st,i, at,i)

8: end for
9: Return θT

∫
A
‖∇νθ(s, a)−∇νθ+η(s, a)‖πθ(a|s)≤Cν,2 ‖η‖β2, (2)

where the constants Cν,1, Cν,2 ≥ 0, β1 ∈ [1, 2], β2 ∈ (0, 1]
are valid for all θ, s.

We introduce an additional assumption on the variances of
the gradient:

Assumption 2 (Boundedness of Gradient Moments) As-
sume that the score function is absolutely bounded in L2

across all policies, with respect to its own generated state-
action distribution, i.e. that the following holds:∫

‖ψθ(s, a)‖22 d
ρ
θ(s, a) ≤ ψ∞ (3)

for any θ in our parameter space, where ψ∞ < ∞ is a
constant independent of θ.

Finally, under weak assumptions on the policy and MDP, we
prove the following , which is sufficient to show smoothness
of the objective function. It is also of independent interest,
since it can be used to show the convergence of samplers of
states and actions.

Proposition 1 (Ergodicity) We have for all states s ∈ S:∥∥Pnπθ (·|s0 = s)− ρ∗(·)
∥∥ ≤ C0δ

n,

where Pnπθ is the n-step state transition kernel following πθ,
ρ∗ is the invariant state distribution, C0 ≥ 0, δ < 1 are
constants independent of s, θ.

1.2. Policy Gradient

Given these assumptions on the policy class, we can apply
direct policy ascent on the space of parameters in order to
get the gradient update

θt = θt−1 + ht∇θJ(θt−1), (4)

where ht ∈ R is an adaptive step size. Alternatively, natural
policy gradient (NPG) is a parameter invariant method that
applies the following update

θt = θt−1 + htK
†(θ)∇θJ(θt−1), (5)

Algorithm 2 Natural Policy Gradient for Hölder Smooth
Objectives

1: Initial parameter θ0, initial matrix K0, stability parame-
ter ξ > 0

2: for Step t = 1, . . . , T − 1 do
3: for i = 1, . . . B do
4: Sample st,i, at,i ∼ dρ0πt , rt,i ∼ R(·|st,i, at,i)
5: end for
6: Choose ht according to a specified rule.
7: Kt ← 1

B

∑B
i=1 ψ(st,i, at,i)ψ

>(st,i, at,i)

8: θt ← θt−1 + 1
B

∑B
i=1 ht(Kt+ ξI)−1rt,iψ(st,i, at,i)

9: end for
10: Return θT

where K(θ) = Es,a∼dρθ
[
ψθ(s, a)ψθ(s, a)>

]
. Here [·]† is

the matrix pseudo-inverse. The advantages of this method
are that the optimization landscape becomes nearly convex,
as we see in our analysis.

Since the true loss function and Fisher information matrix
are not available to us, we estimate each of them through
sampling. In particular, we use the following estimators:

∇̂θJ(θt) = rtψθ(st, at), (6)

K̂(θt)† =
(
ψθ(st, at)ψ

>
θ (st, at) + ξI

)−1
, (7)

where ξ > 0 is a hyperparameter that guarantees the esti-
mator is numerically stable. The first estimator is unbiased
while ξ controls the bias of the second term; this bias van-
ishes as ξ → 0.

In the sequel, we consider the following learning rates: (i)
constant ht = λ, (ii) dependent on the number of steps

ht = λT−
β0−1
β0+1 , (iii) decaying ht = λtq, (q ∈ (−1, 0]), (iv)

an optimal learning rate ht = O(‖gt‖
1−β0
β0 ).

1.3. Main Results

Theorem 1 (Local Convergence) Under Assumptions 1-2,
Policy Gradient achieves the following convergence:

T∑
t=1

htE
[
‖gt‖2

]
≤ J(θ0)− J(θ∗)

+

T∑
t=1

C

(β0 + 1)(1− γ)
hβ0+1
t

(
σ̃B−

β0+1
2 + E [‖gt‖]β0+1

)
,

where gt = ∇J(θt), β = β0/(β0 + 1) ≤ 0.5. J(θ0) is
our initial performance and J∗ is an upper bound on J
(which exists due to the boundedness of the reward). B is
the batch size and the remaining constants are specified in
the Appendix.
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Table 1. Local convergence results of various learning rate
schemes, for both policy gradient and natural policy gradient.
We only track the primary dependence in T,B, γ. For the
decaying learning rate, we define the coefficients f(q, β0) =
max( 2qβ0

1−β0
,−1), g(q, β0) = max(q(β0 + 1),−1). Note that

only the final case generalizes as β0 → 1.
ht ORDER

λ O(T−1 + (1− γ)−1B−
β0+1

2 + (1− γ)−
2

1−β0 )

λT
β0−1
β0+1 O((1− γ)−

2
1−β0 T−

2β0
1+β0 ) + (1− γ)−1T

β20−β0
β0+1 B−

β0+1
2 )

λtq O((1− γ)−
2

1−β0 T f(q,β0) + (1− γ)−1T g(q,β0)B−
β0+1

2 )

O
(
‖gt‖

1−β0
β0

)
O((1− γ)−

1
β0 T−1 +B−

β0+1
2 )

Natural Policy Gradient achieves the following:

T∑
t=1

htE
[
‖gt‖2

]
≤ (ψ∞ + ξ)

2
(J(θ0)− J(θ∗))

+

T∑
t=1

L (ψ∞ + ξ)
2

(β0 + 1)ξβ0+1
hβ0+1
t

(
σ̃B−

β0+1
2 + E

[
‖gt‖β0+1

])
.

Remarks: As the norm in Assumption 2 strengthens to
‖·‖q , q →∞, we can instead take β0 = min(β1

2 , β2) which
recovers previous rates. In general the coefficient on β1 is
r/2, where r + 1

q = 1. The case q = ∞, β0 = 1 was pre-
viously discovered by numerous works, see e.g. (Agarwal
et al., 2020b; Xu et al., 2020).

Corollary 1 (Rates under various step-size schemes) Table
1 encapsulates the orders of growth of 1

T

∑T
t=1 ‖gt‖

2 for
each of the learning rates examined in our paper. Note
that for the optimal learning rate, we must instead bound
1
T

∑T
t=1 ‖gt‖

1+β0
β0 .

For global optimality, standard policy gradient requires an-
other assumption in order to demonstrate convergence:

Assumption 3 (Global Convergence Requirements for Pol-
icy Gradient) Let θ1, θ2 ∈ Θ be any two parameterizations
for the exponential class ν (recall that πθ = exp νθ). Then,
we assume that ν is dominated, i.e. that the following holds
for all a, s:

|νθ1(a|s)− νθ2(a|s)|

≤ log
(∥∥∥∇θνθ2(s, a)− Ea∼πθ2 (s)[∇θνθ2(s, ·)]

∥∥∥
2

)
.

Remarks: Thus, we require that the density ν be sub-
logarithmic with respect to the gradient∇θν(s, a). Since νθ
represents the logits, this equates to a notion of fast growth
(outside a local neighbourhood) in θ.

Theorem 2 (Global Convergence) Natural Policy Gradient

achieves the following convergence rate:

J(π∗)− E [J(θt)]

≤

√
C21

(1− γ)3

(
O(B−1/2) +

√
EΠ√

ψ∞ + 1
+O(‖gt‖)

)
.

Here,EΠ = maxθt Edρθt

[∥∥ψ>θtK(θt−1)†∇J(θt)−Aθt
∥∥2
]

is a policy dependent parameter that serves to lower
bound the optimality of the function class, and

C21 =

√
(ψ∞ + 1)

∥∥∥Dd∗ρ ∥∥∥∞ measures the irregular-

ity of the initial distribution. If, additionally, Assumption 3
is added, then the standard Policy Gradient achieves the
following convergence rate:

J(π∗)− E[J(θt)] ≤
1

1− γ
C21 ‖gt‖ . (8)

We note that there are no additional assumptions apart from
the bias term EΠ being finite; this is bounded under weak
assumptions (see (Agarwal et al., 2020b)).

For both natural and standard policy gradient, if we take
the minimum over t = 1 . . . T , we obtain the rates in the
following corollary.

Corollary 2 (Rates under various step-size schemes) Un-
der each of the learning rates examined in our paper, we
obtain a sample efficiency shown in Table 2 for policy gra-
dient so that the following holds:

min
t=1,...T

J(π∗)− E [J(θt)] ≤ ε,

For natural policy gradient, the rates are outlined in Table
3 so that the following holds:

min
t=1,...T

J(π∗)− E [J(θt)] ≤ ε+

√
C21

(1− γ)3

√
EΠ√

ψ∞ + 1

The exception is with the constant learning rate, which

contains an additional bias term of order λ
β0+1

2(1−β0) (1 −
γ)

−1
1−β0

− 3
2 .

1.4. Applications

For ease of demonstration, we consider policies and envi-
ronments which independently satisfy Assumptions 1-2 and
ergodicity respectively, so long as the other component is
sufficiently regular. The following policies illustrate why
we might value weak smoothness:

Example 1 (Generalized Gaussian Policy) If we choose
the parameter κ ∈ (1, 2], we can choose the generalized
Gaussian distribution to parameterize our policy:

ν(a|s, θ) = − |〈φ(s, a), θ〉|κ . (9)
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Table 2. Optimality results of various learning rate schemes, for
policy gradient. We only track the primary dependence in ε, γ. We
omit the decaying learning rate since it yields only cumbersome
results.

ht T−1 B−1

λ ε2(1− γ)2 ε
4

1+β0 (1− γ)
6

1+β0

λT
β0−1
β0+1 ε

β0+1
β0 (1− γ)

(2−β0)(β0+1)

(β0−β20) ε
4β0
β0+1 (1− γ)

4β0−2
β0+1

O
(
‖gt‖

1−β0
β0

)
ε
β0+1
β0 (1− γ)

β0+2
β0 ε

2
β0 (1− γ)

2
β0

Table 3. Optimality results of various learning rate schemes, for
NPG. We only track the primary dependence in ε, γ.

ht T−1 B−1

λ ε2(1− γ)3 ε
4

1+β0 (1− γ)
8

1+β0

λT
β0−1
β0+1 ε

β0+1
β0 (1− γ)

(5−3β0)(β0+1)

2(β0−β20) ε
4β0
β0+1 (1− γ)

6β0−2
β0+1

O
(
‖gt‖

1−β0
β0

)
ε
β0+1
β0 (1− γ)

(5+2β0)
2β0 ε

2
β0 (1− γ)

3
β0

See Figure 1(a) for a visualization of the smoothness of this
policy.

This distribution is covered by our framework; in contrast,
previous works only permitted the strictly Gaussian distribu-
tion, where κ = 2. In particular, the tails of this distribution
decay much more slowly than the tails of the Gaussian
distribution, which has applications to exploration-based
strategies. Indeed, let us consider the following single-state
exploration problem with the following reward

r(at) =
(
1− (at − θ∗)2

)
1|at−θ∗|≤1, (10)

with policies ν(a|θ) = − |a− θ|κ for κ = 2 (a Gaussian
policy) and κ ∈ (1, 2] (a generalized Gaussian). θ∗ ∈ R is
an unknown target. If θ∗ is far from our initial parameter, the
agent will receive no gradient information so long as it does
not sample actions from the region of interest [θ∗−1, θ∗+1].

Figure 1. (a) Tail Growth: Comparing the growth of ψθ in one-
dimension for Gaussian policies versus the Generalized Gaussian
(Example 1) with α = 0.5, for the [0, 0] state in the Mountain-
Car environment. (b) Exploration Performance: Comparing the
performance of Generalized Gaussian and the standard Gaussian
policy, with α = 0.5, for the reward function found in Equation
(10), |θ∗ − θ| = 3.9. The Generalized Gaussian significantly
outperforms during the exploration phase.

Figure 2. (a) Gradient Norm Growth: Comparing the growth of
Example 3 using the L2 norm described by Assumption 2, ver-
sus maxn ‖ψ(sn, an)‖ with growing number of samples. While
our criterion is stable, the max diverges logarithmically. (b) Er-
godicity of the Test Function: Convergence in expectation of
the test function ζ(s, a) = ‖φ(s, a)‖ for Gaussian policies on
the MountainCar environment, using the average over 10000 tra-
jectories, with confidence intervals of the resulting distribution
shaded in blue. This large variance impedes practical verification
of ergodicity.

For a policy with exponent κ, this occurs with probability

Pκ(at ∈ [θ∗ ± 1]) =

∫ θ∗+1

θ∗−1
exp(− |a− θ0|κ)da

2Γ(κ+ 1/κ)
.

Assuming that |θ∗ − θ0| � 0, then

Pκ(at ∈ [θ∗ ± 1])− P2(at ∈ [θ∗ ± 1])

≥ 1

2Γ(κ+ 1/κ)

∫ θ∗+1

θ∗−1

exp(− |a− θ0|κ)−

exp(− |a− θ0|2 + log 2)da ≥ 0,

by simply comparing the terms in the exponents. This differ-
ence in probability can improve sample efficiency by many
orders of magnitude. The empirical performance of the two
policies is found in Figure 1(b). This example can be easily
generalized to more complex bandits/MDPs.

Another example shows the richness of the weakly smooth
assumption:

Example 2 (Solutions to p-Laplacian) It is well known
(Lindqvist, 2017) that solutions to the p-Laplacian

∆pν(θ) , ∇ · (‖∇ν‖p−2∇ν) = 0, (11)

where ∇· is the divergence operator, are weakly smooth of
order p when p ∈ (0, 1].

These arise naturally as minimizers of divergence integrals,
and thus serve as a useful class of potentials for practical
agents; note that we can add any bounded Lipschitz potential
to such functions while preserving Hölder regularity. Weak
smoothness has also been shown for many other elliptic
families of PDEs (Høeg & Lindqvist, 2020; Sciunzi, 2014),
which may also serve as candidate policies.

To illustrate the distinction of Assumption 2 from standard
‖·‖∞ bounds, consider the policy class:
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Example 3 (Safe Policies) Consider the following potential
for θ ∈ [−1, 1],φ∗ ∈ Rd:

νθ(s, a) = −θ log ‖φ(s, a)− φ∗‖ . (12)

Under uniform dynamics and a uniform distribution of
φ(s, a) on Rd, this family satisfies Assumption 2, but
not the standard assumption of absolute boundedness
sups,a ‖ψθ(s, a)‖∞ < ∞ (see Figure 2(a)). This policy
explicits avoids the state-action region around φ∗; this can
arise practically when considering safety or instability con-
straints in RL.

For some examples of MDPs permitted under Assumption
??, consider the following.

Example 4 (Simplex MDPs) If the feature space is a subset
of a d-dimensional simplex {

∑d
i=1 φi(s, a) = 1,φi ≥ 0},

then any vector of probability measures [µ1(s), µ2(s) . . .]
satisfying Assumption ?? forms a valid linear MDP. For
example, µ can be Gaussian in each component.

Example 5 (MountainCar) The MountainCar environment,
with sufficiently growing slope, empirically obeys ergodicity
for regular policy classes such as the generalized Gaussian
policy. We can experimentally verify this by computing the
geometric convergence of test functions Est,at [ζ(st, at)],
which can be found in Figure 2. Note that even for a simple
example, this quantity has large variance.

Note that environments with discontinuous dynamics or un-
bounded states typically fail ergodicity, but can be preserved
if the policy class is finely constrained.

1.5. Related Work

Optimization and Stochastic Approximation

We primarily refer to work on stochastic approximation,
which began with the work by authors (Polyak & Juditsky,
1992; Kushner & Yin, 2003), who established basic condi-
tions for convergence for linear approximation procedures,
with rates being obtained under strong assumptions. Tighter
bounds have recently been achieved through improved anal-
ysis and techniques, both in asymptotic and non-asmyptotic
contexts (Chen et al., 2016; Lakshminarayanan & Szepes-
vari, 2018; Jain et al., 2018).

The theory for optimizing weakly smooth rather than Lip-
schitz functionals was primarily developed in the follow-
ing works (Devolder et al., 2014; Nesterov, 2015; Yash-
tini, 2016), introducing the definition of weak-smoothness
through Hölder conditions, and showing convergence via
smoothing or fast decaying learning rates. Lastly, our analy-
sis relies heavily on the theory of ergodicity for MDPs. We
build on the works of (Mitrophanov, 2005) which yields per-
turbation bounds on the state distribution, and subsequent

improvements in the assumptions and condition numbers
(Ferré et al., 2013; Rudolf et al., 2018).

Reinforcement Learning

The general formulation of reinforcement learning can be
attributed to Bellman’s formulation of Markov Decision pro-
cesses (Bellman, 1954). Gradient-based approaches were
proposed to solve direct policy parameterizations (Williams,
1992); developments in this classical setting include (Sutton
et al., 1999; Konda & Tsitsiklis, 2000; Kakade et al., 2003).
These works established asymptotically tight bounds for
convergence in the tabular setting, while outlining rough
conditions for convergence when feature transformations
were applied. The introduction of natural gradient tech-
niques (Kakade, 2001), which borrowed from similar work
in standard optimization (Amari, 1998), yielded improved
convergence with respect to policy condition numbers. In
particular, strong convergence holds for domains such as the
linear quadratic regulator (Fazel et al., 2018; Tu & Recht,
2018) and other linearized problems.

Even so, lower bounds for general problems can be quite
pessimistic, especially when the conditions are ill-specified
(Sutton et al., 2000). This debate has attracted renewed
focus in recent years, with an on-going discussion on the
quality of representation and its effect on learnability (Du
et al., 2019; Van Roy & Dong, 2019). Nonetheless, real
world problems are either continuous or well-approximated
by continuous algorithms, with smooth state-space. (Agar-
wal et al., 2020a;b) provided a convergence and optimality
result for both tabular and linear settings, but only when
the action space was discrete. (Xu et al., 2020; Kumar
et al., 2019) focus on general settings, but only under gener-
ous smoothness and boundedness assumptions. Numerous
works have since focused on feature representations in pol-
icy learning, particularly through use of neural networks
(Thomas & Brunskill, 2017; Wang et al., 2019; Liu et al.,
2019); these apply similarly strict assumptions on the prob-
lem class in order to achieve good rates of convergence.

1.6. Discussion

In this work, we established the convergence guarantees
for the policy gradient for weakly smooth and continuous
action space settings. To the best of our knowledge, this
is the first work to establish the convergence of policy gra-
dient methods under an unbounded gradient without Lip-
schitz smoothness conditions. We further established the
ergodicity of linear MDPs (under generic integrability as-
sumptions), which was previously assumed to hold by prior
work. Thus, our work significantly generalizes the scope
of existing analysis while opening numerous lines of future
research. Our assumptions are also practically applicable,
as we demonstrate through several examples.
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