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Abstract
We study the problem of the design of simple
economic mechanisms for assigning items to self-
interested agents that combine a messaging round
with a sequential-pricing stage. The rules of the
sequential-pricing stage and in particular the way
these rules use messages determines the way the
messaging stage is used. This is a Stackelberg
game where the designer is the leader and fixes
the mechanism rules, inducing an equilibrium
amongst agents (the followers). We model the
followers through equilibrium play coming from
no-regret learning, and introduce a novel single-
agent Stackelberg MDP formulation, where the
leader learns to effect a follower equilibrium that
optimizes its objective. We solve this MDP us-
ing actor-critic methods, where the critic is given
access to the joint information of all the agents.

1. Introduction
Despite the successful application of machine learning for
the automated design of direct mechanism for allocating
items to a multi-agent system of self-interested agents (Duet-
ting et al., 2019, e.g.,), the automated design of indirect
mechanisms is less well understood. Indirect mechanisms
are interesting because they simplify the reports required
of agents. In particular, participation does not require an
agent to report its complete preferences over allocations (as
is required in a direct mechanism).

In this paper, we consider the novel problem of the auto-
mated design of indirect mechanisms that combine a mes-
saging round with a simple, sequential-pricing stage. The
sequential pricing stage makes a take-it-or-leave-it offer of
remaining items to each agent in turn, with an agent having
the option to select an item. Agents in this stage have a
dominant strategy (take the item, if any, that maximizes
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its true utility). Both the order and the prices offered can
depend on the messages received by the mechanism as well
as previous choices by agents.

This family of mechanisms is motivated by different practi-
cal applications, including the following:

• Online platforms such as Priceline, that offer limited
bidding capability according to which they choose a
match, for example of a consumer to a hotel.

• School matching mechanisms, that tend to elicit limited
preferences from parents of students. For, instance, the
top three school choices among schools in the district.
The platforms take these reports into account when
implementing a priority-based, round-robin matching
algorithm (Center, 2020).

• Online marketplaces such as Amazon offer personal-
ized deals based on reported information; e.g., Amazon
Prime members can customize deals based on themes
that they select such as “sports enthusiast,” and Ama-
zon also encourages customers to make use of the “im-
prove your recommendations” part of a user’s profile.

What is interesting is that the rules of the sequential-pricing
stage (the policy of the mechanism), and in particular the
way these rules make use of messages, determines the way
the messages are used. That is, the way in which the “lis-
tener” (the mechanism) makes use of the messages affects
the use to which the “speakers” (the agents) put the mes-
sages. In this way, the semantics of the messaging round
arise endogenously as a result of the rules of the mechanism.

We model this as a Stackelberg game (Von Stackelberg,
2010), where the designer is the leader—and fixes the mech-
anism rules—these rules inducing an equilibrium amongst
agents (the followers). We model the equilibrium behavior
of the followers as coming from no-regret learning, and in-
troduce a novel single-agent Stackelberg MDP formulation,
where the leader learns to effect a follower equilibrium that
optimizes the leader’s objective. We solve this Stackelberg
MDP using actor-critic reinforcement learning, where the
critic is given access to the agents’ joint information.

The use of no-regret learning dynamics leads the agents’
behavior to converge a Bayesian coarse-correlated equi-
librium (B-CCE) (Hartline, 2002). Our key insight is that,



Learning Stackelberg Equilibria in Sequential Price Mechanisms

since this learning happens through agents perturbing their
inputs to the mechanism policy, we can formulate these
dynamics as a part of an extended MDP (the Stackelberg
MDP). In this way, the mechanism can learn how its policy
influences the equilibrium play of agents. We prove that the
optimal policy of the Stackelberg MDP forms a Stackelberg
equilibrium, solving the mechanism design problem.

This work extends earlier work (Brero et al., 2021), which
considered only sequential pricing mechanisms (SPMs)
without message passing. Since agents have a dominant
strategy in SPM without messaging, this earlier work could
solve the Stackelberg learning problem by simply modeling
this behavior of agents directly within the leader’s MDP.
There was no need for the Stackelberg MDP that we intro-
duce here. We provide simulations to show the benefits that
come from adding message passing, and suggest the utility
of this framework in enabling Stackelberg learning.

Learning Stackelberg Equilibria There has been signif-
icant interest in learning equilibria for Stackelberg games
in the context of security games (Li et al., 2019; Sengupta
and Kambhampati, 2020; Xu et al., 2021), where security
forces (leaders) commit to some surveillance strategies, and
adversaries (followers) best respond to those. Here, positive
results on equilibrium convergence are generally related to
single-leader single-follower (and often zero-sum) games,
conditions not required by our approach.

Another research thread has focused on identifying condi-
tions under which gradient descent dynamics converge to
Stackelberg equilibria (Fiez et al., 2019). While the positive
results here are only related to zero-sum games and settings
with only one leader and one follower, our framework is
more general and does not require followers’ strategies to
be differentiable.

In another related work, Zhang et al. (2020) developed learn-
ing dynamics that converge to a set of equilibria that in-
cludes Stackelberg ones but require the globally optimal
action profile at every state to be chosen at every iteration.
Our approach is guaranteed to converge to Stackelberg equi-
libria and does not make any such assumption regarding the
structure of the game (the globally optimum point might not
even exist) or choices made by the algorithm.

2. Preliminaries
There are n agents and m indivisible items. Let [n] =
{1, . . . ,n} be the set of agents and [m] = {1, . . . ,m} be
the set of items. Each agent i has a valuation function
vi : 2[m]→R≥0 that maps bundles of items to a real value.
Let v = (v1, . . . , vn) denote the valuation profile. We assume
v is sampled from a possibly correlated value distribution
D. This distribution has support

�n
i=1Vi , where each Vi is

a discrete space called agent i’s type space. The designer
can access the value distribution D through samples.

An allocation x = (x1, . . . ,xn) is a profile of disjoint bundles
of items (xi ∩ xj = ∅ for every i , j ∈ [n]), where xi ⊆ [m]
is the set of items allocated to agent i. We call the quantity∑
i∈[n] vi(xi) social welfare of allocation x under valuation

profile v. An economic mechanism interacts with agents
and determines an allocation x and transfers (payments)
τ = (τ1, . . . , τn), where τi ≥ 0 is the payment by agent i. In
this paper we focus on designing mechanisms that maximize
the social welfare of their final allocation.

Sequential Price Mechanisms with Messages We study
the class of message sequential price mechanisms (µSPMs).
This extends the class of SPMs (Brero et al., 2021) by
including an initial round of communication between agents
and mechanism.

A µSPM interacts with agents across rounds. In the first
round, each agent i sends a message µi chosen from a set of
Mi options. Let µ = (µ1, . . . ,µn). Each agent i chooses her
message following a messaging strategy σi(vi) that defines
a probability distribution over Mi . Let σ = (σ1, ..,σn).

The mechanism then visits each agent in turn in each of the
following rounds. In each round, the mechanism picks an
unvisited agent i, and posts a price pj for each available item
j. Then, agent i picks the bundle of items that maximizes
their utility, and is charged with the corresponding item
prices.

We show that learning an optimal µSPM is equivalent to
learning an optimal policy in a suitably defined POMDP. Fur-
thermore, the discrete message space that µSPM provides
to each agent allows deriving optimal messaging strategies
via simple no regret algorithms.

Solution Concept In our setting, both the agents and the
mechanism are adapting. The mechanism adapts itself to
agents’ behavior in order to optimize its objective, and the
agents adapt their strategies to the new mechanism rules. We
are interested in finding a Stackelberg equilibrium, where
the mechanism is the leader and the agents are the followers.

Definition 1 (Bayesian Stackelberg Equilibrium
(Paruchuri et al., 2008)) In a Bayesian Stackelberg
equilibrium, there is a leader with a fixed type, and
followers with types drawn from a distribution. The leader
first commits to a strategy, and followers adopt a strategy
profile that forms an equilibrium in the game induced by
the leader’s strategy.

In this work, we assume the followers play a Bayesian
coarse-correlated equilibrium (B-CCE). B-CCEs naturally
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arise from no regret dynamics.1 In the next section we
formulate the learning that corresponds to the mechanism
design problem.

3. Learning Multi-agent Mechanisms as a
Single Agent Problem

Consider a partially observable stochastic game (Hansen
et al., 2004) among the n agents and the mechanism. The
game state st = (v,µ,xt−1,ρt−1) is a tuple consisting of the
valuation profile v, the (initially empty) message profile µ,
the current partial allocation xt−1, and the residual setting
ρt−1 consisting of agents not yet visited and items not yet
allocated. The full state of the game is not observed directly,
but each agent observes partial information about each state
the game is in. At round 0, each agent observes its own
value and sends a message. At round 1, the mechanism
observes these messages (o1 = µ). At any round t ≥ 1, the
mechanism takes action at = (it ,pt), where it is the next
selected agent and pt is the vector of posted prices offered
in that round. Agent it chooses a utility maximizing set of
items xt (perhaps empty) at prices pt , which is observed by
the mechanism2 (ot = xt−1 for any t ∈ {2, ..,T }).

The first state transition just adds agents’ messages to the
state. Then, at any round t > 0, the state st+1 is obtained
by adding the bundle xt selected by agent it to the partial
allocation xt−1 to form a new partial allocation xt , and
the items and agent are removed from the residual setting
ρt−1 to form ρt . The mechanism’s reward r(s,a) is zero in
all states except for terminal states, defined to be states in
which no agents or items are left. This reward can capture
any objective of the designer. In this work, we consider
social welfare: the reward is the total realized agent value.

Since agent strategies are a function of the mechanism’s
policy, we can write the optimization problem as an op-
timization over the policy’s parameters θ. Let σθ be an
equilibrium induced by a mechanism (policy) represented
by parameters θ. Also, let trSG = (v,µ, s1, a1, . . . , aT , sT ) be
a trajectory of an episode of the stochastic game.

The objective is to find parameters θ that maximizes J(θ) =
EtrSG∼pθ

[∑T
t=0 r(s

t , at)
]
, where

pθ(tr
SG) = p(v)σθ(µ | v)

T∏
t=1

πθ(a
t |ot)p(st+1|st , at). (1)

This is the distribution over trajectories that is induced by
the choice of mechanism policy θ. Observe that the optimal

1We defer the formal definition of B-CCE and the general proof
that no regret dynamics converge to B-CCEs to the supplementary
material.

2We assume that agents play their dominant strategy for this
part of the game.

solution to this optimization problem is a Bayesian Stackel-
berg equilibrium, where the mechanism is the leader, and
the agents act as followers.

As in Brero et al. (2021), we want learn policy πθ using
policy gradient methods. Notice that the stochastic game
defined above is not a proper MDP, as the messages that
the agents bid depend on the policy itself. This introduces
new challenges, where we want to have the mechanism be
aware of how the probability distribution of bids changes in
response to its policy. We address this by using the policy
to determine the agents’ equilibrium strategies within the
episode. To model the equilibrium messaging of agents
we use no-regret dynamics. In no-regret dynamics, agents
update their strategies by examining their utility in the mech-
anism outcome under different possible messages. For this
reason, this can be computed by rolling out the policy itself.
The crucial idea is that we can expand σθ to include the
initial part of an MDP that calls the policy multiple times
to compute agents’ strategies with a no-regret algorithm.
By doing this, we expose the policy to its role in determin-
ing agents’ strategies. Thus, we can apply RL methods to
optimize over the parameters of the policy for this MDP.

The Stackelberg MDP Our MDP, which we name the
Stackelberg MDP, has a long episode that consists of sub-
episodes. A sub-episode consists of rolling out the policy to
determine a allocation and payments. We have two types of
sub-episodes:

1. Equilibrium sub-episodes: The first set of sub-episodes
are used by the agents to find the equilibrium of the
message-passing game, where for some T rounds of
no-regret dynamics:

(a) Agents’ values are drawn.
(b) Agents jointly sample their messages according

to their current strategy.
(c) Each agent runs an algorithm that minimizes its

external-regret3 in the full information setting: it
computes the utility it would have received for ev-
ery possible message sent, fixing all other agents’
messages. The agent then uses this utility vector
to update its strategy using a no-regret algorithm.

2. Reward sub-episode: After running T equilibrium sub-
episodes, we run a sub-episode where the policy gets a
reward for agents playing the current messaging strat-
egy (as determined in the first T rounds). The reward of
the final sub-episode is the reward of the entire episode.

To maintain Markov properties, we include the quantities
that determine how no regret dynamics evolve in the state

3External regret compares the performance of a sequence of
actions to the performance of the best single action in hindsight.
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space. In the following subsection, we show how we can
derive a mechanism that only uses agents’ messages and
purchases to determine its actions, despite being trained
with this extra information.

In the supplementary materials, we show that the first type
of sub-episodes converges to a Bayesian Coarse-Correlated
equilibrium. This implies the following corollary.

Proposition 1 As T goes large, the optimal policy of the
Stackelberg MDP gets the same utility as the leader in the
Stackelberg game between the mechanism and the bidders.

Proof 1 Notice that fixing agents valuations and bids, the
second phase of the Stackelberg MDP is identical to round
1 onward of the partially observable stochastic game, where
the policy induced by θ is used to allocate the items to the
agents, and gets the appropriate reward. Let θ∗T be the
optimal policy for the Stackelberg MDP for T first phase
steps, and σθ∗T the strategies implied by running the first
phase with policy θ∗T . As T grows large, σθ∗T converges
to a B-CCE as shown in the supplementary material. By
optimality of θ∗T , there is no policy that could achieve better
by switching to θ′ and and letting agents play according to
the new equilibrium σθ′ . Therefore, (θ∗T ∗,σθ∗T ) converge to
a Bayesian Stackelberg Equilibrium.

An Actor-critic Approach Through the Stackelberg
MDP, the entire optimization problem is a single-agent MDP,
where the only actions are the actions of the mechanism’s
policy. However, when deployed, the mechanism won’t
have access to the agents’ internal equilibrium computa-
tion, but only to the observations ot consisting of the agents’
messages and purchases. We train the mechanism’s pol-
icy by adopting an actor-critic approach. We first define a
generic trajectory trMDP = (s0, a0, . . . , sT , aT ) in our Stackel-
berg MDP. We can express the trajectory probability of the
optimization problem as

pθ(tr
MDP) = p(s0)

T∏
t=0

πθ(a
t |ot)p(st+1|st , at),

where p(s0) now doesn’t depend on θ, and the states and
observations are defined by the Stackelberg MDP.

The gradient of J(θ) with respect to θ can be expressed as

∇θJ(θ) = Etr∼pθ

∇θ logpθ(tr)
 T∑
t′=1

r(st
′
, at
′
)




= Etr∼pθ

 T∑
t=1

∇θ logπθ(at |ot)

 T∑
t′=1

r(st
′
, at
′
)




= Etr∼pθ

 T∑
t=1

∇θ logπθ(at |ot)

 T∑
t′=t

r(st
′
, at
′
)




Figure 1. Performance as a function of training steps of an µSPM.

where the last equality follows since future actions do not
affect past rewards in an MDP. ∇θJ(θ) is approximated by
sampling ` different trajectories tr1, .., tr`:

∇θJ(θ) ≈
1
`

∑̀
k=1

T k∑
t=1

∇θ logπθ(atk |o
t
k)

 T
k∑

t′=t

r(st
′

k , a
t′
k )

 .
We reduce the variance of this gradient by replacing the
term

∑T
t′=t r(s

t′
k , a

t′
k ) with Qθ(stk , a

t
k), where Qθ(s,a) is the

standard critic network with access to the full MDP state
(including valuations, strategies, etc.) which is inaccessible
to the policy.4 This approach based on centralized training
and decentralized execution is similar to the one proposed
for DDPG by Lowe et al. (2017).

Note that the actor-critic approach described above allows
us to maintain our POMDP tractable, as we do not need to
provide a sufficient statistic of the history of observations as
input to the policy (unlike Brero et al. (2021)). Indeed, stan-
dard actor-critic algorithms only require the environment to
be Markovian for the critic network. Given that this network
has access to agents’ valuations, it does not need to infer
them via the history of transactions.

4. Illustrative Experimental Results
In this paper we provide only illustrative results that suggest
the opportunity to use the Stackelberg MDP framework
together with no-regret learning dynamics by agents for the
design of indirect mechanisms with message passing.

We test the setting introduced by Agrawal et al. (2020) in
their Example 1. We have 2 agents and 1 item. Agent 1’s
value v1 has support {12 ,

1
2ε } with probabilities {1−ε,ε}, and

agent 2’s value v2 has support {0,1}with probabilities {12 ,
1
2 }.

Note that the welfare-optimal allocation cannot always be
realized via an SPM.5 However, there exists at least one
optimal µSPM where agents are properly incentivized to

4Note that Qθ(s,a) can be accessed at training time as we have
access to the full state of the MDP.

5The welfare-optimal SPM visits agent 2 first and then agent
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communicate their types (supplementary material).

In our experiments we use ε = 0.2. We train our µSPMs
via a standard PPO algorithm (Schulman et al., 2017) as
implemented by OpenAI Baselines (Hill et al., 2018). We
run the PPO algorithm for 40M steps and we evaluate the
performance of the system periodically during training using
fresh samples drawn in an evaluation environment.

Figure 1 shows the µSPM learning curve obtained by aver-
aging the best three out of six random seeds. To better high-
light learning performance, we normalize each episode’s
welfare (Allocative Efficiency). As we can see, we can learn
µSPMs that outperform optimal SPM.

5. Conclusion
We have provided a new framework for learning indirect
mechanisms that allow for communication between agents
and the mechanism. The framework allows for the optimal
Stackelberg design to be learned, and is demonstrated here
in application to learning optimal mechanisms from a family
of mechanisms that involve an initial round of communica-
tion followed by sequential offers to agents. We achieve this
by bringing the learning dynamics of agents into the view
of the learning problem of the designer. We provide experi-
ments to demonstrate the effectiveness of this approach in
achieving improved performance compared to SPMs.

An interesting next step left by our work deals with the abil-
ity to learn a mechanism that interacts with agents multiple
times, where messages convey interim information about
the agents given the current allocation. On the theory side,
a next question is under which conditions does a no-regret
dynamic converge to a BNE, as we see this is the solution
concept we converge to in practice. Moreover, it will be in-
teresting to show concrete bounds on the sample complexity
of learning the optimal µSPM.

1, using price zero in both cases. Here, the optimal allocation is
not implemented when v1 = 1/2 and v2 = 1/(2ε).
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