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Abstract

Learning how to effectively control unknown dy-
namical systems is crucial for autonomous sys-
tems. This task becomes more challenging when
the underlying dynamics are changing with time.
Motivated by this challenge, this paper considers
the problem of controlling an unknown Markov
jump linear system (MJS) to optimize a quadratic
objective. By taking a model-based perspective,
we consider identification-based adaptive control
for MJSs. We first provide a system identifi-
cation algorithm for MJS to learn the dynam-
ics in each mode as well as the Markov transi-
tion matrix, underlying the evolution of the mode
switches, from a single trajectory of the system
states, inputs, and modes. Through mixing-time
arguments, sample complexity of this algorithm
is shown to be Õ(1/

√
T ). We then propose an

adaptive control scheme that performs system
identification together with certainty equivalent
control to adapt the controllers in an episodic
fashion. Combining our sample complexity re-
sults with recent perturbation results for certainty
equivalent control, we prove that the proposed
adaptive control scheme achieves Õ(

√
T ) regret,

which can be improved to Ô(log(T )) with par-
tial knowledge of the system. Our analysis intro-
duces innovations to handle MJS specific chal-
lenges (e.g. Markovian jumps) and provides in-
sights into system theoretic quantities that affect
learning accuracy and control performance.
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1. Introduction
A canonical problem at the intersection of machine learn-
ing and control is that of adaptive control of an unknown
dynamical system. An intelligent autonomous system is
likely to encounter such a task; from an observation of the
inputs and outputs, it needs to both learn and effectively
control the dynamics. A commonly used control paradigm
is the Linear Quadratic Regulator (LQR), which is theoreti-
cally well understood when system dynamics are linear and
known. LQR also provides an interesting benchmark, when
system dynamics are unknown, for reinforcement learn-
ing (RL) with continuous state and action spaces and for
adaptive control (Campi & Kumar, 1998; Abbasi-Yadkori
& Szepesvári, 2011; Dean et al., 2019; Mania et al., 2019;
Lale et al., 2020a; Abeille & Lazaric, 2020).

A generalization of linear dynamical systems that can cap-
ture dynamics that switch between multiple linear systems,
called modes, according to an underlying finite Markov
chain is Markov jump linear systems (MJSs). MJS al-
lows for modeling a richer set of problems where the un-
derlying dynamics can abruptly change over time. One
can, similarly, generalize the LQR paradigm to MJS by
using mode-dependent cost matrices, which allows differ-
ent control goals under different modes. While the MJS-
LQR problem is also well understood when one has perfect
knowledge of the system dynamics (Chizeck et al., 1986;
Costa et al., 2006), in practice, it is not always possible
to know the system dynamics and the Markov transition
matrix. For instance, a Mars rover optimally exploring an
unknown heterogeneous terrain, optimal solar power gen-
eration on a cloudy day, or controlling investments in fi-
nancial markets may be modeled as MJS-LQR problems
with unknown system dynamics. Earlier works have aimed
at analyzing the asymptotic properties (i.e., stability) of
adaptive controllers for unknown MJS both in continuous-
time (Caines & Zhang, 1995) and discrete-time (Xue &
Guo, 2001) settings, however, despite the practical impor-
tance of MJS, non-asymptotic sample complexity results
and regret analysis for MJS are lacking. The high-level
challenge here is the hybrid nature of the problem that re-
quires consideration of both the system dynamics and the
underlying Markov transition matrix. A related challenge
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Figure 1. State trajectories for a two-mode MJS
{
xt+1 = 0.7xt
xt+1 = 1.2xt

with Markov matrix
[
0.7 0.3
0.4 0.6

]
and x0 = 1. Red and blue

curves: mode switching sequence Ω1 = {1, 1, . . .},Ω2 =
{2, 2, . . .}. Yellow curve: average over realizations. Gray area:
region for all possible trajectories.

is that, typically, the stability of MJS is understood only
in the mean-square sense. This is in stark contrast to de-
terministic stability (e.g., as in LQR), where the system is
guaranteed to converge towards an equilibrium point in the
absence of noise. On the other hand, the convergence of
MJS trajectories towards an equilibrium depends heavily
on how the switching between modes occurs.

Figure 1 shows an example (reproduced from (Costa et al.,
2006)) of an MJS that is stable in the mean square sense
despite having an unstable mode. Clearly, under an un-
favorable mode switching sequence, the system trajectory
can still blow up. High-probability light tail bounds are
therefore not applicable without very strong assumptions
on the joint spectral radius of different modes (cf. (Sarkar
et al., 2019)). Perhaps more surprisingly, there are exam-
ples of MJS with all modes individually stable, however
due to switching, the system exhibits an unstable behavior
on average, and the MJS is not mean square stable. There-
fore, finding controllers to individually stabilize the mode
dynamics does not guarantee that overall system will be
stable when mode switches over time. This more relaxed
notion of mean-square stability presents major challenges
in learning, controlling, and the statistical analysis.

Contributions: In this paper, we provide the first com-
prehensive system identification and regret guarantees for
learning and controlling Markov jump linear systems using
a single trajectory. Importantly, our guarantees are optimal
in the trajectory length T . Specifically, our contributions
are:
(I) System identification: For an MJS with s modes, the
system dynamics involve Markov chain matrix T ∈ Rs×s
and s state-input matrix pairs (Ai,Bi)

s
i=1. We provide

an algorithm (Alg. 1) to estimate these dynamics with the
optimal error rate of Õ(1/

√
T ) 1. Specifically, the sample

1Here Õ(·) hides ploylogarithmic factors in T , 1/δ etc.

complexity grows as T & poly(s)(n + p) where n and p
are the state and input dimensions respectively.
(II) Õ(

√
T )-regret bound: We employ the system

identification guarantees for the MJS-LQR. When system
dynamics are unknown, we show that our certainty-
equivalent adaptive MJS-LQR algorithm (Alg. 2) achieves
a regret of Õ(

√
T ). Remarkably, this coincides with

the optimal regret bound for the standard LQR problem
obtained via certainty equivalence (Mania et al., 2019).
Furthermore, we show that when the input matrices are
known, the regret bound can be significantly improved to
O(polylog(T )), which coincides with the case in (Cassel
et al., 2020) for standard LQR.

2. Preliminaries and Problem Setup
We use boldface uppercase (lowercase) letters to denote
matrices (vectors). For a matrix V, ρ(V) denotes its spec-
tral radius. The Kronecker product of two matrices M
and N is denoted as M ⊗ N. V1:s denotes a set of s
matrices {Vi}si=1 of same dimensions. We define [s] :=

{1, 2, . . . , s}. Throughout, Õ(·) and Ô(·) hide polylog( 1
δ )

and poly( 1
δ ) terms respectively.

2.1. Markov Jump Linear Systems
In this paper we consider the identification and control of
MJS which are governed by the following state equation,

xt+1 = Aω(t)xt + Bω(t)ut + wt

s.t. ω(t) ∼ Markov Chain(T).
(1)

where xt ∈ Rn, ut ∈ Rp and wt ∈ Rn are the state,
input, and process noise of the MJS at time t. Through-
out, we assume x0 ∼ Dx and {wt}∞t=0

i.i.d.∼ N (0, σ2
wIn).

There are s modes in total, and the dynamics of mode i is
given by the state matrix Ai and input matrix Bi. The ac-
tive mode at time t is indexed by ω(t) ∈ [s]. The MJS
mode switching sequence {ω(t)}∞t=0 follows a Markov
chain with transition matrix T ∈ Rs×s such that for all
t ≥ 0, the ij-th element of T denotes the conditional prob-
ability [T]ij := P

(
ω(t + 1) = j | ω(t) = i

)
, ∀ i, j ∈ [s].

Throughout, we assume that the initial state x0, Markov
chain {ω(t)}∞t=0, and noise {wt}∞t=0 are mutually indepen-
dent. We use MJS(A1:s,B1:s,T) to refer to an MJS with
state equation (1) parameterized by (A1:s,B1:s,T).

For mode-dependent state-feedback controller K1:s that
yields the input ut=Kω(t)xt, we use Li:=Ai + BiKi

to denote the closed-loop state matrix for mode i. We
use xt+1=Lω(t)xt to denote the noise-free autonomous
MJS, either open-loop (Li=Ai) or closed-loop (Li=Ai +
BiKi). Due to the randomness in {ω(t)}∞t=0, it is common
to consider the stability of MJS in the mean-square sense
which is defined as follows.

Definition 1 (Mean-square stability (Costa et al., 2006)).
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We say MJS in (1) with ut = 0 is mean-square stable (MSS)
if there exists x∞,Σ∞ such that for any initial state x0 and
mode ω(0), as t→∞, we have

‖E[xt]− x∞‖ → 0, ‖E[xtx
ᵀ
t ]−Σ∞‖ → 0. (2)

In the noise-free case (wt = 0), we have x∞ = 0, Σ∞ =
0. We say MJS in (1) with wt=0 is (mean-square) stabi-
lizable if there exists mode-dependent controller K1:s such
that the closed-loop MJS xt+1 = (Aω(t) + Bω(t)Kω(t))xt
is MSS. We call such K1:s a stabilizing controller.

The (mean-square) stability of a noise-free autonomous
MJS is related to the spectral radius of an augmented state
matrix L̃ ∈ Rsn2xsn2

with ij-th n2×n2 block given by
[L̃]ij := [T]jiLj ⊗ Lj . Specifically, if ρ(L̃) < 1, a noise-
free autonomous MJS can be shown to satisfy MSS (Costa
et al., 2006).

Assumption A1. The MJS in (1) is stabilizable, and its
underlying Markov chain (T) is ergodic.

Stabilizability allows us to use a mixing argument to
obtain weakly dependent sub-trajectories by properly sub-
sampling the original trajectory, and ergodicity guarantees
that the Markov chain converges to a unique stationary
distribution. Throughout, π∞ denotes the stationary
distribution of T with πmin:= mini π∞(i). We further
define the mixing time (Levin & Peres, 2017) of T as
tMC:= inf

{
t ∈ N : maxi∈[s] ‖([Tt]i,:)

ᵀ − π∞‖1 ≤ 0.5
}

,
where [Tt]i,: denotes the ith row of Tt. Note that tMC

plays a key role in the mixing time of the overall MJS.
In the analysis, πmin guarantees one could obtain enough
data for each mode, while the mixing time tMC of the
MJS determines the fraction of the data that provably helps
towards learning the system.

2.2. Problem Formulation

In this paper, we consider two major problems under the
MJS setting: System identification and adaptive control,
with identification being the core part of adaptive control.
(A) System Identification. This problem seeks to esti-
mate unknown system dynamics from data, i.e. from input-
output trajectory and the mode observation, when one has
the flexibility to design the input so that the collected data
has nice statistical properties. In the MJS setting, one needs
to estimate both the state/input matrices A1:s,B1:s for ev-
ery mode as well as the Markov matrix T. In this work,
we seek to estimate the MJS dynamics using only a single
trajectory {xt,ut, ω(t)}Tt=0 and provide finite sample guar-
antees. Section 3 presents our system identification results.
(B) Online Linear Quadratic Regulator. In this paper, we
consider the following finite-horizon Markov jump system
linear quadratic regulator (MJS-LQR) problem:

inf
u0:T

J(u0:T ) :=

T∑
t=0

E
[
x
ᵀ
tQω(t)xt+u

ᵀ
tRω(t)ut

]
s.t. xt, ω(t) ∼ MJS(A1:s,B1:s,T).

(3)

The goal is to design inputs to minimize the expected
quadratic cost composed of positive semi-definite matri-
ces Q1:s and R1:s under the MJS dynamics. We will use
MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) to denote MJS-LQR
problem (3). We assume the following for cost matrices.
Assumption A2. For all i ∈ [s], (a) Ri � 0, (b) Qi � 0.

We assume the state xt and mode ω(t) can be observed
at time t. With these observations, instead of a fixed and
open-loop input sequence, one can design closed-loop poli-
cies that generate real-time input based on current obser-
vations, e.g. mode-dependent state-feedback controllers.
When the dynamics A1:s,B1:s,T of the MJS are known,
one can solve for the optimal controllers recursively via
coupled discrete Riccati equations (Costa et al., 2006). In
our work, we assume the dynamics are unknown, and only
the design parameters Q1:s and R1:s are known. Control
schemes in this scenario are typically referred to as adap-
tive control, which usually involves procedures of learn-
ing, either the dynamics or directly the controllers. Adap-
tive control suffers additional costs as (i) the lack of the
exact knowledge of the system and (ii) the exploration-
exploitation trade-off — the necessity to sacrifice short-
term input optimality to boost learning, so that overall long-
term optimality can be improved.

Because of this, to evaluate the performance of an adap-
tive scheme, one is interested in the notion of regret —
how much more cost it will incur if one could have applied
the optimal controllers? In our setting, we compare the re-
sulting cost against the optimal infinite-horizon cost T · J?
where J∗ is the optimal infinite-horizon average cost,

J? := lim sup
T→∞

1

T
inf
u0:T

J(u0:T ), (4)

i.e. if one applies the optimal controller for infinitely long,
how much cost one would get on average for each sin-
gle time step. Compared to the regret analysis of stan-
dard adaptive LQR problem (Dean et al., 2018), in MJS-
LQR setting, the analysis requires additional consideration
of Markov chain mixing, which is addressed in this paper.

3. System Identification for MJS
Our MJS identification procedure is given in Algorithm
1. We assume one has access to a stabilizing controller
K1:s, which is a standard assumption in data-driven con-
trol (Dean et al., 2018). Note that if the open-loop MJS is
already MSS, then one can simply set K

(0)
1:s = 0. The fol-

lowing theorem gives our main results on learning the dy-
namics of an unknown MJS from finite samples obtained
from a single trajectory.
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Algorithm 1 MJS-SYSID
Input: A mean square stabilizing controller K1:s, dynamics
noise σ2

w, exploration noise σ2
z , trajectory {xt, zt, ω(t)}Tt=0

generated using input ut = Kω(t)xt + zt with zt
i.i.d.∼

N (0, σ2
zIp), data clipping thresholds cx, cz, subsampling fac-

tor Csub.
Set subsampling period L = Csub log(T )
Set subsampling indices τk = kL for k = 1, 2, . . . , bT/Lc
Estimate A1:s,B1:s: for all modes i ∈ [s] do: Si =

{τk
∣∣ ω(τk) = i, ‖xτk‖ ≤ cxσw

√
log(T ), ‖zτk‖ ≤ czσz},

Θ̂1,i, Θ̂2,i = arg min
Θ1,Θ2

∑
k∈Si

‖xk+1 −Θ1xk/σw −Θ2zk/σz‖2,

B̂i = Θ̂2,i/σz, Âi = (Θ̂1,i − B̂iKi)/σw,

Estimate T: [T̂]ji =

∑bT/Lc
k=1 1{ω(τk)=i,ω(τk−1)=j}∑bT/Lc

k=1 1{ω(τk−1)=j}
,

Output: Â1:s, B̂1:s, T̂.

Theorem 1 (Identification of MJS). Suppose we run Algo-
rithm 1 with cx = O(

√
n) and cz = O(

√
p). Let ρ = ρ(L̃),

where L̃ is the augmented state matrix of the closed-loop
MJS. Suppose wt

i.i.d.∼ N (0, σ2
wIn). Suppose the trajectory

length T ≥ Õ(log2(T )(n + p)/πmin) and the sampling
factor satisfies Csub ≥ tMC · O(1/(1 − ρ)). Then, un-
der Assumption A1, with probability at least 1 − δ, for all
i ∈ [s], we have

max

{
‖Âi −Ai‖,
‖B̂i −Bi‖

}
≤ Õ

(
σz + σw

σzπmin

(n+ p) log(T )√
T

)
,

and ‖T̂−T‖∞ ≤ Õ
(

1

πmin

√
log(T )

T

)
. (5)

Corollary 1. Consider the setting of Algorithm 1. When
B1:s are known, setting σz = 0 and solving only
for the state matrices leads to a stronger upper bound
‖Âi −Ai‖ ≤ Õ( (n+p) log(T )

πmin

√
T

).

Our system identification result achieves optimal statisti-
cal error rate of Õ(1/

√
T ). The sample complexity grows

quadratically in state dimension n, which can potentially be
improved to linear via a more refined control on the state-
covariance (see (Simchowitz et al., 2018; Dean et al., 2019)
for standard linear systems). It also grows with the inverse
of the minimum mode frequency as π−1

min. Note that, πmin

dictates the trajectory fraction of the least-frequent mode,
thus, π−1

min multiplier is not avoidable. In Corollary 1, we
show that, when the knowledge of B is assumed, A can be
estimated regardless of the exploration strength σz. This is
because the excitation for the state matrix arises from wt.

Proof outline for Theorem 1: Our proof strategy for Al-
gorithm 1 addresses the challenges introduced by MJS and
mean-square stability. We only emphasize the core techni-

cal challenges. In Algorithm 1, we subsample the trajec-
tory. At a high-level, this will help us upper/lower bound
the empirical covariance matrix formed by the subsampled
state-input pairs (xτk , zτk) for all τk ∈ Si. Initial sub-
sampling (with spacing L) aims to reduce the statistical
dependence across the input data (xt, zt)t≥0 to obtain a
weakly-dependent sub-trajectory with indices τk. This de-
pendence is due to the mode sequence ω(t) – unique to
the MJS setting – and the system’s memory (contribution
of the earlier states on the current state). Thus L is pri-
marily a function of the mixing-time of T and the spec-
tral radius of the MJS system. Unlike related works on
sysid and regret analysis (Simchowitz et al., 2018; Dean
et al., 2018; Lale et al., 2020a; Oymak & Ozay, 2019; Lale
et al., 2020b), mean-square stability does not lead to strong
high-probability bounds, as one can only bound ‖xt‖ or
xtx

ᵀ
t in the expectation sense. The second subsampling

restricts our attention to the bounded (xτk , zτk) pairs on
mode i. This boundedness enables us to control the co-
variance matrix despite MSS and potentially heavy-tailed
states via non-asymptotic toolset (e.g. Thm 5.44 of (Ver-
shynin, 2010)). However, heavy-tailed empirical covari-
ance lower bounds require independence and our subsam-
pled data are only “approximately independent” (coupled
over modes and history). To make matters worse, the fact
that we sample bounded states introduces further depen-
dencies. To resolve this, we introduce a novel strategy to
construct an independent subset of processed states from
this larger dependent set. The independence is ensured by
conditioning on the mode-sequence and truncating the con-
tribution of earlier states. We then use perturbation-based
techniques to deal with actual (non-truncated) states. The
fnal igredient is showing that, for each mode 1 ≤ i ≤ s,
with high probability, this carefully-crafted subset contains
enough samples to ensure a well-conditioned covariance
(with excitation provided by zt,wt). With this in place,
after two rounds of subsampling, least-squares will accu-
rately estimate A and B for all modes with rate 1/

√
T .

4. Adaptive Control for MJS-LQR
Our adaptive MJS-LQR scheme is given in Algorithm 2.
It is performed on an epoch-by-epoch basis: a fixed con-
troller is used for each epoch, and from epoch to epoch, the
controller is updated using the newly collected trajectory.

Similar to the discussion in Section 3, we assume at the
beginning one has access to a stabilizing controller K

(0)
1:s.

During epoch i, controller K
(i)
1:s is used together with ad-

ditive exploration noise zt to boost learning. At the end of
epoch i, the trajectory during this epoch is used to obtain
a new MJS dynamics estimate A

(i)
1:s,B

(i)
1:s,T

(i) through Al-
gorithm 1. Then, we set the controller K

(i+1)
1:s for epoch i+

1 to be the optimal controller for the infinite-horizon MJS-
LQR(A(i)

1:s,B
(i)
1:s,T

(i),Q1:s,R1:s), which can be solved
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Algorithm 2 Adaptive MJS-LQR
Input: Initial epoch length T0, initial stabilizing controller
K

(0)
1:s, epoch incremental ratio γ > 1, data bound cx, cz, sub-

sampling factor Csub.
for i = 0, 1, 2, . . . do

Set epoch length Ti = bT0γ
ic.

Set exploration noise variance σ2
z,i =

σ2
w√
Ti

.

Evolve MJS for Ti steps with u
(i)
t = K

(i)

ω(t)x
(i)
t + z

(i)
t

with z
(i)
t

i.i.d.∼ N (0, σ2
z,iIp) and record the trajectory Φi :=

{x(i)
t , z

(i)
t , ω(i)(t)}Tit=0.

A
(i)
1:s,B

(i)
1:s,T

(i)

= MJS-SYSID(K
(i)
1:s, σ

2
w, σ

2
z,i,Φi, cx, cz, Csub)

K
(i+1)
1:s ← optimal controller for the infinite-horizon MJS-

LQR(A(i)
1:s,B

(i)
1:s,T

(i),Q1:s,R1:s).
end for

efficiently via value iteration or via LMIs (Costa et al.,
2006). Note that this control design based on the estimated
dynamics is also referred to as certainty equivalent control.

To have theoretically guaranteed performance, i.e. sub-
linear regret, the key is to have a subtle scheduling of epoch
lengths Ti and exploration noise variance σ2

z,i. We choose
Ti to increase exponentially with rate γ > 1, and set σ2

z,i =

σ2
w/
√
Ti, which collectively guarantee O(log(T )

√
T ) re-

gret when combined with the system identification result
from Theorem 1. Intuitively, this scheduling has interpre-
tations from two folds: (i) the increase of epoch lengths
guarantees we have more accurate MJS estimates thus more
optimal controllers; (ii) as the controller becomes more op-
timal we can gradually decrease exploration noise and de-
ploy (exploit) the controller for a longer time. Note that
the scheduling rate γ has similar role to the discount factor
in reinforcement learning: smaller γ aims to reduce short-
term cost while larger γ aims to reduce long-term cost.

4.1. Regret Analysis

We define filtration F−1,F0,F1, . . . such that F−1 :=
σ(x0, ω(0)) is the sigma algebra generated by the initial
state and mode, andFi := σ(x0, ω(0), {{ω(j)(t)}Tjt=1}ij=0,

w0, {w(j)
1:Tj
}ij=0, z0, {z(j)

1:Tj
}ij=0) is the sigma algebra gen-

erated by the randomness up to epoch i. Note that since
the initial state x

(i)
0 of epoch i is the final state x

(i−1)
Ti−1

of

epoch i − 1, therefore, x
(i)
0 is Fi−1-measurable, and so is

ω(0)(i+1). Suppose time step t belongs to epoch i, then
we define the following conditional expected cost at time
t. ct = E[xᵀ

tQω(t)xt + uᵀ
tRω(t)ut | Fi−1], and cumula-

tive cost as JT =
∑T
t=1 ct. We define the total regret and

epoch-i regret as

Regret(T ) = JT − TJ?,

Regreti = (

Ti∑
t=1

cT0+···+Ti−1+t)− TiJ?. (6)

One can refer to Appendix C.4 for more discussion on the
regret definition. With these definitions, we have the fol-
lowing result.

Theorem 2 (Sub-linear regret). If T0, Csub, cx, and cz
are large enough, then under Assumption A1 and A2, with
probability at least 1− δ, Algorithm 2 achieves

Regret(T ) ≤ Ô(log(T )) + Õ(log2(T )
√
T ). (7)

From Corollary 1, we know when B1:s are known, no fur-
ther exploration noise is needed to learn A1:s or T, this
applies to the adaptive MJS-LQR setting as well. Getting
rid of exploration noise improves the regret as follows.

Corollary 2 (Poly-log regret). When B1:s are known, it
suffices to set σz,i = 0 for all i in Algorithm 2. Then, Algo-
rithm 2 achieves Regret(T ) ≤ Ô(log(T )) + Õ(log3(T )).

Proof outline for Theorem 2: For simplicity, we
only show the dominant O(log2(T )

√
T ) term. Define

the estimation error after epoch i as ε
(i)
A,B:= maxj∈[s]

max{‖A(i)
j −Aj‖, ‖B(i)

j −Bj‖}, ε
(i)
T :=‖T(i) −T‖∞,

Using perturbation result (Du et al., 2021) for infinite-
horizon MJS-LQR together with new finite-horizon
cost analysis, we can bound epoch-i regret as follows:

Regreti≤O
(
Tiσ

2
z,i + Tiσ

2
w

(
ε
(i−1)
A,B + ε

(i−1)
T

)2
)

. Next,

plugging in the upper bounds on the estimation er-

rors ε
(i)
A,B≤O

(
σz,i+σw

σz,i

log(Ti)√
Ti

)
, ε

(i)
T ≤O

(√
log(Ti)
Ti

)
from Theorem 1, and using the exploration variance
σ2

z,i=
σ2
w√
Ti

, we have Regreti≤O(σ2
w
√
γ
√
Ti log2(Ti)).

Finally, we have: Regret(T )=
∑O(logγ( TT0

))

i=1 Regreti≤

O
(
σ2

w log( TT0
)
√

T
T0

( √
γ√
γ−1

)3 (√
γ log( TT0

)− log(
√
γ)
))

= O(log2(T )
√
T ).

5. Discussion
Markov jump systems are fundamental to a rich class
of control problems where the underlying dynamics are
changing with time. Despite its importance, statistical un-
derstanding (system identification and regret bounds) of
MJS have been lacking due to the technicalities such as
Markovian transitions and weaker notion of mean-square
stability. At a high-level, this work overcomes (much of)
these challenges to provide finite sample system identifica-
tion and model-based adaptive control guarantees for MJS.
Notably, resulting estimation error and regret bounds are
optimal in the trajectory length and coincide with the stan-
dard LQR up to poly-logarithmic factors.
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