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Abstract

Most of the existing theoretical studies on rep-
resentation learning are focused on batch tasks.
However, in practical decision-making scenarios,
the learner often observes tasks in a sequential
fashion. In such sequential problems, learning
good representations becomes more challenging
as the underlying task representation may change
over time. In this paper, we address non-stationary
representation learning in sequential multi-armed
linear bandits. We introduce an online algorithm
that is able to detect task switches and learn and
transfer a non-stationary representation in an adap-
tive fashion. We derive a regret upper bound for
our algorithm, which significantly outperforms
the existing ones that do not learn the represen-
tation. Our bound provides theoretical insights
into problem-dependent quantities and reveals the
excess regret incurred by representation learning,
non-stationarity, and task switch detection.

1. Introduction and Problem Setup
Representation learning is an important tool to perform
transfer learning, wherein common features shared by tasks
are extracted and generalized. Humans naturally transform
experiences into compact internal representations that guide
actions in future complex environments (Radulescu et al.,
2021). Recent years have witnessed an increasing interest in
studying representation learning (see (Bengio et al., 2013)).

Due to promising seminal results, theoretical research on
representation learning has sparked considerable interest
(Du et al., 2020; Tripuraneni et al., 2020a; Bouniot et al.,
2020; Yang et al., 2021; Hu et al., 2021). Existing stud-
ies focus on representation learning through batch tasks,
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and are restricted to static representations, relying on the
working assumption that one representation fits all tasks.
However, in realistic decision-making scenarios, the learner
often faces tasks that appear in sequence, where the under-
lying representation may change over time. Such scenarios
necessitate human-like reasoning and a more fluid approach
to representation learning. To this end, this paper takes an
important step towards a deeper theoretical understanding
of representation learning in non-stationary environments.
To model the sequential decision-making scenario, we con-
sider a series of multi-task linear bandits. Further, to model
the non-stationary environment, we assume that the un-
derlying representation shared by the sequential bandits is
time-varying, but the learner is not explicitly informed of
representation changes. We introduce an online algorithm
(illustrated in Fig. 1) that is able to learn and transfer non-
stationary representations in an adaptive fashion.

Related Work A seminal theoretical contribution on rep-
resentation learning can be found in (Baxter, 2000), where
tasks are sampled from the same underlying environment.
Some recent relevant studies are found in (Maurer et al.,
2016; Balcan et al., 2019; Tripuraneni et al., 2020a; Du et al.,
2020; Tripuraneni et al., 2020b; Bouniot et al., 2020). Rep-
resentation learning is also applied to sequential decision-
making problems. Particularly, some recent studies have
revealed the benefits of representation learning in playing
multi-task linear bandits (Lattimore et al., 2020; Yang et al.,
2021; Li et al., 2021), where bandit tasks are played simul-
taneously and are assumed to share a single linear represen-
tation. In (Azar et al., 2013), sequential transfer is studied
with a finite set of tasks. In (Soare et al., 2014), the au-
thors address sequential transfer across tasks that are close
in `2 distance. We depart from existing results by address-
ing sequential transfer in representation learning, where the
underlying representation is allowed to be non-stationary.

Problem Setup In this paper, we consider a sequential
multi-task linear bandit problem, where the agent plays mul-
tiple bandits that appear in sequence. The learning agent
is initially given an action set A ⊂ Rd. At each round t,
the agent chooses an action xt ∈ A and receives a reward
yt = x>t θs(t) + ηt, where {ηt} is a random noise sequence,
and the unknown coefficient θs(t) ∈ Rd is randomly drawn
from the task set T := {ω1, ω2, . . . , ωK} (which can con-
sist of infinite tasks). We assume that each bandit is played
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Figure 1. Non-stationary representation learning algorithm. Two key features: 1) representation switch detection, and 2) balancing
Representation Learning (RepL) and Transfer (RepT).

for N rounds, after which a new task is sampled from T .
However, the agent does not know exactly when a task
switch occurs, and only knows that each task is played
about Θ(N) rounds. The agent plays S bandits in total, and
the goal is to maximize the cumulative reward after play-
ing the random sequence of bandits S := {θ1, θ2, . . . , θS}
for a total of T := NS rounds. To measure the agent’s
performance, we utilize the (pseudo-)regret, which is de-
fined as: RT =

∑T
t=1(g(θs(t))

>θs(t) − x>t θs(t)), where
g(θ) := arg maxx∈A x>θ is the optimal arm given a task θ.
The agent goal is equivalent to minimizing RT .

As typically done in the literature for continuous armed
bandits (e.g., see (Rusmevichientong and Tsitsiklis, 2010;
Yang et al., 2021)), we first assume that the action set A is
an ellipsoid of the form A = {x ∈ Rd : x>Q−1x ≤ 1},
where Q is a symmetric positive definite matrix. Second,
we assume that there exist φmin and φmax so that Θ(1) =
φmin ≤ ‖ωs‖ ≤ φmax = Θ(1) for any s ∈ [K]. Third, the
additive noise ηt ∈ R is i.i.d. δ2-sub-Gaussian with zero
mean and satisfies E[eληt ] ≤ exp(δ2λ2/2) for any λ > 0.
We also make the following assumption on S.

Assumption 1 (Non-Stationary Representation) For the
bandit task sequence S , we assume that there exist some pos-
itive integers τ1, τ2, . . . , τnc such that for any subsequence
Si = {θτi−1+1, θτi−1+1, . . . , θτi}, there is a linear feature
extractor Bi ∈ Rd×ri with orthonormal columns so that
θs = Biαs for all s = τi−1 + 1, . . . , τi, where αs ∈ Rri .
Also, there exists r � d such that r ≥ ri for any i, and
τi − τi−1 ≥ D� r for some D.

The matrix Bi corresponds to a linear representation for the
bandit tasks in the corresponding subsequence Si. With a
slight abuse of terminology, we also refer to each Bi as a
representation. Assumption 1 states that the representation
is non-stationary since each Bi has a duration of Di =
τi − τi−1, which is the number of consecutive bandit tasks
from span(Bi). To inferBi, the agent must play a sufficient
number of tasks from Si. Thus, we lower-bound the duration

of each representation as Di ≥ D for all i. Note that
the learner has no prior knowledge of the number of total
representations nc and their respective durations Di. We
further make the following assumptions.

Assumption 2 (Detectability and Task Diversity)
There exists a constant κ1 > 0 such that∥∥B>i+1[Bi]⊥/

√
n− ri

∥∥ ≥ κ1δ/φmin for any i (Bi+1

appears right after Bi). Moreover, we assume that
‖g(θ)>(θ′ − θ)‖ ≥ κ2δ for some κ2 > 0 for any θ, θ′ ∈ T .
Finally, there exists a constant ` = Θ(r) such that any
subsequence of length ` in Si (whose representation is
Bi ∈ Rd×ri) satisfies σri(Ws,lW

>
s,`) ≥ ν > 0 for any s,

where Ws,l = [θτi−1+s+1, . . . , θτi−1+s+`].

The first (resp. second) statement ensures that two consec-
utive representations (resp. bandit tasks) are sufficiently
different. These two assumptions guarantee that reward
changes caused by representation or task switches can be
distinguished from the ordinary fluctuations due to noise,
which is important for detecting the underlying representa-
tions or tasks switches. Intuitively, if a new representation
or a new task brings changes that are not even distinguish-
able from noise, there may be no need to detect the new
representation or the new task. The third statement guaran-
tees that the sequential tasks are well "spread out" in each
subspace span(Bi) so that representations can be recovered.
Although our theoretical results rely on these assumptions,
the key idea in this paper can be generalized to more general
situations even if these assumptions are not satisfied.

Contributions The contribution of this paper is threefold.
First, in sharp contrast to existing results on representa-
tion learning, our algorithm is adaptive to non-stationary
representations. Inspired by the observation that humans
shift their attention when the environment changes (Rad-
ulescu et al., 2021), our algorithm can detect representation
switches and learn the new representations. Second, our
algorithm balances representation learning (RepL) and rep-
resentation transfer (RepT) in an adaptive fashion by alter-
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Algorithm 1 RepL algorithm
Input: Approx. horizon Θ(N), exploration length N1.
for t = 1 : N1 do
xt = λ0ai, i = (t− 1 mod d) + 1;
end for
compute θ̂ = (XX>)−1XY

for t = N1 + 1 : N do xt = arg maxx∈Ax>θ̂; end for

nating between them. In comparison to existing algorithms,
no prior knowledge of the number of tasks that share the
same representation is required. Third, we provide an upper
bound for our algorithm, which grows as

RT . Sr
√
N︸ ︷︷ ︸

Oracle

+

nc∑
i=1

dr
√
DiN︸ ︷︷ ︸

cost of RepL

+ Snrsd︸ ︷︷ ︸
Non-stationarity

+ Sntsd.︸ ︷︷ ︸
Task Switches

Our bound explicitly reveals the excess regret incurred by
representation learning, non-stationarity, and detection of
task switches. Our algorithm outperforms the algorithms
that do not learn a representation significantly (such algo-
rithms have a regret bound Θ̃(Sd

√
N), e.g., see (Dani et al.,

2008; Rusmevichientong and Tsitsiklis, 2010; Li et al.,
2021)). Notice that, if there is only one representation,
our upper bound becomes Õ(Sr

√
N + dr

√
SN + Snrsd +

Sntsd). As we mentioned earlier, it even outperforms the
algorithm in (Yang et al., 2021) that plays bandits simulta-
neously. This is because the entire set of the S bandit tasks
may not share a common representation, even if some of
its subsets do. Finally, comparing our upper bound with
the lower bound for sequential bandits, we find that there is
only a gap of

√
r between the former and the latter.

2. Online Representation Learning and
Transfer Algorithm

In this section, we introduce our main algorithm for Online
Representation Learning and Transfer (ORLT), which we
illustrate in Algorithm. 1. This algorithm consists of two
base algorithms: 1) Representation Learning (RepL), and
2) Representation Transfer (RepT). It strikes the balance in
an online fashion by alternating between RepL and RepT.
Furthermore, ORLT has two key abilities: 1) task switch
detection, and 2) representation switch detection. Let us
first discuss these four key components separately.

Representation Learning Representation learning is per-
formed by collecting sequential data generated by play-
ing bandit tasks in sequence. Given a sequence of tasks
θ1, θ2, . . . , θk, let B ∈ Rd×r̂ be their linear representation.
To learn B, the agent plays these tasks sequentially using
the RepL algorithm in Algorithm. 1 and obtains their respec-
tive estimate θ̂1, θ̂2, . . . , θ̂k. Given a bandit task θ ∈ Rd,
the agent first explores it for N1 rounds by repeatedly

Algorithm 2 RepT algorithm

Input: Approx. horizon Θ(N), B̂ ∈ Rd×r̂

set the exploration length N2 = cr̂
√
N

for t = 1 : N2 do
xt = λ0a

′
i,i = (t− 1 mod r̂) + 1

end for
Compute α̂ = (B̂>XN2X

>
N2
B̂)−1B̂>XN2YN2 , θ̂ = B̂α̂

for t = N2 + 1 : N do xt = arg maxx∈Ax>θ̂ end for

Algorithm 3 Outlier Detection algorithm (OD)

Input: B̂ ∈ Rd×r̂ and nrsd

Generate a random orthonormal matrix P ∈ R(d−r̂)×nrsd ,
let M = B̂⊥P .
for t = 1, . . . , nrsd do
xt = λ0[M ]t, collect yt
end for
if Ynrsd

/∈ Cnrsd
then

outlier detected
end if

taking d independent actions λ0a1, λ0a2, . . . , λ0ad. Here,
A = [a1, . . . , ad] can be any orthonormal basis of the space
Rd, and the scalar λ0 ensures that each action is in the ac-
tion set A. After N1 rounds, the agent estimates the task
coefficient and takes the greedy action for N −N1 rounds.

Let Ŵk = [θ̂1, θ̂2, . . . , θ̂k]. We perform singular value de-
composition (SVD) of the matrix ŴkŴ

>
k /k, and let B̂ be

the top r̂ singular vectors of ŴkŴ
>
k /k. Note that r̂ can

be time-varying due to the non-stationary environment. To
compute the current B̂, we ignore the singular vectors that
are associated with small singular values (in theory, those
that are much less than ν for ν introduced in Assumption 2)
to handle the non-stationarity in an adaptive way. This
yields B̂ as an estimate of B.

Representation Transfer Once the agent has obtained an
estimated representation B̂ with dimension r̂, i.e., B̂ ∈
Rd×r̂, it can now generalize B̂ to other bandit tasks by in-
voking the RepT algorithm in Algorithm. 2. The RepT
algorithm is an ETC-like algorithm with an input B̂ com-
prising two stages: exploration and commitment. The main
feature of RepT is that the exploration is conducted in the
subspace span(B̂). Therefore, fewer steps of exploration
are actually needed. Specifically, the exploration length N2

is set to cr̂
√
N with a constant c > 0 and r̂ is the dimension

of span(B̂). In fact, this choice of N2 finds an optimal
balance between exploration and exploitation. Note that
a′i = [B̂]i for any i in Algorithm 2.

Representation Switch Detection To deal with the non-
stationary environments, our algorithm detects representa-
tion switches. To do that, the agent makes an assessment
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Figure 2. The ORLT algorithm

on every new bandit task by initially taking probing ac-
tions using the knowledge of the current representation
(i.e., B̂ ∈ Rd×r̂). If abnormal rewards are generated by
these trials (the ones beyond the confidence interval Cnrsd

=
{Ynrsd

∈ Rnrsd :
∣∣‖Ynrsd

‖2 − δ
√
nrsd

∣∣ ≤ γ1δ
√
nrsd}), the

agent concludes that the new task is an outlier (see Algo-
rithm. 3). Only if several outliers appear consecutively, the
agent decides that a representation switch has happened.
This makes our algorithm robust to occasional outliers.

Task Switch Detection Our algorithm is also able to detect
task switches by distinguishing the reward changes caused
by task switches from the fluctuations due to noise.

We start by constructing confidence intervals for the rewards
after some initial rounds of commitment (say, n1). For all
t0 ≥ n1, we first compute the average of the reward received
so far in the commitment phase ȳt0 = 1

t0

∑t0
i=1 yi. Then,

we monitor rewards in a moving window of length ntsd,
i.e., yt0+1, . . . , yt0+ntsd

. Likewise, the average reward in
the time window Yntsd

= 1
ntsd

∑ntsd

i=1 yt0+i belongs to the

interval [g(θ̂)>θ − ξ2, g(θ̂)>θ + ξ2] with high probability.
Therefore, we can construct a confidence interval for the
reward as Ctsd(t0) = [ȳt0 − ξ1 − ξ2, ȳt0 + ξ1 + ξ2] at each
round t0. If the agent observes rewards whose average in
the considered window goes beyond this confidence interval,
there is a task switch with high probability. If κ2 in Assump-
tion 2 is sufficiently large and one selects large ξ1, ξ2, each
task switch can be detected with high probability.

The Main Algorithm: ORLT The main algorithm (ORLT)
of this paper is illustrated in Fig. 2. In ORLT, the agent keeps
monitoring the rewards to detect task switches. After detect-
ing tasks, ORLT operates in a cyclic manner to deal with
the sequential non-stationary setting. In each cycle there
are two phases: 1) RepL phase, and 2) RepT phase. In the
c-th cycle, for the RepL phase, the agent plays LRL bandit
tasks (we set LRL = ` with ` defined in Assumption 2) by
invoking Algorithm 1, and for the RepT phase, c tasks are
played using Algorithm 2. The length of the RepT phase
increases with time (i.e., with c increasing), which means
that the RepL phase is activated less and less frequently. In

the RepL phase, we set N1 = Θ(d
√
N), which is optimal

given that we just know each bandit is played about Θ(N)
rounds. Another key feature of the ORLT algorithm is its
capability of detecting representation switches (see Algo-
rithm. 3). If a representation switch is detected, we ignore
the data collected in the previous representation (removing
the collected θ̂t’s from the matrix W as in Fig. 2) and com-
pletely restart the alternating cycle between RepL and RepT
(starting RepL and resetting c = 1).

The following theorem provides an upper bound for the
regret of the ORLT algorithm.

Theorem 1 (Upper bound for the regret) With Assump-
tions 1 and 2, let the agent play the S sequential bandit
tasks using the ORLT algorithm in Fig. 2. Suppose that nc

underlying representations, i.e., B1, B2, . . . , Bnc
, appear

in sequence, where each Bi ∈ Rd×ri is shared by Di con-
secutive bandit tasks. Then, the regret of ORLT satisfies the
following upper bound

ERT = Õ
(
Sr
√
N +

∑nc

i=1
dr
√
DiN + Sntsd + Snrsd

)
,

where nrsd is the number of trial actions for outlier detec-
tion, ntsd is the number of rounds for task switch detection,
κ1 and κ2 are given in Assumption 2, and c1 and c2 are
positive constants.

Lower bound. Adapted from (Yang et al., 2021), a nat-
ural lower bound for our sequential bandits problem is
Ω(d

∑nc

i

√
rDiN + Sr

√
N). Notice that there is only a

gap of
√
r between the lower bound and our upper bound

derived in Theorem 1, which is surprising given the fact that
our algorithm learns and transfers representation online.

Numerical Experiments We perform numerical experi-
ments to validate our theoretical results and demonstrate the
efficacy of our algorithm.

Fig. 3 (a) contains the comparison of our ORLT algorithms
with other algorithms on synthetic data. We consider a se-
quence {θ1, . . . , θS} of bandit tasks with S = 6000 and
θi ∈ Rd, where d = 20, and each task is played for
1000 rounds. To model the non-stationary representation,
we construct 6 representation matrices B1 ∈ Rd×2, B2 ∈
Rd×4, B3 ∈ Rd×2, B4 ∈ Rd×4, B5 ∈ Rd×2, B6 ∈ Rd×2

(satisfying Assumption 2), each with 1000 consecutive
bandits. We let the following 4 algorithms play these
sequential bandits: 1) our ORLT, 2) ETC, which is op-
timal for individual tasks but does not learn any repre-
sentation, 3) subspace-oracle, where the representation
[B1, B2, . . . , B6] ∈ Rd×16 of all the bandits is known, and
4) the oracle algorithm, where both the non-stationary rep-
resentations and the switches times are known. We show
in Fig. 3 (a) that our algorithm significantly outperforms
ETC, demonstrating the benefits of learning non-stationary
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Figure 3. Performance comparison between different algorithms.
(a) Synthetic Data: different shades of gray distinguish distinct
underlying representations. Average regret is obtained by dividing
the cumulative reward by the task number S. (b) WCST.

representations in sequential bandits. Further, our algorithm
even outperforms "subspace-oracle". This verifies our ear-
lier theoretical observation: playing bandits sequentially
can yield less regret than doing that simultaneously. This is
because subsets of a given set of bandits may share much
lower-dimensional representations than the one (if it exists)
shared by the whole set. The gap observed with respect to
the oracle algorithm is explained by the fact that the ORLT
must spend some rounds to detect representation switches
and to learn new representations sequentially.

We also utilize a slightly modified version of the ORLT
algorithm to play the Wisconsin Card Sorting Test (WCST),
which is typically utilized to assess “human abstraction and
shift of set” (Grant and Berg, 1948). In WCST, a participant
is given 4 different cards at the beginning of the test. Then,
a number of stimulus cards containing symbols of varying
shape, number, and color are presented to the participant
in sequence. The participant is asked to associate the stim-
ulus cards to one of the 4 cards on the table according to
different rules (i.e., shape, color, number). The underlying
rule changes over time, and is not known by the participant.
The only feedback the participant receives is whether the
classification is correct or not (e.g., receiving reward 1 for
correct action, 0 otherwise). By interacting with the sequen-
tial tasks, the participant needs to infer which rule dictates
the correct association. As we show in the Appendix H, the
WCST can be model as a linear bandit problem. Fig. 3 (b)
illustrates our algorithm outperforming Deep Q learning
and a baseline algorithm. All details can be found in the
Appendix.

3. Conclusions and Future Work
In this work, we address representation learning in sequen-
tial multi-armed bandits. Unlike most existing studies, the
underlying representation is allowed to be non-stationary.
We introduce an online algorithm that is able to handle the
non-stationarity and outperforms the ones that do not learn
representations, or learn static representations. We also
provide a regret upper bound for our algorithm.

We have assumed that the representation changes sufficiently

slowly so that every representation can be learned with high
probability. An interesting case that we leave as a topic for
future research would be to guarantee high rewards when
playing sequential tasks sampled from different representa-
tions that appear in a mixed sequence.
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Appendix

A. Extended Literature Review
Representation Learning underlies major advances in lan-
guage processing (Ando et al., 2005; Liu et al., 2019; Lee
et al., 2020), drug discovery ((Ramsundar et al., 2015)),
and reinforcement learning (Baevski et al., 2019; Teh et al.,

2017; D’Eramo et al., 2019). For other empirical studies, we
refer the reader to a survey (Bengio et al., 2013). Theoretical
studies on representation representation have attracted much
attention (Balcan et al., 2019; Tripuraneni et al., 2020a;
Du et al., 2020; Tripuraneni et al., 2020b; Bouniot et al.,
2020). For instance, (Du et al., 2020) shows that repre-
sentation learning improves data efficiency, contributing to
few-shot learning. In (Tripuraneni et al., 2020a), the method
of moments is presented to learn the representation in the
multi-task linear regression problem.

Representation learning is also applied to sequential
decision-making problems. In (D’Eramo et al., 2020) and
(Arora et al., 2020), representation learning is shown to be
beneficial in multi-task reinforcement learning and imitation
learning tasks. As a popular model for sequential decision-
making scenarios, multi-armed bandits have drawn intense
attention in the past decades due to their wide-ranging appli-
cations (see (Auer, 2002; Dani et al., 2008; Rusmevichien-
tong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Chu
et al., 2011)). Some work investigates low-rank structure
(Lale et al., 2019; Jun et al., 2019; Lu et al., 2021) or sparse
structure (Abbasi-Yadkori et al., 2012; Hao et al., 2020)
on linear and generalized linear bandits. Meta-learning or
transfer learning is addressed in (Zhang and Bareinboim,
2017; Cella et al., 2020).

Also, there has been increasing interest in studying bandit
problems in non-stationary environments. A large body of
work has studied the bandit problem with time-varying task
coefficient (e.g., see (Gupta et al., 2011; Besbes et al., 2014;
Cheung et al., 2018; Luo et al., 2018; Besbes et al., 2019;
Besson and Kaufmann, 2019; Russac et al., 2019; 2020;
Fei et al., 2020)), where the reward-generating function is
yt = x>t θs+ηt with varying θs. Existing results rely on the
assumption of a variation bound VS =

∑S
s=1 ‖θs+1 − θs‖

for the time-varying coefficients (e.g., see (Besbes et al.,
2014; Cheung et al., 2018)). Various approaches, including
sliding-window (Cheung et al., 2018), exponential discount-
ing (Garivier and Moulines, 2011; Russac et al., 2019), and
restarted strategy (Zhao et al., 2020), have been proposed
to address the non-stationary nature. Thompson sampling
with discounting factors has also been used (Gupta et al.,
2011; Raj and Kalyani, 2017; Kim and Tewari, 2020) in
non-stationary environments. Particularly, some studies rely
on detection of changing points (Cao et al., 2019; Auer et al.,
2018; Wu et al., 2018), which is akin to our method to detect
task switches. In this paper, we detect task switches by mon-
itoring abrupt reward changes, and under the assumption
that tasks are sufficiently mutually different, task switches
can be detected with high probability. Moreover, we de-
part from previous work by addressing an additional type
of non-stationarity, as in our framework the representation
underlying time-varying task coefficients is also allowed
to change over time. A recent work on linear supervised
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learning investigates the situation where tasks’ distribution
cannot be captured by a single representation (Denevi et al.,
2021). A conditional meta-learning approach is introduced
to generate a representation tailored to the task at hand. Dif-
ferent from this work, we focus on the sequential decision-
making scenario (i.e, sequential bandits) and do not require
side information about tasks.

B. A General Instrumental Lemma
The following lemma will be utilized throughout this Ap-
pendix.

Lemma 1 ((Vershynin, 2018)) Let X1, X2, . . . , Xn be n
independent random variables such that Xi is δ-sub-
Gaussian. Then, for any ξ ≥ 0, the average X̄ =
1
n

∑n
i=1Xi satisfies

Pr
[
X̄ ≥ ξ

]
≤ exp

(
−nξ

2

2δ2

)
,

and

Pr
[
X̄ ≤ −ξ

]
≤ exp

(
−nξ

2

2δ2

)
.

C. Supporting Results for RepL
The following theorem captures the angle distance between
the two subspaces described by B̂ and B.

Theorem 2 (Accuracy of learned representation) Given
k ≥ r̂ bandits θ1, θ2, . . . , θk drawn from T , suppose
B ∈ Rd×r̂ is their representation. Let θ̂1, θ̂2, . . . , θ̂k
be their respective estimate after playing each of them
for N rounds using the RepL algorithm. Suppose
σr̂(Wk) ≥ ν > 0. Then,

sinθ(B̂, B) ≤ Õ
(
dδ

λ0ν

√
1

kN1

)
, (C.1)

with probability at least 1− 1
kN1

, where δ is the variance
parameter of the sub-Gaussian noise ηt.

Notice that unlike the results in (Tripuraneni et al., 2020a;
Yang et al., 2021), (C.1) has no obvious dependence on
r̂. That is because in those studies it is assumed that
tr(WkWk/k) = µr̂ν where µ is the average condition num-
ber. However, in our case tr(WkWk/k) = Θ(1) since
φ2

min ≤ tr(WkWk/k) ≤ φ2
max. In comparison to (Yang

et al., 2021), our estimate B̂ has a smaller angle distance to
the true B by a factor of

√
d.

To prove Theorem 2, we will use the following lemma.

Lemma 2 (Bernstein’s inequality (Vershynin, 2018))
Let X1, X2, . . . , Xk be independent zero-mean n × n

symmetric random matrices, such that there exists M > 0
such that ‖Xi‖ ≤ M almost surely for all i = 1, 2, . . . , k.
Then, for any t ≥ 0, it holds that

Pr

[∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥ ≥ t
]
≤ 2d exp

( −2t2

σ2 +Mt/3

)
,

where σ2 =
∥∥∥∑k

i=1 EXi

∥∥∥.

Proof of Theorem 2 For each bandit θi, the model is de-
scribed by yt = x>t θi + ηt. Pre-multiplying both sides
with xt yields xtyt = xtx

>
t θi + xtηt. In the RepL algo-

rithm (see Fig. 1), xt periodically picks each column in the
matrix λ0[a1, a2, . . . , ad], with [a1, a2, . . . , ad] forming an
orthonormal basis of the space Rd. Since [a1, a2, . . . , ad]
can be any orthonormal basis, we let it be the standard basis
of Rd without loss of generality. Since N1 rounds are spent
on exploration in the RepL algorithm, it follows that

N1∑
t=1

xtyt =

N1∑
t=1

xtx
>
t θi +

N1∑
t=1

xtηt.

Denote X := [x1, x2, . . . , xN1
], Y := [y1, . . . , yN1

]>, and
η := [η1, η2, . . . , ηN1

]>. Note that θ̂ is computed by θ̂i =
(XX>)−1XY . Since Y = X>θi + η, it can be observed
that

θ̂i = (XX>)−1X(X>θi + η) = θi + (XX>)−1Xη.

Algebraic computations yield

θ̂iθ̂
>
i = θiθ

>
i + θiη

>X>(XX>)−1

+ (XX>)−1Xηθ>i + (XX>)−1Xηη>X>(XX>)−1.

Recall that ηi is an independent sub-Gaussian random
variable with zero mean, so it follows that Eη = 0 and
Eηη> = δ2IN1

. Then, the expectation of θ̂iθ̂>i can be com-
puted as

Eθ̂iθ̂
>
i = θiθ

>
i + (XX>)−1XEηη>X>(XX>)−1

= θiθ
>
i + δ2(XX>)−1.

Since [a1, a2, . . . , ad] is the standard basis of Rd, it holds
that

∑d
i=1 aia

>
i = λ0Id. Without loss of generality, we as-

sume thatN1 is a multiple of d, then it follows thatXX> =
N1

d λ
2
0Id. Therefore, we have (XX>)−1 = d

λ2
0N1

. For the

purpose of notational simplicity, denote D := d
λ2
0N1

Id, then
it follows that

Eθ̂iθ̂
>
i = θiθ

>
i + δ2D,

and

θ̂iθ̂
>
i = θiθ

>
i +D

(
θiη
>X> +Xηθ>i

)︸ ︷︷ ︸
A

+D2
(
Xηη>X>

)︸ ︷︷ ︸
C

.

(C.2)
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Define a set of new variables zi = 1
k θ̂iθ̂

>
i − 1

k

(
θiθ
>
i +D

)
.

From (C.2), we have

zi =
1

k
(DA+D2C −D).

Then, the expectation of zi satisfies

Ez2
i =

1

k2
E
[
D2A2 +D4C2+

D2 +D3(AC + CA)− 2D2A− 2D3C
]
. (C.3)

Since D is deterministic, to compute Ez2
i , it suffices to

calculate EA2,EC2,E(AC + CA),EA, and EC. Next, we
calculate these terms one by one.

For EA2, it holds that

EA2 = E(θiη
>X>)2 + E(Xηθ>i )2

+ E(θiη
>X>Xηθ>i ) + E(Xηθ>i θiη

>X>)

= 2
λ2

0δ
2N1

d
θiθ
>
i +N1λ

2
0δ

2θiθ
>
i + θ>i θi

λ2
0δ

2N1

d
Id.

For EC2, we have

EC2 = E
[
Xηη>X>Xηη>X>

]
= E

[
η>X>Xη ·Xηη>X>

]
= E

[
N1∑
t=1

η4
t x
>
t xtxtx

>
t

]

= ψ4λ
2
0

(
N1∑
t=1

xtx
>
t

)

= ψ4λ
2
0XX

> =
ψ4λ

4
0N1

d
Id,

where ψ4 = Eη4
t (ψ4 always exists since ηt is a sub-

Gaussian random variable).

For E(AC + CA), it holds that

E(AC + CA) =E
[(
θiη
>X> +Xηθ>i

)
Xηη>X>

+Xηη>X>
(
θiη
>X> +Xηθ>i

)]
=E
[
η>X>Xη · θiη>X>

]
+ E

[
θ>i Xη ·Xηη>X>

]
+ E

[
η>X>θi ·Xηη>X>

]
+ E

[
η>X>Xη ·Xηθ>i

]
=
λ3

0ψ3N

d
θi1
>
d +

λ3
0ψ3N

d
diag(θi)

+
λ3

0ψ3N

d
diag(θi) +

λ3
0ψ3N

d
1dθ
>
i

=
λ3

0ψ3N

d
(θi1

>
d + 1dθ

>
i )

+
2λ3

0ψ3N

d
diag(θi).

Notice that EA = 0. It remains the calculate EC, which
satisfies

EC = EXηη>X> =
λ2

0δ
2N

d
Id.

Overall, substituting all the above terms into Eq. (C.3), we
have

Ez2
i =

1

k2

d2

λ4
0N

2
1

[
2
λ2

0δ
2N1

d
θiθ
>
i +N1λ

2
0δ

2θiθ
>
i

+ θ>i θi
λ2

0δ
2N1

d
Id +D2ψ4λ

4
0N1

d
Id + Id

+D(
λ3

0ψ3N

d
(θi1

>
d + 1dθ

>
i )

+
2λ3

0ψ3N

d
diag(θi))− 2D

λ2
0δ

2N

d
Id

]
≤ d2δ2

k2λ2
0N1

(
2

d
+ 1)θiθ

>
i +O(

d2

k2λ4
0N

2
1

Id).

Let σ2 = ‖∑k
i=1 Ez2

i ‖F , which satisfies

σ2 .

∥∥∥∥∥ d2δ2

kλ2
0N1

1

k

k∑
i=1

θiθ
>
i

∥∥∥∥∥
F

≤ O
(

d2δ2

kλ2
0N1

tr(Wk)

)
.

Since for any θ ∈ T , it holds that φmin ≤ ‖θ‖ ≤ φmax with
φmin = Θ(1) and φmax = Θ(1), it follows that tr(Wk) =
Θ(1). Therefore, it holds that

σ2 . O

(
d2δ2

kλ2
0N1

)
.

Applying Lemma 2 with t = 2c1 log(2d/δ) +
c2
√

4σ2 log(2d/δ) for sufficiently large c1, c2 > 0, we
have∥∥∥∥∥

k∑
i=1

zi

∥∥∥∥∥
F

.
dδ

λ0

√
1

kN1

√
log (d/δ) + log (d/δ))

with probability at least 1 − δ. Let δ = 1
kN1

, then with
probability 1− 1

kN1
, the following inequality holds∥∥∥∥∥

k∑
i=1

zi

∥∥∥∥∥
F

.
dδ

λ0

√
1

kN1

√
log (kdN1) + log (kdN1) .

Notice that
∑k
i=1 zi = Ŵk − (Wk + d

λ2
0N1

Id). If we let

W ′k = Wk + d
λ2
0N1

Id, one can observe that W ′k share the
same left singular vectors as Wk. Observe that∥∥∥Ŵk −W ′k

∥∥∥
F

:= ‖∆‖F

.
dδ

λ0

√
1

kN1

√
log (kdN1) + log (kdN1) .
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From the Davis-Kahan sinθ Theorem (Bhatia, 2013), we
have

sinθ(B, B̂) ≤ ‖B̂
>
⊥(Wk −W ′k)B‖

ω
≤ ‖Ŵk −W ′k‖F

ω
,

(C.4)

where ω = inf1≤i≤r,r<j≤d |λi(W ′k)− λj(Ŵk)|. From the
Weyl’s Theorem, |λi(W ′k)− λi(Ŵk)| ≤ ‖Ŵk −W ′k‖F =∥∥∥∑k

j=1 zj

∥∥∥
F

for any i = 1, . . . , d. Since λi(W ′k) = 0 for

all i ≥ r+1, it holds that |λi(Ŵ )| ≤ ‖∆‖F for all i ≥ r+1.
Recall that σr is the r-th largest eigenvalue of W , therefore
ω ≥ σk−‖∆‖F . From the Assumption 2, we know σr ≥ ν,
therefore we obtain

sinθ(U1, Û1) .
‖∆‖F

σr − ‖∆‖F

.
dδ

λ0ν

(√
1

kN1

√
log dkN1

+M log dkN1)

≤ dδ

λ0ν

√
1

kN1
· polylog(d,N1, k).

The proof is complete. �

D. Supporting Results for RepT
Lemma 3 Given θ ∈ T , suppose that there exists B ∈
Rd×r̂ with orthonormal columns such that θ = Bα for some
α ∈ Rk̂. Assume that an estimate B̂ is known by the learner
and satisfies sinθ(B̂, B) ≤ ε. If the learner plays this
bandit task θ for N rounds using the RepT algorithm with
the input B̂, then the regret satisfiesRN = O(r̂

√
N+Nε2).

Given a bandit task θ ∈ Rd, earlier studies ((Dani et al.,
2008; Rusmevichientong and Tsitsiklis, 2010; Li et al.,
2021)) have shown that the optimal regret bound is Θ(d

√
N)

in the same setting. By contrast, Lemma 3 states that with
the knowledge of an estimated low-dimensional representa-
tion B̂ (i.e., r̂ � d) the regret can be significantly reduced
provided the estimate B̂ is sufficiently accurate (i.e., small
ε), indicating the advantages of learning and transferring
the representation.

Proof In the RepT algorithm shown in Fig 2, N2 =
O(r̂
√
N) rounds are spent in the exploration phase and

the other N − N2 rounds are in the commitment phase.
Without loss of generality, we assume that N2 is a multiple
of r̂.

Since θ = Bα, then the model becomes yt = x>t Bα+ ηt.
Instead of directly estimating θ, we estimate α. Denote
X = [x1, x2, . . . , xN2

] and Y = [y1, y2, . . . , yN2
]>. At the

end of the exploration phase, it holds that

α̂ = (B̂>XX>B̂)−1B̂>XY.

Since xt repeatedly takes actions from λ0a
′
1, . . . , λ0a

′
r̂, it

holds that XX> = N2

r̂ AA
> with A = [λ0a

′
1, . . . , λ0a

′
r̂].

Therefore, we have

α̂ =

(
N2

r̂
B̂>AA>B̂

)−1

B̂>XY.

As Y = X>Bα+ η with η = [η1, . . . , ηN2
]>, we have

α̂ =

(
N2

r̂
B̂>AA>B̂

)−1

B̂>X(X>Bα+ η)

=

(
N2

r̂
B̂>AA>B̂

)−1
N2

r̂
B̂>AA>Bα

+

(
N2

r̂
B̂>AA>B̂

)−1

B̂>Xη.

As θ̂ = B̂α̂ and θ = Bα, it follows that

B̂α̂−Bα =

B̂

(
N2

r̂
B̂>AA>B̂

)−1
N2

r̂
B̂>AA>Bα−Bα︸ ︷︷ ︸

s1

+ B̂

(
N2

r̂
B̂>AA>B̂

)−1

B̂>Xη︸ ︷︷ ︸
s2

.

Then, it holds that E
[
‖θ̂(c)− θ‖2

]
≤ E‖s1‖2 + E‖s2‖2

since ηt is independent random variable with zero mean.
Next, we evaluate the two terms on the right-hand side of
this inequality separately.

First, we evaluate E‖s1‖2. Observe that B = (B̂B̂> +
B̂⊥B̂>⊥)B, therefore, it holds that

s1 = B̂(
N2

r̂
B̂>AA>B̂)−1N2

r̂
B̂>AA>(B̂B̂>

+ B̂⊥B̂
>
⊥)Bα−Bα

= (B̂B̂>Bα−Bα)

+ B̂(B̂>AA>B̂)−1B̂>AA>B̂⊥B̂
>
⊥Bα

= B̂⊥B̂
>
⊥Bα+ B̂(B̂>AA>B̂)−1B̂>AA>B̂⊥B̂

>
⊥Bα

Then, E‖s1‖2 satisfies

E‖s1‖2F ≤ 2
∥∥∥B̂⊥B̂>⊥Bα∥∥∥2

F

+ 2
∥∥∥B̂(B̂>AA>B̂)−1B̂>AA>B̂⊥B̂

>
⊥Bα

∥∥∥2

F

≤ 2φ2
max‖B̂>⊥B‖2F

+ 2φ2
max

∥∥∥(B̂>AA>B̂)−1B̂>AA>B̂⊥
∥∥∥2

F

· ‖B̂>⊥B‖2F .
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It can be derived that there exists µ > 0 such that∥∥∥(B̂>AA>B̂)−1B̂>AA>B̂⊥
∥∥∥2

F
≤ µ. Therefore, it

holds that E‖s1‖2 ≤ 2φ2
max(1 + µ)‖B̂>⊥B‖2. Since

sinθ(B̂, B) ≤ ε, we arrive at

E‖s1‖2 ≤ 2φ2
max(1 + µ)ε2.

Second, we evaluate E‖s2‖2 as

E‖s2‖2 =

∥∥∥∥∥B̂
(
N2

r̂
B̂>AA>B̂

)−1

B̂>X

∥∥∥∥∥
2

Eη2
t

≤ X>B̂
(
N2

r̂
B̂>AA>B̂

)−2

B̂>X · Eη2
t

≤
∥∥∥∥∥B̂
(
N2

r̂
B̂>AA>B̂

)−2

B̂>
∥∥∥∥∥
F

·
∥∥∥∥N1

r̂
A>B̂B̂>A

∥∥∥∥
F

· Eη2
t (s) ≤ r̂2δ̄2

N2
,

where δ̄ is the variance of the sub-Gaussian noise ηt, depend-
ing on the variance proxy parameter δ. As N2 = O(r̂

√
N),

then we obtain that E‖s2‖2 ≤ r̂δ̄2√
N

. Combining E‖s1‖2 and

E‖s2‖2, we have E
[
‖θ̂ − θ‖2

]
≤ r̂δ̄2√

N
+ 2φ2

max(1 + µ)ε2.

From (Rusmevichientong and Tsitsiklis, 2010), it holds that
maxx∈A x>θ − maxx∈A x>θ̂ ≤ J ‖θ−θ̂‖

2

‖θt‖ , where J is a
constant that exists since the action set A is an ellipsoid of
the form {x ∈ Rd : x>Q−1x ≤ 1}. Consequently,

E[max
x∈A

x>θ −max
x∈A

x>θ̂] ≤ J r̂δ̄2

φmin

√
N

+ 2
1

φmin
Jφ2

max(1 + µ)ε2.

For the commitment phase, there are N −N2 steps. Thus,
the overall regret satisfies

ERN ≤ N2φmax + (N −N2)

(
max
x∈A

x>θ −max
x∈A

x>θ̂

)
≤ r̂
√
Nφmax

+N

(
J

r̂δ̄2

φmin

√
N

+ 2
1

φmin
Jφ2

max(1 + µ)ε2

)
= O(r̂

√
N +Nε2),

which completes the proof.

E. Supporting Results for Representation
Switch Detection

The main result that supports the representation switch de-
tection in Section 3 is in the following lemma.

Lemma 4 (Probability of Outlier Detection) Suppose
Assumption 2 holds. If the underlying representation
switches from Bi to Bi+1 for any i = 1, . . . , nc − 1, then
any bandit task in Bi+1 can be detected as an outlier by the
agent using the OD algorithm in Fig. 3 with probability at
least

p1 = 1− exp

(
−C((κ1 − 4(γ1 + 1))2δ2nrsd

4K4

)
,

where κ1 is given in Assumption 2, δ is the variance proxy
parameter of the noise ηt, and C and K are constants.

One can let γ1 = µ1κ1 for some µ1 > 0, then the prob-
ability that any outlier can be detected becomes at least
p1 = 1 − exp(− c1κ

2
1δ

2nrsd

4 ) for some c1 > 0. It can be
observed that the probability increases as κ1 or nrsd grow
larger. In other words, it is easier to detect a representa-
tion switch if two representations are sufficiently different.
Meanwhile, more probing actions also increase the proba-
bility of detecting representation switches. Before proving
this lemma, we present some instrumental lemmas.

Lemma 5 (Random projection) Let P be a projection
from Rn onto a random m-dimensional subspace uniformly
distributed in the Grassmann manifold Gn,m (which con-
sists of all m-dimensional subspaces in Rn). Let x ∈ Rn

be a fixed point and ξ > 0. Then, with probability at least
1− exp(−cξ2m), we have

(1− ξ)
√
m

n
‖x‖2 ≤ ‖Px‖2 ≤ (1 + ξ)

√
m

n
‖x‖2.

Lemma 6 (Action selection by random projection)
Given a matrix B ∈ Rd×r with orthonormal columns and a
bandit task θ ∈ Rd. Let z = B>⊥θ ∈ R(d−r)×1. Let P be a
projection matrix from Rd−r onto a random m-dimensional
subspace uniformly distributed in the Grassmann manifold
G(d−r),m. Then, with probability at least 1− exp(−cξ2m),
we have

(1− ξ)
√

m

d− r‖z‖2 ≤ ‖Pz‖2 ≤ (1 + ξ)

√
m

d− r‖z‖2.

The proof of Lemma 6 directly follows from Lemma 5. In
this paper, we let ξ = 1

2 without loss of generality. Then,

it hold that 1
2

√
m
d−r‖z‖2 ≤ ‖Pz‖2 ≤ 3

2

√
m
d−r‖z‖2 with

probability at least 1 − exp(− c
4m). Next, we present an-

other lemma, whose proof can be found in Chapter 3.1 of
(Vershynin, 2018).

Lemma 7 (Concentration of the norm) Suppose that
X = [X1, X2, . . . , Xn]> is a random vector, where
X1, . . . , Xn are independent δ-sub-Gaussian random
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variable. Then, for any ξ > 0 it holds that

Pr
[∣∣‖X‖2 −√nδ∣∣ ≥ ξ] ≤ 2 exp

(
−cξ

2

K4

)
, (E.1)

where c is an absolute constant and K = maxi ‖Xi‖ψ2
.

We are now ready to prove Lemma 4.

Proof of Lemma 4 Recall that the agent takes nrsd probing
actions as in Fig. 3, and denote the corresponding rewards
as in Ynrsd

:= [y1, . . . , ynrsd
]>. Following Lemma 7, we

build an confidence interval for Ynrsd

Cnrsd
=

{Ynrsd
∈ Rnrsd : |‖Ynrsd

‖2 − δ
√
nrsd| ≤ γ1δ

√
nrsd} .

From Lemma 7, the probability of yt /∈ Cnrsd
is less than

2 exp
(
− cγ

2
1δ

2nrsd

K4

)
for some absolute constants c and K.

If ‖B>⊥θ‖ = ρ, from Lemma 6 we have ‖P>B>⊥θ‖ =

‖PP>B>⊥θ‖ ≥ 1
2ρ
√

nrsd

d−r̂ with probability at least 1 −
exp(− c

4nrsd) for some constant c (since PP>B>⊥θ can
be taken as projecting B>⊥θ onto the random subspace
spanned by P ). From the reward generating function
Ynrsd

= λ0P
>B̂>⊥θ + η = η, one can derive that to en-

sure that Ynrsd
∈ Cnrsd

, it should hold that

‖η‖ ≥ 1

2
ρ

√
nrsd

d− r̂ − (γ1 + 1)δ
√
nrsd. (E.2)

From Assumption 2, we know that ρ ≥ κ1δ
√
d− ri. From

lemma 7, the inequality (E.2) holds with probability less
than

2 exp

(
−c((κ1 − 4(γ1 + 1))2δ2nrsd

4K4

)
.

The proof is complete. �

F. Supporting Result for Task Switch
Detection

Recall that ȳt0 =
∑t0
i=1 = yi, where all i’s are in the

commitment phase. Observing from yi = x>i θ + ηi that

xi = g(θ̂) = arg maxx∈Ax>θ̂

is deterministic, one obtain that yi is sub-Gaussian with 0
mean. Then, it follows from Lemma 1 that

Pr[ȳt0 − Eyt0 ≥ ξ1] = Pr[ȳt0 − g(θ̂)>θ ≥ ξ1]

≤ exp

(−t0ξ2
1

2δ2

)
, (F.1a)

Pr[ȳt0 − Eyt0 ≤ −ξ1] = Pr[ȳt0 − g(θ̂)>θ ≤ −ξ1]

≤ exp

(−t0ξ2
1

2δ2

)
, (F.1b)

where the fact Eyt0 = g(θ̂)>θ has been used. In other
words, g(θ̂)>θ lies in the confidence interval

[ȳt0 − ξ1, ȳt0 + ξ1],

with probability at least 1− 2 exp
(
−t0ξ21

2δ2

)
for any ξ1 ≥ 0.

Recall that the average reward in the moving win-
dow of width ntsd, yt0+1, . . . , yt0+ntsd

, is Yntsd
=

1
ntsd

∑ntsd

i=1 yt0+i. Likewise, it follows from Lemma 1 that

Pr
[
Yntsd

≤ g(θ̂)>θ − ξ2
]
≤ exp

(−ntsdξ
2
2

2δ2

)
, (F.2a)

Pr
[
Yntsd

≥ g(θ̂)>θ + ξ2]
]
≤ exp

(−ntsdξ
2
2

2δ2

)
. (F.2b)

for any ξ2 ≥ 0.

Combining the above inequalities (F.1) and (F.2), we have

Pr [Yntsd
≤ ȳt0 − ξ1 − ξ2] ≤ exp

(−t0ξ2
1

2δ2
+
−ntsdξ

2
2

2δ2

)
,

Pr [Yntsd
≥ ȳt0 + ξ1 + ξ2]] ≤ exp

(−t0ξ2
1

2δ2
+
−ntsdξ

2
2

2δ2

)
.

In other words, if we define a confidence interval based on
the observed average reward ȳt0 as follows

Ctsd(t0) = [ȳt0 − ξ1 − ξ2, ȳt0 + ξ1 + ξ2] ,

we have

Pr [Yntsd
/∈ Ctsd(t0)] ≤ 1− 2 exp

(−t0ξ2
1

2δ2
+
−ntsdξ

2
2

2δ2

)
.

If t0 � 1, it holds that exp(−t0ξ2
1/2δ

2) → 0. Therefore,
the term exp(−t0ξ2

1/2δ
2) → 0 can be ignored for large

t0. In this paper, t0 represents the rounds of commitment
phase of RepL or RepT algorithm, and thus satisfied t0 � 1.
Therefore, we ignore the term exp(−t0ξ2

1/2δ
2). In other

words, we have

Pr [Yntsd
/∈ Ctsd(t0)] ≤ 1− 2 exp

(−ntsdξ
2
2

2δ2

)
. (F.3)

The choice of ξ2 and the length of observation window ntsd

determines the probability of task switch detection.

Lemma 8 (Probability of Task Switch Detection)
For any θ ∈ T , denote the greedy action by
g(θ) = arg maxx∈Ax>θ. Suppose that Assumption 2
is satisfied, and let ξ2 = µ2κ2δ with µ2 ≤ 1. Then,
all the tasks can be detected with probability at least
1−O(exp(

−c2κ2
2ntsd

2 )) for some positive constant c2 > 0.
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Proof Suppose the underlying task switches from θ to θ′ at
t0, then the reward generating function satisfies

yt =

{
x>t θ

′ + ηt = g(θ̂)>θ′ + ηt, if t ≥ t0,
x>t θ + ηt = g(θ̂)>θ + ηt, if t < t0.

The observed average reward ȳt0 is computed by

ȳt0 = g(θ̂)>θ +
1

t0

t0∑
t=1

ηt.

The average reward in the moving window
yt0+1, . . . , yt0+ntsd

satisfies

Yntsd
= g(θ̂)>θ′ +

1

t0

t0+ntsd∑
t=t0+1

ηt.

Subsequently, one has

|Yntsd
− ȳt0 | =∣∣∣∣∣g(θ̂)>(θ′ − θ) +

1

ntsd

t0+ntsd∑
t=t0+1

ηt −
1

t0

t0∑
t=1

ηt

∣∣∣∣∣ .
From Assumption 2, we know that |g(θ)>(θ′ − θ)| ≥ κ2δ
for any θ, θ′ ∈ T . To ensure |Yntsd

− ȳt0 | ≤ ξ2 = µ2κ2δ,
given large t0, it needs to hold that

∣∣∣ 1
ntsd

∑t0+ntsd

t=t0+1 ηt

∣∣∣ ≥
µ2κ2δ. From Lemma 1, we deduce that

Pr

[∣∣∣∣∣ 1

ntsd

t0+ntsd∑
t=t0+1

ηt

∣∣∣∣∣ ≥ µ2κ2δ

]
≤ 2 exp

(−nrsdκ
2
2µ

2
2

2

)
.

(F.4)

Let ξ2 = µ2κ2δ in (F.3), then one can conclude from (F.3)
and (F.4) that any task switch can be detected with proba-
bility 1−O(exp(

−nrsdκ
2
2c2

2 )) for some positive constant c2,
which completes the proof.

G. Proof of Theorem 1
The ORLT algorithm operates in a cyclic manner. At the c-
th cycle, LRL tasks are played utilizing the RepL algorithm,
and c tasks are played with the RepT algorithm. Before
presenting the proof of Theorem 1, let us provide some
intermediate results.

Lemma 9 Let a bandit task θ ∈ T be played utilizing
the RepL algorithm in Fig.1 for N steps. If N1 = d

√
N ,

the regret in N steps, denoted as RN , reaches its optimal
RN = Θ(d

√
N).

Proof Without loss of generality, we assume N1 is a mul-
tiple of d. Following similar steps as those in Lemma 3.4

of (Rusmevichientong and Tsitsiklis, 2010), we can obtain
that after N1 steps of exploration

E[‖θ̂ − θ‖2] ≤ d2δ̄2

N1
,

where δ̄ is the variance of the sub-Gaussian noise ηt, depend-
ing on the variance proxy parameter δ. From (Rusmevichien-
tong and Tsitsiklis, 2010), it holds that maxx∈A x>θ −
maxx∈A x>θ̂ ≤ J ‖θ−θ̂‖

2

‖θ‖ , where J is a constant that ex-
ists since the action set A is an ellipsoid of the form
{x ∈ Rd : x>Q−1x ≤ 1}. Since ‖θ‖ ≥ φmin, it follows
that

E

[
max
x∈A

x>θ −max
x∈A

x>θ̂

]
≤ J ‖θ − θ̂‖

2

φmin
≤ J d2δ̄2

N1φmin
.

Further, at the exploration phase it holds with g(θ) :=
arg maxx∈Ax>θ that

g(θ)θ − x>t θ ≤ 2g(θ)θ = max
x∈A

x>θ −max
x∈A

x>(−θ)

≤ J ‖θ + θ̂‖2
‖θ‖ = 2J.

Therefore, the total regret in N steps satisfies

ERN ≤ 2JN1 + (N −N1)J
d2δ̄2

N1φmin

≤ 2JN1 +NJ
d2δ̄2

N1φmin
.

Let N1 = d
√
N , then the regret reaches its optimal as

ERN ≤ 2Jd
√
N +NJ

d2δ̄2

d
√
Nφmin

= O(d
√
N).

Previous work (e.g., (Dani et al., 2008; Rusmevichientong
and Tsitsiklis, 2010; Li et al., 2021)) has demonstrated that
the lower bound of the bandit problem in the same setting
is Ω(d

√
N). Therefore, the upper bound of the RepL al-

gorithm matches the lower bound, proving its optimality.

Theorem 3 (Regret Bound for subsequences) Consider
a sequence of bandit θ1, θ2, . . . , θDi . Assume that there
is a linear feature extractor matrix Bi ∈ Rd×ri such that
for any θs in this sequence θs = Biαs for some αs ∈ Rri .
Let the agent play these sequential bandits with the cyclic
RepL-RepT algorithm (shown in Fig. 2). Specifically, in the
m-th cycle there are two phase:

1. RepL phase: play LRL = ` bandits in sequence uti-
lizing the RepL algorithm in Fig. 1 with N1 = d

√
N ,

and collect θ̂1, θ̂2, . . . , θ̂LRL ; at the end of RepL phase,
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estimate B̂i by letting it be the top r̂i singular vectors
of the matrix W =

∑
θ̂tθ̂
>
t with t being the round

indices such that θt is in the RepL phases of all the m
cycles (i.e., cycles 1, 2, . . . ,m).

2. RepT phase: play m bandit tasks in sequence utilizing
the RepT algorithm with input B̂i in Fig. 2.

Then, the regret of playing these Di sequential bandits sat-
isfies

ERNDi
≤ Õ(dri

√
DiN +Diri

√
N +

d

ri

√
DiN).

Proof In the m-th cycle, the regret in the RepL
phase, denoted as RRepL(m), satisfies ERRepL(m) =

O(LRLd
√
N), which follows from Lemma 9 straightfor-

wardly. At the end of the m-th cycle, mLRL sequential
bandits are played using the RepL algorithm. From Theo-
rem 2, we have

sinθ(B̂i, Bi) ≤ Õ
(
dδ

λ0ν

√
1

mLRLd
√
N

)
.

Then, m bandit tasks are played in sequence utilizing the
RepT algorithm with input B̂i. It follows from Lemma 3
that the regret in the RepT phase, denoted as RRepT(m),
satisfies

ERRepT(m) . mri
√
N +mN

d2δ2

λ2
0ν

2

1

mLRLd
√
N

= Õ(mri
√
N +

d

LRL

√
N).

Observe that there are at most L̄ = d√2Die cycles in the
sequence of length Di since LRLL̄ + L̄(L̄ + 1)/2 ≥ Di.
Summing up the regret in the RepL and RepT phases in
every cycle, we obtain

ERNDi
. L̄LRLd

√
N +

L̄∑
m=1

(
mri
√
N +

d

LRL

√
N

)
≤ L̄LRLd

√
N +Diri

√
N + L̄

d

LRL

√
N.

Since LRL = ` = Θ(r) (see Assumption 1) and L̄ =
d√2Die, then

ERNDi
=

L̄∑
m=1

RRepL(m) +RRepT(m)

= Õ(dri
√
DiN +Diri

√
N +

d

ri

√
DiN),

which completes the proof.

We are now ready to prove Theorem 1.

Proof of Theorem 1 Combing Lemmas 4 and 8 and
applying a union bound, one can derive that the prob-
ability that every task switch and every representation
switch can be detected with probability at least 1 −
O(max{exp(

−c1nrsdκ
2
1δ

2

2 ), exp(
−c2ntsdκ

2
2

2 )}) for some pos-
itive constants c1 and c2. This probability is large is κ1 and
κ2 is large. Since ntsd rounds are spent on detecting ev-
ery new task and nrsd probing rounds are spent for every
new task on detecting representation switches, the regret,
denoted as Rdetec, satisfies Rdetec . Sntsd + Snrsd.

By Assumption 1, there are nc representations, described
by B1, B2, . . . , Bnc

, in the total of S sequential bandits.
For each representation Bi, its duration is Di and satisfies∑Di

i=1 = S. Therefore, the total regret of playing all the S
sequential bandits can be computed from Theorem 3 as

ERT .
nc∑
i=1

ERNDi

.
nc∑
i=1

(
dri
√
DiN +Diri

√
N +

d

ri

√
DiN

)
+ Sntsd + Snrsd

.

(
nc∑
i=1

(dri
√
DiN +Diri

√
N)

)
+ Sntsd + Snrsd

.
nc∑
i=1

dr
√
DiN + Sr

√
N + Sntsd + Snrsd,

where the last inequality has used the fact that r ≥ ri for any
i. In other words, ERT = Õ(

∑nc

i=1 dr
√
DiN + Sr

√
N +

Sntsd + Snrsd), which completes the proof. �

H. Further Numerical Analysis
In this section, we provide more details of the numerical
experiments performed in the main text and also present
further experiments to demonstrate our ORLT algorithm.

Synthetic data In addition to the main text, we also an-
alyze the case where the representation does not vary by
considering 1000 bandit tasks that share a single represen-
tation. We compare our ORLT algorithm with the E2TC
algorithm ((Yang et al., 2021)) where the tasks are played
simultaneously. Comparing the average reward per task,
our algorithm outperforms E2TC (see Fig. 4), validating our
earlier analysis.

In the main text and above, we have shown that ORLT is
capable of learning and transferring non-stationary repre-
sentations. In what follows, we showcase the other im-
portant feature of ORLT, which is its ability to detect task
switches. To do that, we perform some experiments on syn-
thetic data. We consider 2000 bandits in the task sequence
S = {θ1, θ2, . . . , θS}, where θi ∈ Rd with d = 20. Each
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Figure 4. Performance comparison: Even if there is no non-
stationarity (only one underlying representation), our online algo-
rithm outperforms the batch algorithm E2TC.

bandit is played for 1000 rounds, then a subsequent task
from S comes into play. However, the agent is not informed
of the times of task switches. We let three algorithms to
play the sequential bandits: 1) our ORLT, which detects task
switches and representation, 2) the classic Explore-Then-
Commit (ETC) algorithm, and 3) the phased-Exploration-
Greedy-Exploitation (PEGE) algorithm introduced in (Rus-
mevichientong and Tsitsiklis, 2010). Note that both ETC
and PEGE are optimal for individual task, but they are not
capable of detecting task switches. We consider that the ac-
tion setA is a unit ball, i.e.,A := {x ∈ Rd : ‖x‖2 ≤ 1} and
the noise ηt in the reward generating function yt = x>t + ηt
is Gaussian with zero mean and 0.1 standard deviation.
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Figure 5. Performance comparison between ORLT and some other
algorithms. (a) stationary representation (b) Non-stationary repre-
sentation. Average regret is obtained by dividing the cumulative
reward by the task number S. Experiments are repeated for 10
times, and realizations are contained in the shaded area.

First, we assume that there isB ∈ Rd×2 such that θi = Bαi
for any i. In other words, there exists a representation, de-
scribed by B, shared by all the bandit tasks. From Fig. 5 (a),
it can be observed that ORLT outperforms ETC and PEGE.
Also, the advantage of ORLT increases as the number of
tasks in the sequence grows.

Second, we consider the situation where the underlying rep-
resentation is non-stationary. We assume that the first 1000
tasks in S share a representation described by B1 ∈ Rd×2,
and the remaining 1000 tasks share a representation de-
scribed by B2 ∈ Rd×4. From Fig. 5 (b), ORLT outperforms
the other two algorithms even more significantly. These
experiments further demonstrate the important role of atten-
tion shift to adapt to new environments (including new tasks
and new representations) in facilitating efficient learning.

WCST The WCST is typically utilized to assess “human

Rule: number

At =



1 0 0
0 1 0
0 0 1
0 0 0




yt = x>t AtBt

Bt ∈







1
0
0


 ,



0
1
0


 ,



0
0
1





shape

number

color

Linear bandit Model

Rule: shape, number, color

Figure 6. Illustration of WCST and modeling as a linear bandit
problem.

abstraction and shift of set” (Grant and Berg, 1948). In
WCST, a participant is given 4 different cards at the begin-
ning of the test. Then, a number of stimulus cards containing
symbols of varying shape, number, and color are presented
to the participant in sequence. The participant is asked to
associate the stimulus cards to one of the 4 cards on the
table according to different rules (i.e., shape, color, number).
The underlying rule changes over time, and is not known by
the participant. The only feedback the participant receives is
whether the classification is correct or not (e.g., receiving re-
ward 1 for correct action, 0 otherwise). By interacting with
the sequential tasks, the participant needs to infer which
rule dictates the correct association.

We model the WCST as a bandit problem. Specifically, each
stimulus card is modeled by a 4×3 matrixAt. As illustrated
in Fig. 6, the columns of At stand for shape, number, and
color, respectively. Because there are four shapes, four
numbers, and four colors, each column can take values from
the set 


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .

There are 3 possible classification rules, i.e., shape, number,
and color. We model each of these 3 rules as a standard unit
vector Bt, as shown in Fig. 6. Then, the reward is generated
by yt = x>t AtBt. The agent receives 1 reward if it takes
the classification action xt satisfies xt = AtBt, otherwise,
it receives 0 reward.

Here the unit vector Bt can be taken as the current repre-
sentation since the correct classification action can always
be computed by x∗t = AtBt if the agent knows the cor-
rect Bt, no matter what stimulus card At the agent sees.
For instance, given classification rule being number (i.e.,
Bt = [0, 1, 0]>), if the agent sees the stimulus card with
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two green circles, i.e.,

At =


1 0 0
0 1 0
0 0 1
0 0 0

 ,
then correct classification is the second card on the table
since it can be computed that x∗t = AtBt = [0, 1, 0, 0]>.
The problem suffices to learn the underlying representation
Bt.

Different from the continuous subspaces that we investi-
gated in the theoretical study and in the experiment of syn-
thetic data, the representations here are discrete and can only
take values from a set of 3 vectors. Therefore, we adapt our
ORLT algorithm to this discrete setting. Inspired by human
behaviors, we consider a trial-and-error approach to learn
the underlying representation. Initially, we let the agent
randomly pick a representation. If the action computed by
this representation turns out to be incorrect (generating 0
reward), then the agent switches to another representation
until it finds the correct one. After the correct underlying
representation is found, the agent can always take the cor-
rect actions (i.e., make the correct classification), receiving
reward 1 at each round. Once the agent starts to receive
reward 0 again, it immediately knows that the underlying
representation (classification rule) has changed. Then, it
restarts to learn the new representation from scratch.
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