
Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Tianhe Yu * 1 2 Aviral Kumar * 3 Yevgen Chebotar 2 Karol Hausman 2 Sergey Levine 3 Chelsea Finn 1 2

Abstract

Many recent offline RL algorithms attain both
good empirical performance and enjoy theoreti-
cal guarantees, but their applicability is limited
to settings where data is collected for only solv-
ing a single task. However, a natural use case of
such methods is in settings where we can pool
large amounts of data collected in a number of
different scenarios for solving various tasks, and
utilize all this data to learn strategies for all the
tasks more effectively rather than training each
one in isolation. To this end, we study the offline
multi-task RL problem, with the goal of devising
data-sharing strategies for effectively learning be-
haviors across all of the tasks. While it is possible
to share all data across all tasks which is expected
to improved performance due to better handling
of sampling error, we find that this simple strategy
can actually exacerbate the distributional shift be-
tween the learned policy and the dataset, which in
turn can lead to very poor performance. We char-
acterize the tradeoff and devise a simple technique
for data-sharing in multi-task offline RL, conser-
vative data sharing (CDS) that we theoretically
analyze. Empirically, CDS attains outperforms
prior methods on challenging problems includ-
ing locomotion, maze navigation and real-world
robotic manipulation domains.

1. Introduction
Recent advances in offline reinforcement learning (RL)
make it possible to train policies for real-world scenarios,
such as robotics [32, 59, 33] and healthcare [24, 65], en-
tirely from previously collected data. Many realistic set-
tings where we might want to apply offline RL are inher-
ently multi-task problems, where we want to solve multiple
tasks using all of the data available. Indeed, many existing
datasets in robotics [17, 11] and offline RL [19] include data

*Equal contribution 1Stanford University 2Robotics at
Google 3UC Berkeley. Correspondence to: Tianhe Yu <tian-
heyu@cs.stanford.edu>, Aviral Kumar <aviralk@berkeley.edu>.

Accepted at ICML 2021 Workshop on Reinforcement Learning
Theory.

collected in precisely this way. Unfortunately, leveraging
such heterogeneous datasets leaves us with two unenviable
choices. We could train each task only on data collected
for that task, but such small datasets may be inadequate for
good performance. Alternatively, we could combine all of
the data together, but this naı̈ve data sharing approach can
actually often degrade performance over simple single-task
training [33], resulting in a brittle method with unpredictable
results in practice. In this paper, we aim to theoretically and
empirically understand how data sharing affects RL per-
formance specifically in the offline setting, and develop an
effective method for selectively sharing data across tasks.

Similar to prior works in the online RL setting with explo-
ration that have noted that multi-task training can often lead
to worse performance than training on each task individu-
ally [54, 61, 87], we multi-task RL remains a challenging
problem even in the offline setting, particularly when sharing
data across tasks in the absence of exploration. While prior
works have developed heuristic methods for reweighting
and relabeling data [3, 16, 43, 33], they do not yet provide
a principled explanation for why data sharing can hurt, es-
pecially in the offline setting, and do not provide a robust
and general approach to automate selective data sharing that
alleviates these issues, while still preserving the efficiency
benefits of sharing experience across tasks.

In this paper, utilizing the tools from the safe policy im-
provement framework [40, 56, 38, 89], we show that data
sharing can be harmful or brittle in the offline setting be-
cause it can exacerbate the distribution shift between the
policy represented in the data and the policy being learned.
We analyze the effect of data sharing in the offline multi-
task RL setting theoretically, and present empirical evidence
to support this hypothesis. We then propose a principled
approach for selective data sharing that aims to minimize
distribution shift, by sharing only data that is particularly
relevant to each task while also retaining the reduced sam-
pling error as a result of increased dataset size. We then
derive a practical instantiation of this procedure by optimiz-
ing a lower bound on the training objective that selectively
relabels transitions into a given target task when the Q-value
of the added transitions exceeds the expected Q-values on
the target task data. Meanwhile, we penalize the relabeled
Q-values to prevent overestimation on out-of-distribution
actions. The resulting algorithm, which we refer to as con-

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

servative data sharing (CDS), is able to prevent performance
degradation due to excessive data sharing, while still provid-
ing large gains over naı̈ve single-task training. Via extensive
evaluations on a number of maze navigation, locomotion
and robotic manipulation domains, we find that CDS is the
only method to attain good performance across the board,
often significantly outperforming the best domain-specific
baseline, improving over the next best baseline on each do-
main by 17.5% on average. On the other hand, no single
baseline approach performs reasonably on all the domains.

2. Preliminaries and Problem Statement
Multi-task offline RL. The goal in multi-task RL is to
find a policy that maximizes expected return in a multi-
task Markov decision process (MDP), defined as M =
(S,A, P, γ, {Ri, i}Ni=1), with state space S, action space
A, dynamics P (s′|s,a), a discount factor γ ∈ [0, 1), and
a finite set of task indices 1, · · · , N with corresponding
reward functions R1, · · · , RN . Each task i presents a dif-
ferent reward function Ri, but we assume that the dynam-
ics P are shared across tasks. While this setting is not
fully general, there are a wide variety of practical prob-
lem settings for which only the reward changes including
various goal navigation tasks [19], distinct object manipu-
lation objectives [81], and different user preferences [10].
In this work, we focus on learning a policy π(a|s, i), which
in practice could be modelled as independent policies
{π1(a|s), · · · , πN (a|s)} that do not share any parameters,
or as a single task-conditioned policy, π(a|s, i) with pa-
rameter sharing. Our goal in this paper is to analyze and
devise methods for data sharing and the choice of parame-
ter sharing is orthogonal, and can be made independently.
We formulate the policy optimization problem as finding a
policy that maximizes expected return over all the tasks:
π∗(a|s, ·) := arg maxπ Ei∼[N]Eπ(·|·,i)[

∑
t γ

tRi(st,at)].
The Q-function, Qπ(s,a, i), of a policy π(·|·, i) is the ex-
pected long-term discounted reward obtained in task i by
executing action a at s and following policy π thereafter.

Standard offline RL is concerned with learning policies
π(a|s) using only a given static dataset of transitions
D = {(sj ,aj , s′j , rj)}Nj=1, collected by a behavior policy
πβ(a|s), without any additional environment interaction. In
the multi-task offline RL setting, the datasetD is partitioned
into per-task subsets, D = ∪Ni=1Di, where Di consists of
experience from task i. While algorithms can choose to train
the policy for task i (i.e., π(·|·, i)) only on Di, in this paper,
we are interested in data-sharing schemes that correspond to
relabeling data from a different task, j 6= i with the reward
function ri, and learn π(·|·, i) on the combined data. To be
able to do so, we assume access to the functional form of
the reward ri, a common assumption in goal-conditioned
RL [3, 16], and which often holds in robotics applications
through the use of learned rewards [81, 32, 18, 9].

We assume that relabeling data Dj from task j to task i
generates a dataset Dj→i, which is then additionally used
to train on task i. Thus, the effective dataset for task i
after relabeling is given by: Deff

i := Di ∪ (∪j 6=iDj→i).
This notation simply formalizes data sharing and relabeling
strategies explored in prior work [16, 33]. Our aim in this
paper will be to improve on this naı̈ve strategy, which we
will show leads to significantly better results.

Offline RL algorithms. A central challenge in offline RL
is distributional shift: differences between the learned policy
and the behavior policy can lead to erroneous target values,
where the Q-function is queried at actions a ∼ π(a|s) that
are far from the actions it is trained on, leading to massive
overestimation [42, 36]. A number of offline RL algorithms
use some kind of regularization on either the policy [36,
20, 80, 29, 66, 55] or on the learned Q-function [38, 35] to
ensure that the learned policy does not deviate too far from
the behavior policy. For our analysis in this work, we will
abstract these algorithms into a generic policy optimization
problem [38]:

π∗(a|s) := arg max
π

JD(π)− αD(π, πβ) (1)

JD(π) denotes the average return of policy π in the em-
pirical MDP induced by the transitions in the dataset,
and D(π, πβ) denotes a divergence measure (e.g., KL-
divergence [29, 80], MMD distance [36] or DCQL [38])
between the learned policy π and the behavior policy πβ ,
where DCQL(p, q) denote the following distance between
two distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

In the multi-task offline RL setting with data-sharing, the
generic optimization problem in Equation 1 for a task i
utilizes the effective dataset Deff

i . In addition, we define
πeff
β (a|s, i) as the effective behavior policy for task i and

it is given by: πeff
β (a|s, i) := |Deff

i (s,a)|/|Deff
i (s)|. Hence,

the counterpart of Equation 1 in the multi-task offline RL
setting with data sharing is given by:

∀i ∈ [N], π∗(a|s, i) := arg max
π

JDeff
i

(π)−αD(π, πeff
β)

(2)
We will utilize this generic optimization problem to motivate
our method in Section 4.

3. Characterizing When Data Sharing
Actually Helps in Offline Multi-Task RL

Our goal is to leverage experience from all the tasks to
learn a policy for a particular task of interest. The simplest
approach to leveraging experience across tasks is to train the
task policy on not just the data coming from that task, but
also relabeled data from all other tasks [6]. Is this naı̈ve data

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

sharing strategy sufficient for learning effective behaviors
from multi-task offline data? In this section, we aim to
answer this question via empirical analysis on a relatively
simple domain, which is enough to reveal interesting aspects
of data sharing. We observe that data sharing degrades
performance when adding low quality data leads to a lower
quality policy and exacerbates distributional shift in offline
RL using empirical analysis detailed in Appendix C. We
mathematically analyze this issue and will then derive a
simple and effective data sharing strategy in Section 4.

To formally characterize the effects of data-sharing in
multi-task offline RL, we appeal to safe policy improvement
bounds [40, 38, 89] and discuss cases when data-sharing
between tasks i and j can degrade the amount of worst-case
guaranteed improvement over the behavior policy. Prior
work [38] has shown that the generic offline RL algorithm
in Equation 1 enjoys the following guarantees of policy im-
provement on the actual MDP, beyond the behavior policy:

J(π∗) ≥ J(πβ)−O(1/(1− γ)2)

Es,a∼dπ

[√
D(π(·|s), πβ(·|s))

|D(s)|

]
+ (JD(π)− JD(πβ)).

(3)

In the above equation, (JD(π)− JD(πβ)) denotes the im-
provement of π over πβ in the empirical MDP induced by
the dataset, which Equation 1 optimizes directly. However,
we incur a prince due to sampling error that grows quadrat-
ically in the horizon 1/(1 − γ)2. We will use Equation 3
to understand the scenarios where data sharing can hurt.
When data sharing modifies D = Di to D = Deff

i , which
includes Di as a subset as in the case of naı̈ve data shar-
ing, it effectively aims at reducing the magnitude of the
second term (i.e., sampling error) by increasing the denom-
inator |D(s)|. This can be highly effective if the learned
policy π∗ and the datasetD overlap with each other in terms
of state visitations. However, an increase in divergence
D(π(·|s), πβ(·|s)) as a consequence of relabeling implies a
potential increase in the sampling error unless the increased
value of |Deff(s)| precisely compensates this. Additionally,
the strength of this bound also depends on the quality of
the behavior data added after relabeling – if the resulting
behavior policy πeff

β is more suboptimal compared to πβ ,
i.e., J(πeff

β) < J(πβ), then, the guaranteed amount of im-
provement also reduces.

Practical implications. As we show in Appendix C (Ta-
ble 2), we find that the conclusions drawn above match
practical scenarios, and in cases where data sharing leads
to poor performance, it does so when indeed distributional
shift is increased. This implies that while data-sharing can
often be helpful in multi-task offline RL, it can lead to sub-
stantially poor performance on certain tasks as a result of
exacerbated distributional shift between the optimal policy

and the effective behavior policy induced after sharing data.

4. CDS: Reducing Distributional Shift in
Multi-Task Data Sharing

The analysis in Section 3 shows that naı̈ve data sharing may
be highly suboptimal in some cases, and although it often
does improve over no data sharing at all in practice, it can
also lead to exceedingly poor results. Can we instead devise
a adaptive data sharing scheme that avoids this pathology
while still retaining the benefits of data sharing?

A key insight behind our approach is to note that a data
sharing scheme can be viewed as altering the dataset Deff

i ,
and hence the effective behavior policy, πeff

β (a|s, i). Thus,
we can develop an effective data-sharing scheme by opti-
mizing the objective in Equation 2 with respect to πeff

β , in
addition to π, where πeff

β belongs to the set of all possible
effective behavior policies that can be obtained via any form
of data sharing. We formalize this optimization below in
Equation 4:

arg max
π

max
πeff
β ∈Πrelabel

[
JDeff

i
(π)− αD(π, πeff

β ; i)
]
, (4)

where Πrelabel denotes the set of all possible behavior poli-
cies that can be obtained via relabeling. The next result
characterizes safe policy improvement for Equation 4 and
discusses how it leads to improvement over the behavior
policy and also produces an effective practical method.

Proposition 4.1 (Characterizing safe-policy improvement
for CDS.). Let π∗(a|s) be the policy obtained by optimizing
Equation 4, and let πβ(a|s) be the behavior policy for Di.
Then, w.h.p. ≥ 1 − δ, π∗ is a ζ-safe policy improvement
over πβ , i.e., J(π∗) ≥ J(πβ)− ζ, where ζ is given by:

ζ = O
(

1

(1− γ)2

)
Es∼dπ∗

Deff
i

√DCQL(π∗, π∗β)(s) + 1

|Deff
i (s)|


−

αD(π∗, π∗β) + J(π∗β)− J(πβ)︸ ︷︷ ︸
(a)

 ,
where Deff

i ∼ dπ
∗
β (s) and π∗β(a|s) denotes the policy π ∈

Πrelabel that maximizes Equation 4.

A proof and analysis of this proposition is provided in Ap-
pendix A. Using simple arguments, we note that the bound
in Proposition 4.1 is stronger than both no data sharing as
well as naı̈ve data sharing. We show in Appendix A that op-
timizing Equation 4 reduces the numerator DCQL(π∗, π∗β)

term while also increasing |Deff
i (s)|, thus reducing the

amount of sampling error. In addition, Lemma A.1 shows
that the improvement term (a) is guaranteed to be positive if
a large enough α is chosen in Equation 4. Combining these,

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Task Name CDS (ours) HIPI [16] Skill [33] Sharing All No Sharing

average of 10 lift and place tasks 77.6% 67.2% 58.7% 63.7% 55.0%

Table 1. Results for multi-task vision-based robotic manipulation domains in [33]. CDS outperforms prior methods on the average task
success rate. HIPI [16] relabels a given transition to a particular task, Skill [33] is a method that uses a “hand-designed” data sharing
scheme, and Sharing All refers to sharing all the data, while No Sharing refers to not performing any data sharing.

we find data sharing using Equation 4 improves over both
complete data sharing (which may increase DCQL(π, πβ))
and no data sharing (which does not increase |Deff

i (s)|).

A practical algorithm, CDS. The next step is to effec-
tively convert Equation 4 into a simple condition for data
sharing in multi-task offline RL. While directly solving
Equation 4 is intractable in practice, since both the terms
depend on πeff

β (a|s), and somewhat non-trivially (since
the first term JDeff (π) depends on the empirical MDP in-
duced by the effective behavior policy), we need to in-
stead solve Equation 4 approximately. Fortunately, we
can optimize a lower-bound approximation to Equation 4
that uses the dataset state distribution for the policy up-
date in Equation 4 similar to modern actor-critic meth-
ods [12, 44, 21, 26, 38] which only introduces an additional
D(π, πβ) term in the objective. This objective is given by:
Es∼Deff

i
[Eπ[Q(s,a, i)]−α′D(π(·|s, i), πeff

β (·|s, i))], which

is equal to the expected “conservative Q-value” Q̂π(s,a, i)
on dataset states, policy actions and task i. Optimizing
this objective via a co-ordinate descent on π and πeff

β dic-
tates that π be updated using a standard update of maxi-
mizing the conservative Q-function, Q̂π (equal to the differ-
ence of the Q-function and D(π, πeff

β ; i)). Moreover, πeff
β

should also be updated towards maximizing the same ex-
pectation, Es,a∼Deff

i
[Q̂π(s,a, i)] := Es,a∼Deff

i
[Q(s,a, i)]−

αD(π, πeff
β ; i). This implies that when updating the behav-

ior policy during relabeling, we should prefer state-action
pairs that maximize the conservative Q-function.

Our data-sharing scheme, CDS, is based on the insight dis-
cussed above. CDS first runs any standard conservative
offline RL algorithm on each task individually without any
data sharing. Consistent with our insight from above, re-
labeling a transition that contributes a lower conservative
Q-value to the current task will only decrease the average
conservative Q-value of the effective resulting dataset for
this task, whereas the πeff

β is to be optimized to maximize
this value. Hence, we employ a simple rule to decide which
transitions from the data for other tasks will be relabeled
to the current task, say task i: CDS checks if the conser-
vative Q-value estimate for this transition under task i is
greater than the average conservative Q-value for the origi-
nal dataset for task i, Di. This is sufficient to prevent any
degradation in the average conservative Q-value after rela-
beling, while still allowing us to retain the positive benefits
of full data sharing. Thus, CDS first estimates a conserva-
tive Q-value estimate, Q̂π(s,a, i) (which can be obtained

via any offline RL algorithm), and for a given transition,
(s,a, rj , s

′) ∈ Dj it then checks if the following condition
is satisfied:

∀ j ∈ [N], ∆π(s,a; j → i)

:= Q̂π(s,a, i)− Es′,a′∼Di

[
Q̂π(s′,a′, i)

]
≥ 0. (5)

If the condition in Equation 5 holds for the given (s,a), then
the corresponding relabeled transition, (s,a, ri(s,a), s′) is
added to Deff

i . This rule for relabeling is applied indepen-
dently on each transition (s,a, r, s′) ∈ D. Finally, CDS
trains a policy, π(a|s; i), either conditioned on the task i
(i.e., with weight sharing) or a separate π(a|s) policy for
each task with no weight sharing, with the resulting rela-
beled dataset, Deff

i . Pseudocode for CDS is provided in
Algorithm 1. For practical implementation details of CDS
see Appendix E.

Figure 1. Visualization of the vision-based picking and placing
tasks in [33] evaluated in Table 1.
Experimental evaluation of CDS. We present an extensive
empirical evaluation of CDS in Appendix D, but we present
one set of empirical results briefly here. We evaluate CDS
on a multi-task vision-based robotic manipulation domain
proposed in [33], which consists of 7 lifting tasks and 3
placing tasks (visualized in Figure 1). We compare CDS to
prior methods (details in Appendix D) and show that CDS
outperforms all the previous methods in the average success
rate across 10 tasks, suggesting the effectiveness of CDS.

5. Conclusion
In this paper, we study the multi-task offline RL setting,
focusing on the problem of sharing offline data across tasks
for better multi-task learning. We first identify that naı̈vely
sharing data across tasks generally helps learning but can
significantly hurt performance in scenarios where excessive
distribution shift is introduced. To address this challenge,
we present conservative data sharing (CDS), which relabels
data to a task when the conservative Q-value of the given
transition is better than the expected conservative Q-value
of the target task. We provide theoretical analysis of CDS
and also show that CDS outperforms prior approaches in a
range of multi-task problems.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

References
[1] Abbas Abdolmaleki, Jost Tobias Springenberg,

Y. Tassa, R. Munos, N. Heess, and Martin A. Ried-
miller. Maximum a posteriori policy optimisation.
ArXiv, abs/1806.06920, 2018.

[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad
Norouzi. An optimistic perspective on offline rein-
forcement learning. In International Conference on
Machine Learning, pages 104–114. PMLR, 2020.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. arXiv preprint
arXiv:1707.01495, 2017.

[4] Arthur Argenson and Gabriel Dulac-Arnold.
Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[6] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[7] Denis Charles, Max Chickering, and Patrice Simard.
Counterfactual reasoning and learning systems: The
example of computational advertising. Journal of Ma-
chine Learning Research, 14, 2013.

[8] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao,
Dmitry Kalashnikov, Jake Varley, Alex Irpan, Ben-
jamin Eysenbach, Ryan Julian, Chelsea Finn, and
Sergey Levine. Actionable models: Unsupervised
offline reinforcement learning of robotic skills. arXiv
preprint arXiv:2104.07749, 2021.

[9] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning
generalizable robotic reward functions from” in-the-
wild” human videos. arXiv preprint arXiv:2103.16817,
2021.

[10] Paul Christiano, Jan Leike, Tom B Brown, Miljan
Martic, Shane Legg, and Dario Amodei. Deep rein-
forcement learning from human preferences. arXiv
preprint arXiv:1706.03741, 2017.

[11] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj
Nair, Bernadette Bucher, Karl Schmeckpeper, Sid-
dharth Singh, Sergey Levine, and Chelsea Finn.
Robonet: Large-scale multi-robot learning, 2020.

[12] Thomas Degris, Martha White, and Richard S
Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

[13] Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Mar-
cello Restelli, and Jan Peters. Sharing knowledge in
multi-task deep reinforcement learning. In Interna-
tional Conference on Learning Representations, 2019.

[14] Damien Ernst, Pierre Geurts, and Louis Wehenkel.
Tree-based batch mode reinforcement learning. Jour-
nal of Machine Learning Research, 6:503–556, 2005.

[15] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen
Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane
Legg, and Koray Kavukcuoglu. IMPALA: scalable
distributed deep-rl with importance weighted actor-
learner architectures. In International Conference on
Machine Learning, 2018.

[16] Benjamin Eysenbach, Xinyang Geng, Sergey Levine,
and Ruslan Salakhutdinov. Rewriting history with
inverse rl: Hindsight inference for policy improvement.
arXiv preprint arXiv:2002.11089, 2020.

[17] Chelsea Finn and Sergey Levine. Deep visual fore-
sight for planning robot motion. In 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 2786–2793. IEEE, 2017.

[18] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and
Sergey Levine. Variational inverse control with events:
A general framework for data-driven reward definition.
arXiv preprint arXiv:1805.11686, 2018.

[19] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker,
and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

[20] Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without explo-
ration. arXiv preprint arXiv:1812.02900, 2018.

[21] Scott Fujimoto, Herke Van Hoof, and David Meger.
Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018.

[22] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar
Alazzawi, Christophe Bruttin, and Amr Huber. Offline
and online evaluation of news recommender systems at
swissinfo. ch. In Proceedings of the 8th ACM Confer-
ence on Recommender systems, pages 169–176, 2014.

[23] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash
Kumar, and Sergey Levine. Divide-and-conquer rein-
forcement learning. arXiv preprint arXiv:1711.09874,
2017.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

[24] Arthur Guez, Robert D Vincent, Massimo Avoli, and
Joelle Pineau. Adaptive treatment of epilepsy via
batch-mode reinforcement learning. In AAAI, pages
1671–1678, 2008.

[25] Caglar Gulcehre, Ziyu Wang, Alexander Novikov,
Tom Le Paine, Sergio Gómez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel
Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
Benchmarks for offline reinforcement learning. arXiv
preprint arXiv:2006.13888, 2020.

[26] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

[27] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Woj-
ciech Czarnecki, Simon Schmitt, and Hado van Has-
selt. Multi-task deep reinforcement learning with
popart. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 2019.

[28] Zhiao Huang, Fangchen Liu, and Hao Su. Mapping
state space using landmarks for universal goal reach-
ing. Advances in Neural Information Processing Sys-
tems, 32:1942–1952, 2019.

[29] Natasha Jaques, Asma Ghandeharioun, Judy Han-
wen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way
off-policy batch deep reinforcement learning of im-
plicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

[30] Natasha Jaques, Judy Hanwen Shen, Asma Ghandehar-
ioun, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Shane Gu, and Rosalind Picard. Human-
centric dialog training via offline reinforcement learn-
ing. arXiv preprint arXiv:2010.05848, 2020.

[31] Leslie Pack Kaelbling. Learning to achieve goals. In
IJCAI, pages 1094–1099. Citeseer, 1993.

[32] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
et al. Scalable deep reinforcement learning for vision-
based robotic manipulation. In Conference on Robot
Learning, pages 651–673. PMLR, 2018.

[33] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar,
Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continu-
ous multi-task robotic reinforcement learning at scale.
arXiv preprint arXiv:2104.08212, 2021.

[34] Rahul Kidambi, Aravind Rajeswaran, Praneeth Ne-
trapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint
arXiv:2005.05951, 2020.

[35] Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and
Ofir Nachum. Offline reinforcement learning with
fisher divergence critic regularization. arXiv preprint
arXiv:2103.08050, 2021.

[36] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker,
and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. In Advances in
Neural Information Processing Systems, pages 11761–
11771, 2019.

[37] Aviral Kumar, Abhishek Gupta, and Sergey Levine.
Discor: Corrective feedback in reinforcement learn-
ing via distribution correction. arXiv preprint
arXiv:2003.07305, 2020.

[38] Aviral Kumar, Aurick Zhou, George Tucker, and
Sergey Levine. Conservative q-learning for offline rein-
forcement learning. arXiv preprint arXiv:2006.04779,
2020.

[39] Sascha Lange, Thomas Gabel, and Martin A. Ried-
miller. Batch reinforcement learning. In Reinforce-
ment Learning, volume 12. Springer, 2012.

[40] Romain Laroche, Paul Trichelair, and Remi Tachet
Des Combes. Safe policy improvement with base-
line bootstrapping. In International Conference on
Machine Learning, pages 3652–3661. PMLR, 2019.

[41] Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim.
Representation balancing offline model-based rein-
forcement learning. In International Conference on
Learning Representations, 2021. URL https://
openreview.net/forum?id=QpNz8r_Ri2Y.

[42] Sergey Levine, Aviral Kumar, George Tucker, and
Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020.

[43] Alexander C Li, Lerrel Pinto, and Pieter Abbeel. Gen-
eralized hindsight for reinforcement learning. arXiv
preprint arXiv:2002.11708, 2020.

[44] Timothy P Lillicrap, Jonathan J Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[45] Xingyu Lin, Harjatin Singh Baweja, and David Held.
Reinforcement learning without ground-truth state.
arXiv preprint arXiv:1905.07866, 2019.

https://openreview.net/forum?id=QpNz8r_Ri2Y
https://openreview.net/forum?id=QpNz8r_Ri2Y

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

[46] Hao Liu, Alexander Trott, Richard Socher, and Caim-
ing Xiong. Competitive experience replay. arXiv
preprint arXiv:1902.00528, 2019.

[47] Yao Liu, Adith Swaminathan, Alekh Agarwal, and
Emma Brunskill. Off-policy policy gradient with state
distribution correction. CoRR, abs/1904.08473, 2019.

[48] Yao Liu, Adith Swaminathan, Alekh Agarwal, and
Emma Brunskill. Provably good batch reinforcement
learning without great exploration. arXiv preprint
arXiv:2007.08202, 2020.

[49] Corey Lynch and Pierre Sermanet. Grounding lan-
guage in play. arXiv preprint arXiv:2005.07648, 2020.

[50] Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio
Savarese, Li Fei-Fei, Animesh Garg, and Dieter Fox.
Iris: Implicit reinforcement without interaction at scale
for learning control from offline robot manipulation
data. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4414–4420.
IEEE, 2020.

[51] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo,
Ofir Nachum, and Shixiang Gu. Deployment-efficient
reinforcement learning via model-based offline opti-
mization. arXiv preprint arXiv:2006.03647, 2020.

[52] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow,
Lihong Li, and Dale Schuurmans. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint
arXiv:1912.02074, 2019.

[53] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar
Bahl, Steven Lin, and Sergey Levine. Visual reinforce-
ment learning with imagined goals. arXiv preprint
arXiv:1807.04742, 2018.

[54] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhut-
dinov. Actor-mimic: Deep multitask and transfer rein-
forcement learning. arXiv preprint arXiv:1511.06342,
2015.

[55] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv
preprint arXiv:1910.00177, 2019.

[56] Marek Petrik, Yinlam Chow, and Mohammad
Ghavamzadeh. Safe policy improvement by min-
imizing robust baseline regret. arXiv preprint
arXiv:1607.03842, 2016.

[57] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey
Levine. Temporal difference models: Model-free
deep rl for model-based control. arXiv preprint
arXiv:1802.09081, 2018.

[58] Doina Precup, Richard S Sutton, and Sanjoy Dasgupta.
Off-policy temporal-difference learning with function
approximation. In ICML, pages 417–424, 2001.

[59] Rafael Rafailov, Tianhe Yu, A. Rajeswaran, and
Chelsea Finn. Offline reinforcement learning from
images with latent space models. Learning for Deci-
sion Making and Control (L4DC), 2021.

[60] Martin Riedmiller. Neural fitted q iteration–first ex-
periences with a data efficient neural reinforcement
learning method. In European Conference on Machine
Learning, pages 317–328. Springer, 2005.

[61] Andrei A Rusu, Sergio Gomez Colmenarejo,
Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy distillation.
arXiv preprint arXiv:1511.06295, 2015.

[62] Tom Schaul, Daniel Horgan, Karol Gregor, and David
Silver. Universal value function approximators. In
International conference on machine learning, pages
1312–1320. PMLR, 2015.

[63] Tom Schaul, Diana Borsa, Joseph Modayil, and
Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint
arXiv:1904.11455, 2019.

[64] John Schulman, Sergey Levine, Pieter Abbeel,
Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on
machine learning, pages 1889–1897, 2015.

[65] Susan M Shortreed, Eric Laber, Daniel J Lizotte,
T Scott Stroup, Joelle Pineau, and Susan A Murphy.
Informing sequential clinical decision-making through
reinforcement learning: an empirical study. Machine
learning, 84(1-2):109–136, 2011.

[66] Noah Y Siegel, Jost Tobias Springenberg, Felix
Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin Riedmiller.
Keep doing what worked: Behavioral modelling pri-
ors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

[67] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu,
Nicholas Rhinehart, and Sergey Levine. Parrot: Data-
driven behavioral priors for reinforcement learning.
arXiv preprint arXiv:2011.10024, 2020.

[68] Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang,
Aviral Kumar, and Sergey Levine. Cog: Connect-
ing new skills to past experience with offline rein-
forcement learning. arXiv preprint arXiv:2010.14500,
2020.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

[69] Shagun Sodhani, Amy Zhang, and Joelle Pineau.
Multi-task reinforcement learning with context-based
representations. arXiv preprint arXiv:2102.06177,
2021.

[70] Alex Strehl, John Langford, Sham Kakade, and Lihong
Li. Learning from logged implicit exploration data.
arXiv preprint arXiv:1003.0120, 2010.

[71] Hao Sun, Zhizhong Li, Xiaotong Liu, Dahua Lin, and
Bolei Zhou. Policy continuation with hindsight inverse
dynamics. arXiv preprint arXiv:1910.14055, 2019.

[72] Richard S Sutton, A Rupam Mahmood, and Martha
White. An emphatic approach to the problem of off-
policy temporal-difference learning. The Journal of
Machine Learning Research, 17(1):2603–2631, 2016.

[73] Adith Swaminathan and Thorsten Joachims. Batch
learning from logged bandit feedback through coun-
terfactual risk minimization. J. Mach. Learn. Res, 16:
1731–1755, 2015.

[74] Phillip Swazinna, Steffen Udluft, and Thomas Runkler.
Overcoming model bias for robust offline deep rein-
forcement learning. arXiv preprint arXiv:2008.05533,
2020.

[75] Yee Whye Teh, Victor Bapst, Wojciech Marian Czar-
necki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: Ro-
bust multitask reinforcement learning. arXiv preprint
arXiv:1707.04175, 2017.

[76] Georgios Theocharous, Philip S Thomas, and Moham-
mad Ghavamzadeh. Ad recommendation systems for
life-time value optimization. In Proceedings of the
24th International Conference on World Wide Web,
pages 1305–1310, 2015.

[77] Philip S Thomas, Georgios Theocharous, Mohammad
Ghavamzadeh, Ishan Durugkar, and Emma Brunskill.
Predictive off-policy policy evaluation for nonstation-
ary decision problems, with applications to digital
marketing. In AAAI, pages 4740–4745, 2017.

[78] L. Wang, Wei Zhang, Xiaofeng He, and H. Zha. Su-
pervised reinforcement learning with recurrent neu-
ral network for dynamic treatment recommendation.
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018.

[79] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad
Tadepalli. Multi-task reinforcement learning: a hierar-
chical bayesian approach. In Proceedings of the 24th
international conference on Machine learning, pages
1015–1022, 2007.

[80] Yifan Wu, George Tucker, and Ofir Nachum. Behav-
ior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[81] Annie Xie, Avi Singh, Sergey Levine, and Chelsea
Finn. Few-shot goal inference for visuomotor learning
and planning. In Conference on Robot Learning, pages
40–52. PMLR, 2018.

[82] Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea
Finn. Improvisation through physical understanding:
Using novel objects as tools with visual foresight.
Robotics: Science and Systems (RSS), 2019.

[83] Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and
Jieping Ye. Knowledge transfer in multi-task deep
reinforcement learning for continuous control. 2020.

[84] Rui Yang, Jiafei Lyu, Yu Yang, Jiangpeng Ya, Feng
Luo, Dijun Luo, Lanqing Li, and Xiu Li. Bias-reduced
multi-step hindsight experience replay. arXiv preprint
arXiv:2102.12962, 2021.

[85] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang.
Multi-task reinforcement learning with soft modular-
ization. arXiv preprint arXiv:2003.13661, 2020.

[86] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. Gradi-
ent surgery for multi-task learning. arXiv preprint
arXiv:2001.06782, 2020.

[87] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Ju-
lian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-
task and meta reinforcement learning. In Conference
on Robot Learning, pages 1094–1100. PMLR, 2020.

[88] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Er-
mon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy opti-
mization. arXiv preprint arXiv:2005.13239, 2020.

[89] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind
Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization.
arXiv preprint arXiv:2102.08363, 2021.

[90] Wenxuan Zhou, Sujay Bajracharya, and David Held.
Plas: Latent action space for offline reinforcement
learning. arXiv preprint arXiv:2011.07213, 2020.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Algorithm 1 CDS: Conservative Data Sharing
Require: Multi-task offline dataset ∪Ni=1Di.
1: Randomly initialize policy πθ(a|s, i).
2: for k = 1, 2, 3, · · · , do
3: Initialize Deff ← {}
4: for i = 1, · · · , N do
5: Deff

i = Di ∪ {(sj ,aj , s′j , ri) ∈ Dj→i : ∆π(s,a; j → i) ≥ 0}
6: Improve policy by solving eq. 2 using samples from Deff to obtain πk+1

θ .

A. Analysis of CDS
In this section, we will analyze the key idea behind our method CDS (Section 4) and show that the abstract version of our
method (Equation 4) provides better policy improvement guarantees than naı̈ve data sharing and that the practical version of
our method (Equation 5) approximates Equation 4 resulting in an effective practical algorithm.

A.1. Analysis of the Algorithm in Equation 4

We begin with analyzing Equation 4, which is used to derive the practical variant of our method, CDS. We build on the
analysis of safe-policy improvement guarantees of conventional offline RL algorithms [40, 38] and show that data sharing
using CDS attains better guarantees in the worst case. To begin the analysis, we introduce some notation and prior results
that we will directly compare to.

Notation and prior results. Let πβ(a|s) denote the behavior policy for task i (note that index i was dropped from πβ(a|s; i)
for brevity). The dataset, Di is generated from the marginal state-action distribution of πβ , i.e., D ∼ dπβ (s)πβ(a|s). We
define dπD as the state marginal distribution introduced by the dataset D under π. Let DCQL(p, q) denote the following
distance between two distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

Unless otherwise mentioned, we will drop the subscript “CQL” from DCQL and use D and DCQL interchangeably. Prior
works [38] have shown that the optimal policy π∗i that optimizes Equation 1 attains a high probability safe-policy improve-
ment guarantee, i.e., J(π∗i) ≥ J(πβ)− ζi, where ζi is:

ζi = O
(

1

(1− γ)2

)
E
s∼d

π∗
i
Di

[√
DCQL(π∗i , πβ)(s) + 1

|Di(s)|

]
+ αD(π∗i , πβ). (6)

The first term in Equation 6 corresponds to the decrease in performance due to sampling error and this term is high when the
single-task optimal policy π∗i visits rarely observed states in the dataset Di and/or when the divergence from the behavior
policy πβ is higher under the states visited by the single-task policy s ∼ dπ

∗
i

Di .

Let JD(π) denote the return of a policy π in the empirical MDP induced by the transitions in the dataset D. Further, let us
assume that optimizing Equation 4 gives us the following policies:

π∗(a|s), π∗β(a|s) := arg max
π,πβ∈Πrelabel

JDeff
i

(π)− αD(π, πβ)︸ ︷︷ ︸
:=f(π,πβ ;Deff

i)

, (7)

where the optimized behavior policy π∗β is constrained to lie in a set of all policies that can be obtained via relabeling,
Πrelabel, and the dataset, Deff

i is sampled according to the state-action marginal distribution of π∗β , i.e., Deff
i ∼ dπ

∗
β (s,a).

Additionally, for convenience, define, f(π1, π2;D) := JD(π1)− αD(π1, π2) for any two policies π1 and π2, and a given
dataset D.

We now show the following result for CDS:

Proposition A.1 (Proposition 4.1 restated). Let π∗(a|s) be the policy obtained by optimizing Equation 4, and let πβ(a|s)
be the behavior policy for Di. Then, w.h.p. ≥ 1− δ, π∗ is a ζ-safe policy improvement over πβ , i.e., J(π∗) ≥ J(πβ)− ζ,

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

where ζ is given by:

ζ = O
(

1

(1− γ)2

)
Es∼dπ∗

Deff
i

√DCQL(π∗, π∗β)(s) + 1

|Deff
i (s)|

−
αD(π∗, π∗β) + J(π∗β)− J(πβ)︸ ︷︷ ︸

(a)

 ,
where Deff

i ∼ dπ
∗
β (s) and π∗β(a|s) denotes the policy π ∈ Πrelabel that maximizes Equation 4.

Proof. To prove this proposition, we shall quantify the lower-bound on the improvement in the policy performance due to
Equation 7 in the empirical MDP, and the potential drop in policy performance in the original MDP due to sampling error,
and combine the terms to obtain our bound. First note that for any given policy π, and a dataset Deff

i with effective behavior
policy πβ(a|s), the following bound holds [38]:

J(π) ≥ JDeff
i

(π)−O
(

1

(1− γ)2

)
Es∼dπ

Deff
i

√DCQL(π, π∗β)(s) + 1

|Deff
i (s)|

 , (8)

where the O(·) notation hides constants depending upon the concentration properties of the MDP [40] and 1 − δ, the
probability with which the statement holds. Next, we provide guarantees on policy improvement in the empirical MDP. To
see this, note that the following statements on f(π1, π2;D) are true:

∀π′ ∈ Πrelabel, f(π∗, π∗β ;Deff
i) ≥ f(π′, π′,Deff

i) (9)

=⇒ ∀π′ ∈ Πrelabel, JDeff
i

(π∗)− αD(π∗, π∗β) ≥ JDeff
i

(π′). (10)

And additionally, we obtain:

∀π′ ∈ Πrelabel, f(π∗, π∗β ;Deff
i) ≥ f(π∗, π′;Deff

i), (11)

=⇒ ∀π′ ∈ Πrelabel, D(π∗, π∗β) ≤ D(π∗, π′). (12)

Utilizing 10, we obtain that:

JDeff
i

(π∗)− JDeff
i

(πβ) ≥ αD(π∗, π∗β) +
(
JDeff

i
(π∗β)− JDeff

i
(πβ)

)
≈ αD(π∗, π∗β) +

(
J(π∗β)− J(πβ)

)
, (13)

where ≈ ignores sampling error terms that do not depend on distributional shift measures like DCQL because π∗β and πβ
are behavior policies which generated the complete and part of the dataset, and hence these terms are dominated by and
subsumed into the sampling error for π∗. Combining Equations 8 (by setting π = π∗) and 13, we obtain the following
safe-policy improvement guarantee for π∗: J(π∗)− J(πβ) ≥ ζ, where ζ is given by:

ζ = O
(

1

(1− γ)2

)
Es∼dπ∗

Deff
i

√DCQL(π∗, π∗β)(s) + 1

|Deff
i (s)|

−
αD(π∗, π∗β) + J(π∗β)− J(πβ)︸ ︷︷ ︸

(a)

 ,
which proves the desired result.

Proposition A.1 indicates that when optimizing the behavior policy with Equation 4, we can improve upon the conven-
tional safe-policy improvement guarantee (Equation 6) with standard single-task offline RL: not only do we improve via
DCQL(π∗, π∗β), since, DCQL(π∗, π∗β) ≤ DCQL(π∗, πβ), which reduces sampling error, but utilizing this policy π∗β also allows
us to improve on term (a), since Equation 7 optimizes the behavior policy to be close to the learned policy π∗ and maximizes
the learned policy return JDeff

i
(π∗) on the effective dataset, thus providing us with a high lower bound on J(π∗β). We

formalize this insight as Lemma A.1 below:

Lemma A.1. For sufficiently large α, JDeff
i

(π∗β) ≥ JDeff
i

(πβ) and thus (a) ≥ 0.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Proof. To prove this, we note that using standard difference of returns of two policies, we get the following inequality:
JDeff

i
(π∗β) ≥ JDeff

i
(π∗)− C Rmax

1−γ DTV(π∗, π∗β). Moreover, from Equation 10, we obtain that: JDeff
i

(π∗)− αD(π∗, π∗β) ≥
JDeff

i
(πβ). So, if α is chosen such that:

CRmax

1− γ
DTV(π∗, π∗β) ≤ αD(π∗, π∗β), (14)

we find that:

JDeff
i

(π∗β) ≥ JDeff
i

(π∗)− CRmax

1− γ
DTV(π∗, π∗β) ≥ JDeff

i
(π∗)− αD(π∗, π∗β) ≥ JDeff

i
(πβ),

implying that (a) ≥ 0. For the edge cases when either DTV(π∗, π∗β) = 0 or DCQL(π∗, π∗β) = 0, we note that π∗(a|s) =
π∗β(a|s), which trivially implies that JDeff

i
(π∗β) = JDeff

i
(π∗) ≥ JDeff

i
(πβ), because π∗ improves over πβ on the dataset.

Thus, term (a) is positive for large-enough α and the bound in Proposition A.1 gains from this term additionally.

Finally, we show that the sampling error term is controlled when utilizing Equation 4. We will show in Lemma A.2 that the
sampling error in Proposition A.1 is controlled to be not much bigger than the error just due to variance, since distributional
shift is bounded with Equation 4.

Lemma A.2. If π∗ and π∗β obtained from Equation 4 satisfy, DCQL(π∗, π∗β) ≤ ε� 1, then:

($) := Es∼dπ∗
Deff
i

√DCQL(π∗, π∗β)(s) + 1

|Deff
i (s)|

 ≤ (1 + ε)
1
2 Es∼dπ∗

Deff
i

[√
1

|Deff
i (s)|

]
︸ ︷︷ ︸

:=sampling error w/o distribution shift

. (15)

Proof. This lemma can be proved via a simple application of the Cauchy-Schwarz inequality. We can partition the first term
as a sum over dot products of two vectors such that:

($) =
∑
s

√
dπ
∗

Deff
i

(s)(DCQL(π∗, π∗β)(s) + 1)

√
dπ
∗

Deff
i

(s)

|Deff
i (s)|

≤

√√√√(∑
s

dπ
∗

Deff
i

(s)(DCQL(π∗, π∗β)(s) + 1)

)
·

(∑
s

dπ
∗

Deff
i

(s)

|Deff
i (s)|

)

=

√
Es∼dπ∗

Deff
i

[
DCQL(π∗, π∗β)(s) + 1

]
Es∼dπ∗

Deff
i

[
1

|Deff
i (s)|

]
≤ (1 + ε)0.5Es∼dπ∗

Deff
i

[√
1

|Deff
i (s)|

]
,

where we note that Es∼dπ∗
Deff
i

[
DCQL(π∗, π∗β)(s)

]
= DCQL(π∗, π∗β) ≤ ε (based on the given information in the Lemma) and

that
√∑

i wi
1
xi
≤
∑
i wi

1√
xi

for xi, wi > 0 and
∑
i wi = 1, via Jensen’s inequality for concave functions.

To summarize, combining Lemmas A.1 and A.2 with Proposition A.1, we conclude that utilizing Equation 4 controls the
increase in sampling error due to distributional shift, and provides improvement guarantees on the learned policy beyond the
behavior policy of the original dataset. We also briefly now discuss the comparison between CDS and complete data sharing.
Complete data sharing would try to reduce sampling error by increasing |Deff

i (s)|, but then it can also increase distributional
shift, DCQL(π∗, π∗β) as discussed in Section 3. On the other hand, CDS increases the dataset size while also controlling
for distributional shift (as we discussed in the analysis above), making it enjoy the benefits of complete data sharing and
avoiding its pitfalls, intuitively. On the other hand, no data sharing will just incur high sampling error due to limited dataset
size.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

A.2. From Equation 4 to Practical CDS (Equation 5)

The goal of our practical algorithm is to convert Equation 4 to a practical algorithm while retaining the policy improvement
guarantees derived in Proposition A.1. Since our algorithm does not utilize any estimator for dataset counts |Deff

i (s)|, and
since we operate in a continuous state-action space, our goal is to retain the guarantees of increased return of π∗β , while also
avoiding sampling error.

With this goal, we first need to relax the state-distribution in Equation 4: while both JDeff
i

(π) and DCQL(π, πβ) are computed
as expectations under the marginal state-distribution of policy π(a|s) on the MDP defined by the dataset Deff

i , for deriving
a practical method we relax the state distribution to use the dataset state-distribution dπ

∗
β and rewrite the objective in

accordance with most practical implementations of actor-critic algorithms [12, 1, 26, 21, 44] below:

(Practical Equation 4) max
π

max
πβ∈Πrelabel

Es∼Deff
i

[Ea∼π(a|s)[Q(s,a)]− αD(π(·|s), πβ(·|s))] (16)

This practical approximation in Equation 16 is even more justified with conservative RL algorithms when a large α is used,
since a larger α implies a smaller value for D(π∗, π∗β) found by Equation 4, which in turn means that state-distributions
dπ
∗
β and dπ

∗
are close to each other [64]. Thus, our policy improvement objective optimizes the policies π and πβ by

maximizing the conservative Q-function: Q̂π(s,a) = Q(s,a) − α
(
π(a|s)
πβ(a|s) − 1

)
, that appears inside the expectation in

Equation 16. While optimizing the policy π with respect to this conservative Q-function Q̂π(s,a) is equivalent to a standard
policy improvement update utilized by most actor-critic methods [21, 26, 38], we can optimize Q̂π(s,a) with respect to
πβ ∈ Πrelabel by relabeling only those transitions (s,a, r′i, s

′) ∈ Dj→i that increase the expected conservative Q-value

Es∼Deff
i

[
Ea∼πβ(·|s)

[
Q̂π(s,a)

]]
. Note that we relaxed the expectation a ∼ π(a|s) to a ∼ πβ(a|s) in this expectation,

which can be done upto a lower-bound of the objective in Equation 16 for a large α, since the resulting policies π and πβ are
close to each other.

The last step in our practical algorithm is to modify the solution of Equation 16 to still retain the benefits of reduced
sampling error as discussed in Proposition A.1. To do so, we want to relabel as many points as possible, thus increasing
|Deff
i (s)|, which leads to reduced sampling error. Since quantifying |Deff

i (s)| in continuous state-action spaces will require
additional machinery such as density-models, we avoid these for the sake of simplicity, and instead choose to relabel every
datapoint (s,a) ∈ Dj→i that satisfies Qπ(s,a; i) ≥ Es,a∼Di [Q̂

π(s,a; i)] ≥ 0 to task i. These datapoints definitely increase
the conservative Q-value and hence increase the objective in Equation 16 (though do not globally maximize it), while
also enjoying properties of reduced sampling error (Proposition A.1). This discussion motivates our practical algorithm in
Equation 5.

B. Related Work
Offline RL [14, 60, 39, 42] refers to the problem of policy learning with a fixed dataset without collecting additional
interactions in the environment. It has shown successful applications in domains such as robotic manipulation [32, 50,
59, 68, 33], NLP [29, 30], recommender systems & advertising [70, 22, 7, 76, 77] and healthcare [65, 78]. The major
challenge in offline RL is the distribution shift problem [20, 36, 38], where the learned policy might generate out-of-
distribution actions, resulting in erroneous value backups. Prior offline RL methods address this issue by regularizing the
learned policy to be “close“ to the behavior policy with the penalty on the distance between learned policy and behavior
policy [20, 48, 29, 80, 90, 36, 66, 55], variants of importance sampling based algorithms [58, 72, 47, 73, 52], uncertainty
quantification on Q-values [2, 36, 80, 42], learning conservative Q-functions [38, 35], and performing model-based training
with penalty on out-of-distribution states [34, 88, 51, 4, 74, 59, 41, 89]. While current benchmarks in offline RL [19, 25]
contains tasks that involve multi-task structure in the offline dataset, existing offline RL methods do not leverage the shared
structure of multiple tasks and instead train each individual task from scratch. In this paper, we exploit the shared structure
in the offline multi-task setting and train a general policy that can successfully acquire multiple skills.

Multi-task reinforcement learning algorithms [79, 54, 75, 15, 27, 86, 83, 85, 33, 69] focus on solving multiple tasks jointly
in an efficient way. While multi-task RL methods seem to provide a promising way to build general-purpose agents [33],
prior works have observed major challenges in multi-task RL, in particular, the optimization challenge [27, 63, 86]. Beyond
the optimization challenge, how to perform effective representation learning via weight sharing is another major challenge in
multi-task RL. Prior works have considered distilling per-task policies into a single policy that solves all tasks [61, 75, 23, 83],
separate shared and task-specific modules with theoretical guarantees [13] and incorporating additional supervision [69].

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Dataset types / Tasks Dataset Size
Avg Return DKL(π, πβ)

No Sharing Sharing All No Sharing Sharing All

medium-replay / run forward 109900 998.9 966.2 3.70 10.39
medium-replay / run backward 109980 1298.6 1147.5 4.55 12.70

medium-replay / jump 109511 1603.1 1224.7 3.57 15.89
average task performance N/A 1300.2 1112.8 3.94 12.99

medium / run forward 27646 297.4 848.7 6.53 11.78
medium / run backward 31298 207.5 600.4 4.44 10.13

medium / jump 100000 351.1 776.1 5.57 21.27
average task performance N/A 285.3 747.7 5.51 14.39

medium-replay / run forward 109900 590.1 701.4 1.49 7.76
medium / run backward 31298 614.7 756.7 1.91 12.2

expert / jump 5000 1575.2 885.1 3.12 27.5
average task performance N/A 926.6 781 2.17 15.82

Table 2. We analyze how sharing data across all tasks (Sharing All) compares to No Sharing in the multi-task walker2d environment
with three tasks: run forward, run backward, and jump. We provide three scenarios with different styles of per-task offline datasets in the
leftmost column. The second column shows the number of transitions in each dataset. We report the per-task average return, the KL
divergence between the single-task optimal policy and the behavior policy after the data sharing scheme, as well as the averages across
tasks. Sharing All generally helps training while increasing the KL divergence. However, on the row highlighted in yellow, Sharing All
yields a particualrly large KL divergence between the single-task policy and the behavior policy and degrades the performance, suggesting
sharing data for all tasks is brittle.

Finally, sharing data across tasks emerges as a challenge in multi-task RL, especially in the off-policy setting, as naı̈vely
sharing data across all tasks turns out to hurt performance in certain scenarios [33]. In this paper, we focus on the offline
setting where the challenges in data sharing are more relevant. Methods that study optimization and representation learning
issues are complementary and can always be combined with our approach. We will survey methods in data sharing in
multi-task off-policy RL next.

Prior works [3, 31, 57, 62, 16, 43, 33, 8] have found it effective to reuse data across tasks by recomputing the rewards of
data collected for one task and using such relabeled data to impersonate other tasks, which effectively augments the amount
of data available for learning each task and boost performance. These methods perform such task impersonation either
uniformly [33] or based on metrics such as high Q-values of the relabeled data [16, 43], human domain knowledge [33],
and distance to states or images in goal-conditioned settings [3, 57, 53, 46, 71, 45, 28, 49, 84, 8]. However, all of these
methods either still require online data collection and do not consider data sharing in a fully offline setting or only solve
offline goal-conditioned problems [8]. Our work extends the data sharing idea to multi-task offline RL settings and leverages
conservatism used in offline RL methods [38] to ensure that data sharing improves multi-task learning performance and
does not introduce excessive distribution shift.

C. Empirical Analysis of Data Sharing in Offline Multi-Task RL
In this section, we first describe the experimental setup and then discuss the results and possible explanations for the
observed behavior, which connects to the derivation our method in Section 4.

Experimental analysis setup. To assess the efficacy of data sharing, we experimentally analyze various multi-task RL
scenarios created with the walker2d environment in Gym [5]. We construct different test scenarios on this environment that
mimic practical situations, including settings where different amounts of data of varied quality are available for different
tasks [33, 82, 67]. In all these scenarios, the agent attempts three tasks: run forward, run backward, and jump,
which we visualize in Figure 2. Following the problem statement in Section 2, these tasks share the same state-action space
and transition dynamics, differing only in the reward function that the agent is trying to optimize. Different scenarios are
generated via varying-size offline datasets collected via behavior policies of different qualities, i.e., a single policy with
mediocre or expert performance, or a mixture of policies given by the initial part of the replay buffer trained with online
SAC [26] until when the final policy reaches a mediocre level of performance. We refer to these three types of offline
datasets as medium, expert and medium-replay respectively following the definition in [19].

We train a single-task policy πCQL(a|s, i) with CQL [38] as the base offline RL method along with two forms of data-sharing,
as shown in Table 2: no sharing of data across tasks (No Sharing)) and complete sharing of data with relabeling across
all tasks (Sharing All), and report the performance of the resulting policy. In addition, we also measure the divergence
term in Equation 2, D(π(·|·, i), πeff

β (·|·, i)), for π = πCQL(a|s, i), averaged across tasks by using the Kullback-Liebler
divergence. This value quantifies the average divergence between the single-task optimal policy and the relabeled behavior
policy averaged across tasks.

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Analysis of results in Table 2. To begin, note that even naı̈vely sharing data is better than not sharing any data at all on
5/9 tasks considered (compare the performance across No Sharing and Sharing All in Table 2). However, a closer look at
Table 2 suggests that data-sharing can significantly degrade performance on certain tasks, especially in scenarios where the
amount of data available for the original task is limited, and where the distribution of this data is narrow. For example, when
using expert data for jumping in conjunction with more than 25 times as much lower-quality (mediocre & random) data for
running forward and backward, we find that the agent recovers poor performance on the jumping task despite access to
near-optimal jumping data.

Why does naı̈ve data sharing degrade performance on certain tasks despite near-optimal behavior for these tasks in the
original task dataset? We argue that the primary reason that naı̈ve data sharing can actually hurt performance in such cases
is because it exacerbates the distributional shift issues that afflict offline RL. Many offline RL methods combat distribution
shift by implicitly or explicitly constraining the learned policy to stay close to the training data. Then, when the training data
is changed by adding relabeled data from another task, the constraint causes the learned policy to change as well. When the
added data is of low quality for that task, it will correspondingly lead to a lower quality learned policy for that task, unless
the constraint is somehow modified. This effect is evident from the higher divergence values between the learned policy
without any data-sharing and the effective behavior policy for that task after relabeling (e.g., expert+jump) in Table 2.
Although these results are only for CQL, we expect that any offline RL method would, insofar as it combats distributional
shift by staying close to the data, would exhibit a similar problem.

D. Experimental Evaluation
We conduct experiments to answer five main questions: (1) can CDS prevent degradation in performance when sharing data
as observed in Section 3?, (2) how does CDS compare to vanilla multi-task offline RL methods and prior data between tasks?
(3) can CDS handle sparse reward settings, where data sharing is particularly important due to scarce supervision signal? (4)
can CDS handle goal-conditioned offline RL settings where the offline dataset is undirected and highly suboptimal? (5) Is
CDS able to scale to complex visual observations?

Comparisons. To answer these questions, we consider the following prior methods. On tasks with low-dimensional state
spaces, we compare with the online multi-task relabeling approach HIPI [16], which uses inverse RL to infer for which
tasks the datapoints are optimal and in practice routes a transition to task with the highest Q-value. We adapt HIPI to the
offline setting by applying its data routing strategy to a conservative offline RL algorithm. We also compare to naı̈vely
sharing data across all tasks (denoted as Sharing All) and vanilla multi-task offline RL method without any data sharing
(denoted as No Sharing). On image-based domains, we compare CDS to the data sharing strategy based on human-defined
skills [33] (denoted as Skill), which manually groups tasks into different skills (e.g. skill “pick” and skill “place”) and only
routes an episode to target tasks that belongs to the same skill of the source task. In these domains, we also compare to
HIPI, Sharing All and No Sharing. We use CQL [38] as the base offline RL algorithm for all methods. For more details
on the experiment set-up and hyperparameters, see Appendix E.

Figure 2. Our environments (from left to
right): walker2d run forward, walker2d
run backward, walker2d jump, Meta-
World door open/close and drawer
open/close and vision-based picking and
placing tasks in [33].

Multi-task environments. To address the above questions, we consider
a number of multi-task reinforcement learning problems on environments
visualized in Figure 2. To answer questions (1) and (2), we consider three lo-
comotion environments from OpenAI Gym [5] with dense rewards: halfchee-
tah, walker2d, and ant. Each environment has three tasks, run forward,
run backward and jump, as used in prior offline RL work [88]. To
answer question (3), we also evaluate on robotic manipulation domains
using environments from the Meta-World benchmark [87]. We consider
four tasks: door open, door close, drawer open and drawer
close. Meaningful data sharing requires a consistent state representation
across tasks, so we put both the door and the drawer on the same table, as
shown in Figure 2. Each task has a sparse reward of 1 when the success
condition is met and 0 otherwise. To answer question (4), we consider maze
navigation tasks where the temporal “stitching” ability of an offline RL
algorithm is crucial to obtain good performance. We create goal reaching
tasks using the ant robot in the medium and hard mazes from D4RL [19]. The set of goals is a fixed discrete set of size 7
and 3 for large and medium mazes, respectively. Following Fu et al. [19], a reward of +1 is given and the episode terminates

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Environment Tasks / Dataset type CDS (ours) HIPI [16] Sharing All No Sharing

run forward / medium-replay 1100.7 692.2 701.4 590.1
walker2d run backward / medium 638.4 664.9 756.7 614.7

jump / expert 1538.4 1604.4 885.1 1575.2
average 1092.5 987.2 781 926.6

door open / medium-replay 57.3% 30.7% 19.1% 0%
door close / expert 33.3% 0% 21% 2%

Meta-World [87] drawer open / expert 76% 45.3% 85.5% 0%
drawer close / medium-replay 99.7% 66.7% 100% 5.7%
average 66.6% 35.7% 56.4% 1.9%

large maze (7 tasks) / undirected 0.23 0.01 0.17 0.13
AntMaze [19] large maze (7 tasks) / directed 0.24 0.12 0.21 0.23

medium maze (3 tasks) / undirected 0.37 0.07 0.23 0.22
medium maze (3 tasks) / directed 0.19 0.08 0.12 0.17

Table 3. Results for multi-task locomotion (walker2d), robotic manipulation (Meta-World) and navigation environments (AntMaze) with
low-dimensional state inputs. We include per-task performance for walker2d and Meta-World domains and the overall performance
averaged across tasks (highlighted in gray) for all three domains. We bold the highest score across all methods. CDS performs achieves
the best or comparable performance on all of these multi-task environments.

if the state is within a threshold radius of the goal. Finally, to explore how CDS scales to image-based manipulation tasks
(question (5)), we utilize a simulation environment similar to the real-world setup presented in [33]. This environment,
which was utilized by Kalashnikov et al. [33] as a representative and realistic simulation of a real-world robotic manipulation
problem, consists of 10 image-based manipulation tasks that involve different combinations of picking specific objects
(banana, bottle, sausage, milk box, food box, can and carrot) and placing them in one of the three fixtures (bowl, plate
and divider plate) (see example task images in Fig. 2). We pick these tasks due to their similarity to the real-world setup
introduced by Kalashnikov et al. [33], which utilized a skill-based data-sharing heuristic strategy (Skill) for data-sharing
that significantly outperformed simple data-sharing alternatives, which we use as a point of comparison. More details on the
environments are in the appendix. We report the average return for locomotion tasks, normalized score as proposed in [19]
for AntMaze, and success rate both manipluation environments, averaged over 3 random seeds.

Multi-task datasets. Following the analysis in Section 3, we intentionally construct datasets with a variety of heterogeneous
behavior policies to test if CDS can provide effective data sharing to improve performance while avoiding harmful data
sharing that exacerbates distributional shift. For the locomotion domains, we use a large, diverse dataset (medium-replay) for
run forward, a medium-sized dataset for run backward, and an expert dataset with limited data for run jump. For
Meta-World, we consider medium-replay datasets with 152K transitions for task door open and drawer close and
expert datasets with only 2K transitions for task door close and drawer open. For AntMaze, we modify the D4RL
datasets for antmaze-*-play environments to construct two kinds of multi-task datasets: an “undirected” dataset, where data
is equally divided between different tasks and the rewards are correspondingly relabeled, and a “directed” dataset, where
a trajectory is associated with the goal closest to the final state of the trajectory. This means that the per-task data in the
undirected setting may not be relevant to reaching the goal of interest. Thus, data-sharing is crucial for good performance:
methods that do not effectively perform data sharing and train on largely task-irrelevant data are expected to perform worse.
Finally, for the image-based manipulation tasks, we collect datasets for all the tasks individually by running online RL [32]
until the task reaches medium-level performance (40% for picking tasks and 80% placing tasks). At that point, we merge the
entire replay buffers from different tasks creating a final dataset of 100K RL episodes where each episode consists of 25
transitions.

Results on domains with low-dimensional states. We present the results on all non-vision environments in Table 3, but
leave the results of halfcheetah and ant to Appendix F. CDS achieves the best average performance across all environments.
On the locomotion domain, we observe the most significant improvement on task jump on all three environments. We
interpret this as strength of conservative data sharing, which mitigates the distribution shift that can be introduced by routing
large amount of other task data to the task with limited data and narrow distribution. We also validate this by measuring
the DKL(π, πβ) in Table 4 where πβ is the behavior policy after we perform CDS to share data. As shown in Table 4,
CDS achieves lower KL divergence between the single-task optimal policy and the behavior policy after data sharing on
task jump with limited expert data, whereas Sharing All results in much higher KL divergence compared to No Sharing

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

as discussed in Section 3 and Table 2. Hence, CDS is able to mitigate distribution shift when sharing data and result in
performance boost.

Environment Dataset types / Tasks DKL(π, πβ)
No Sharing Sharing All CDS (ours)

medium-replay / run forward 1.49 7.76 1.49
walker2d medium / run backward 1.91 12.2 6.09

expert / jump 3.12 27.5 2.91

Table 4. Measuring DKL(π, πβ) on the walker2d environment. Sharing All degrades the performance on task jump with limited expert
data as discussed in Table 2. CDS manages to obtain a behavior policy after data sharing that is closer to the single-task optimal policy in
terms of the KL divergence compared to No Sharing and Sharing All on task jump (highlighted in yellow). Since CDS also achieves
better performance, this analysis suggests that reducing distribution shift is important for effective offline data sharing.

On the Meta-World tasks, we find that the agent without data sharing completely fails to solve most of the tasks due to
the low quality of the medium replay datasets and the insufficient data for the expert datasets. Sharing All improves
performance since in the sparse reward settings, data sharing can introduce more supervision signal and help training. CDS
further improves over Sharing All, suggesting that CDS can not only prevent harmful data sharing, but also lead to more
effective multi-task learning compared to Sharing All in scenarios where data sharing is imperative.

In the AntMaze tasks, we observe that CDS performs better than Sharing All and drastically outperforms HIPI in all four
settings. Perhaps surprisingly, No Sharing is a strong baseline, however, is significantly outperformed by CDS in the harder
setting with undirected data. Moreover, CDS performs on-par or better in the undirected setting compared to the directed
setting, indicating the effectiveness of CDS in routing data in challenging settings.

Results on image-based robotic manipulation domains. Here, we compare CDS to the hand-designed Skill sharing
strategy, in addition to the other methods. Since CDS is applicable to any offline multi-task RL algorithm, we employ it as
a separate data-sharing strategy in [33] while keeping the model architecture and all the other hyperparameters constant,
which allows us to carefully evaluate the influence of data sharing in isolation. The results are reported in Table 5. CDS
outperforms both Skill and other approaches, indicating that CDS is able to scale to high-dimensional observation inputs
and can effectively remove the need for manual curation of data sharing strategies.

E. Experimental details
In this section, we provide the training details of CDS in Appendix E.1 and also include the details on the environment and
datasets that we use for the evaluation in Appendix E.2. Finally, we include the discussion on the compute information in
Appendix E.3. We also show the error bars of our experimental results in Table 6.

E.1. Training details

While there are many approaches to obtain a conservative Q-function both directly and indirectly, our practical implementa-
tion of CDS utilizes CQL for this purpose though any base offline RL method that provides as estimate of a conservative
Q-value could be used. While the theoretical version of our method utilizes a two-phased training process that first generates
the relabeled dataset via single-task training and only subsequently trains on the relabeled data, we merge the steps into a
single phase in practice. To do so, we use a soft transform of the condition in Equation 5 to gradually transition between
single-task training and data sharing as dictated by CDS. Formally, this means for a given transition (s,a, rj , s

′) ∈ Dj under
consideration to be relabeled for a task i, we weight the training objectives for the critic and the policy in our actor-critic
algorithm by a soft-relabelling weight:

wCDS(s,a; j → i) := σ

(
∆(s,a; j → i)

τ

)
, (17)

where σ(x) = 1
1+exp(−x) and τ is a temperature hyperparameter. This temperature parameter is chosen in a fully automatic

manner utilizing adaptive temperature scaling from prior work [37] and we describe this scheme in detail in Appendix E.
We also apply wCDS to transitions from the same task with 0.5 probability. We use the following objectives for training the

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Task Name CDS (ours) HIPI [16] Skill [33] Sharing All No Sharing

lift-banana 54.0% 39.7% 33.6% 45.6% 12.6%
lift-bottle 76.3% 58.5% 53.3% 42.8% 44.5%
lift-sausage 75.9% 65.6% 62.5% 73.8% 55.2%
lift-milk 82.7% 75.3% 62.8% 68.9% 58.9%
lift-food 70.3% 64.6% 23.1% 64.9% 29.5%
lift-can 76.1% 70.8% 37.6% 49.4% 41.8%
lift-carrot 80.4% 70.1% 69.4% 72.2% 63.1%
place-bowl 84.4% 72.0% 84.5% 64.7% 77.0%
place-plate 86.9% 82.2% 79.5% 75.1% 82.2%
place-divider-plate 89.4% 72.6% 81.0% 79.3% 84.7%
average 77.6% 67.2% 58.7% 63.7% 55.0%

Table 5. Results for multi-task vision-based robotic manipulation domains in [33]. We consider 7 tasks denoted as lift-object where
the goal of each task is to lift a different object and 3 tasks denoted as place-fixture where the goal of each task is to place a lifted
object onto different fixtures. The numbers are in success rates. CDS outperforms both a skill-based data sharing strategy [33] (Skill) and
other data sharing methods on the average task success rate (highlighted in gray) and 9 out of 10 per-task success rate.

critic and the policy:

Q̂k+1 ← arg min
Q̂

Ei∼[N]

[
β
(
Ej∼[N]

[
Es∼Dj ,a∼µ(·|s,i)

[
wCDS(s,a; j → i)Q̂(s,a, i)

]
−Es,a∼Dj

[
wCDS(s,a; j → i)Q̂(s,a, i)

]])
+

1

2
Ej∼[N],(s,a,s′)∼Dj

[
wCDS(s,a; j → i)

(
Q̂(s,a, i)− B̂πQ̂k(s,a, i)

)2
]]
,

and
π ← arg max

π′
Ei∼[N]

[
Ej∼[N],s∼Dj ,a∼π′(·|s,i)

[
wCDS(s,a; j → i)Q̂π(s,a, i)

]]
,

where β is the coefficient of the CQL penalty on distribution shift, µ is a wide sampling distribution as in CQL and B̂ is the
sample-based Bellman operator.

To compute the relabeling weight wCDS(s,a; j → i) := σ
(

∆(s,a;j→i)
τ

)
, we need to pick the value of the temperature term

τ . Instead of tuning τ manually, we follow the the adaptive temperature scaling scheme from [37]. Specifically, we compute
an exponential running average of ∆(s,a; j → i) with decay 0.995 for each task and use it as τ . We additionally clip the
adaptive temperature term with a minimum and maximum threshold, which we tune manually. For multi-task halfcheetah,
walker2d and ant, we clip the adaptive temperature such that it lies within [10,∞], [5,∞] and [10, 25] respectively. For the
multi-task Meta-Wold experiment, we use [1, 50] for the clipping. For multi-task Antmaze, we used a range of [10,∞] for
all the domains. We do not clip the temperature term on vision-based domains.

For state-based experiments, we use a stratified batch with 128 transitions for each task for the critic and policy learning.
For each task i, we sample 64 transitions from Di and another 64 transitions from ∪j 6=iDj→i, i.e. the relabeled datasets of
all the other tasks. When computing ∆(s,a; j → i), we only apply the weight to relabeled data on multi-task Meta-World
environments and multi-task vision-based robotic manipulation tasks while also applying the weight to the original data
drawn from Di with 50% chance for each task i ∈ [N] in the remaining domains.

We use CQL [38] as the base offline RL algorithm. On state-based experiments, we mostly follow the hyperparameters
provided in prior work [38]. One exception is that on the multi-task ant domain, we set β = 5.0 and on the other two
locomotion environments and the multi-task Meta-World domain, we use β = 1.0. On multi-task AntMaze, we use the
Lagrange version of CQL, where the multiplier β is automatically tuned against a pre-specific constraint value on the CQL
loss equal to τ = 5.0. We use a policy learning rate 1e− 4 and a critic learning rate 3e− 4 as in [38]. On the vision-based
environment, instead of using the direct CQL algorithm, we follow [8] and sample unseen actions according to the soft-max
distritbution of the Q-values and set its Q target value to 0. This algorithm can be viewed the version of CQL with β = 1.0
in Eq.1 in [38], i.e. removing the term of negative expected Q-values on the dataset. We follow the other hyperparameters
from prior work [32, 8, 33].

For the choice architectures, in the domains with low-dimensional state inputs, we use 3-layer feedforward neural networks
with 256 hidden units for both the Q-networks and the policy. We append a one-hot task vector to the state of each
environment. For the vision-based experiment, our Q-network architecture follows from multi-headed convolutional

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

networks used in MT-Opt [33]. For the observation input, we use images with dimension 472×472×3 along with additional
state features (gstatus, gheight) as well as the one-hot task vector as in [33]. For the action input, we use Cartesian space
control of the end-effector of the robot in 4D space (3D position and azimuth angle) along with two discrete actions for
opening/closing the gripper and terminating the episode respectively. More details can be found in [32, 33].

E.2. Environment and dataset details

In this subsection, we discuss the details of how we set up the multi-task environment and how we collect the offline datasets.
We want to acknowledge that all datasets with state inputs use the MIT License. We share the datasets of our state-based
experiments here anonymously1.

Multi-task locomotion domains. We construct the environment by changing the reward function in [5]. On the halfcheetah
environment, we follow [88] and set the reward functions of task run forward, run backward and jump as r(s, a) =
max{vx, 3}−0.1∗‖a‖22, r(s, a) = −max{vx, 3}−0.1∗‖a‖22 and r(s, a) = −0.1∗‖a‖22+15∗(z−init z) respectively where
vx denotes the velocity along the x-axis and z denotes the z-position of the half-cheetah and init z denotes the initial z-position.
Similarly, on walker2d, the reward functions of the three tasks are r(s, a) = vx−0.001∗‖a‖22, r(s, a) = −vx−0.001∗‖a‖22
and r(s, a) = −‖vx‖ − 0.001 ∗ ‖a‖22 + 10 ∗ (z − init z) respectively. Finally, on ant, the reward functions of the three
tasks are r(s, a) = vx − 0.5 ∗ ‖a‖22 − 0.005 ∗ contact-cost, r(s, a) = −vx − 0.5 ∗ ‖a‖22 − 0.005 ∗ contact-cost and
r(s, a) = −‖vx‖ − 0.5 ∗ ‖a‖22 − 0.005 ∗ contact-cost + 10 ∗ (z − init z).

On each of the multi-task locomotion environment, we train each task with SAC [26] for 500 epochs. For medium-replay
datasets, we take the whole replay buffer after the online SAC is trained for 100 epochs. For medium datasets, we take the
online single-task SAC policy after 100 epochs and collect 500 trajectories with the medium-level policy. For expert datasets,
we take the final online SAC policy and collect 5 trajectories with it for walker2d and halfcheetah and 20 trajectories for ant.

Meta-World domains. We take the door open, door close, drawer open and drawer close environments
from the open-sourced Meta-World [87] repo2. We put both the door and the drawer on the same scene to make sure the
state space of all four tasks are shared. For offline training, we use sparse rewards for each task by replacing the dense
reward defined in Meta-World with the success condition defined in the public repo. Therefore, each task gets a reward of 1
if the task is fully completed and 0 otherwise.

For generating the offline datasets, we train each task with online SAC using the dense reward defined in Meta-World for
500 epochs. For medium-replay datasets, we take the whole replay buffer of the online SAC until 150 epochs. For the expert
datasets, we run the final online SAC policy to collect 10 trajectories.

AntMaze domains. We take the antmaze-medium-play and antmaze-large-play datasets from D4RL [19]
and convert the datasets into multi-task datasets in two ways. In the undirected version of these tasks, we split the dataset
randomly into equal sized partitions, and then assign each partition to a particular randomly chosen task. Thus, the task data
observed in the data for each task is largely unsuccessful for the particular task it is assigned to and effective data sharing is
essential for obtaining good performance. The second setting is the directed data setting where a trajectory in the dataset is
marked to belong to the task corresponding to the actual end goal of the trajectory. A sparse reward equal to +1 is provided
to an agent when the current state reaches within a 0.5 radius of the task goal as was used default by Fu et al. [19].

Vision-based robotic manipulation domains. Following MT-Opt [33], we use sparse rewards for each task, i.e. reward 1
for success episodes and 0 otherwise. We define successes using the success detectors defined in [33]. To collect data for
vision-based experiments, we train a policy for each task individually by running QT-Opt [32] with default hyperparameters
until the task reaches 40% success rate for picking skills and 80% success rate for placing skills. We take the whole replay
buffer of each task and combine all of such replay buffers to form the multi-task offline dataset with total 100K episodes
where each episode has 25 transitions.

E.3. Computation Complexity

For all the state-based experiments, we train CDS on a single NVIDIA GeForce RTX 2080 Ti for one day. For the
image-based robotic manipulation experiments, we train it on 16 TPUs for three days.

1The datasets of the state-based experiments are anonymously shared here: https://drive.google.com/file/d/
17xHVcaxKF4imqP5c0R2BGWIsNCDjP4em/view?usp=sharing

2The Meta-World environment can be found at the public repo https://github.com/rlworkgroup/metaworld

https://drive.google.com/file/d/17xHVcaxKF4imqP5c0R2BGWIsNCDjP4em/view?usp=sharing
https://drive.google.com/file/d/17xHVcaxKF4imqP5c0R2BGWIsNCDjP4em/view?usp=sharing
https://github.com/rlworkgroup/metaworld

Multi-Task Offline Reinforcement Learning with Conservative Data Sharing

Environment Tasks / Dataset type CDS (ours) HIPI [16] Sharing All No Sharing

run forward / medium-replay 2587.7±3.4 2626.1±4.2 2605.0±1.2 2632.5±1.2
halfcheetah run backward / medium 2519.5±32.0 2634.4±1.2 2636.7±1.2 2630.7±35.6

jump / expert 4298.2±66.6 4113.4±78.1 712.3±1874.6 -1978.3±3573.9
average 3135.1±14.2 3124.7±27.0 1984.7±616.6 1095.0±1191.6

run forward / medium-replay 1100.7±473.3 692.2±73.3 701.4±63.2 590.1±30.5
walker2d run backward / medium 638.4±82.6 664.9±24.3 756.7±15.6 614.7±34.7

jump / expert 1538.4±290.7 1604.4±85.5 885.1±116.0 1575.2±113.0
average 1092.5±148.2 987.2±37.1 781±57.2 926.6±46.4

run forward / medium-replay 2350.1±91.9 2658.9±63.4 1175.0±184.5 2126.7±160.3
ant run backward / medium 1435.7±70.7 1208.2±64.7 1488.7±142.4 2021.7±14.1

jump / expert 2781.3±392.6 2670.4±61.0 133.8±678.2 495.8±134.9
average 2189.0±107.9 2179.2±9.7 932.5±179.7 1548.1±84.1

door open / medium-replay 57.3%±17.2% 30.7%±43.4% 19.1%±25.2% 0%±0%
door close / expert 33.3%±18.0% 0%±0% 21%±25.9% 2%±2.8%

Meta-World [87] drawer open / expert 76%±9.3% 45.3%±32.2% 85.5%±7.3% 0%±0%
drawer close / medium-replay 99.7%±0.5% 66.7%±47.1% 100%±0% 5.7%±4.9%
average 66.6%±9.1% 35.7%±26.6% 56.4%±7.5% 1.9%±0.8%

large maze (7 tasks) / undirected 0.23± 0.17 0.01± 0.00 0.17± 0.12 0.13± 0.09
AntMaze [19] large maze (7 tasks) / directed 0.24± 0.05 0.12±0.07 0.21± 0.08 0.23± 0.20

medium maze (3 tasks) / undirected 0.37± 0.11 0.07± 0.00 0.23± 0.15 0.22± 0.12
medium maze (3 tasks) / directed 0.19± 0.08 0.08± 0.00 0.12± 0.10 0.17± 0.20

Table 6. Results for multi-task locomotion, robotic manipulation and navigation environments with low-dimensional state inputs. On
locomotion environments (halfcheetah, walker2d and ant), we include three tasks, run forward, run backward and jump, are provided in
each environment. We use medium-replay datasets for task run forward, medium datasets for task run backward, and expert datasets
with limited data for task jump. On the multi-task robotic manipulation domain, we consider four tasks from Meta-World [87], door
open, door close, drawer open and drawer close with medium-replay, expert, medium-replay and expert datasets respectively. Similar to
locomotion tasks, we also used limited amount of expert trajectories for the expert dataset. On the antmaze navigation task, we consider
two maze layouts (medium/large) from D4RL [19], and distribute existing D4RL data either randomly across tasks (undirected) or
based on relevance of the trajectory in the dataset to the task of interest (directed). Reported is the average return for locomotion tasks,
normalized score as proposed in [19] for AntMaze or success rate for Meta-World environments, averaged over 3 random seeds, ± 1
standard deviation. We include both per-task performance and the overall performance averaged across tasks (highlighted in gray). We
bold the highest score across all methods as well as methods with scores within 1% range of the mean of the highest score except that
in the directed setting on AntMaze, we bold CDS , No Sharing and/or Sharing All due to the similar mean score and large standard
deviation. CDS performs achieves the best or comparable performance on all of these multi-task environments.

F. Experimental results on additional multi-task locomotion domains
In Table 6, we provide the full results in the stated-based multi-task domains with the addition of two multi-task locomotion
domains, halfcheetah and ant. CDS outperforms or achieves comparable performance on all of the low-dimensional
environments.

